还原絮凝法处理废水中Cr~(6+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用还原絮凝法处理含Cr6+废水。其特点是反应速度较快,效率较高,可节约大量的自然资源和处理费用,适用于处理排放量大、污染指标高及成分复杂的工业废水。以往针对处理含Cr6+废水所选择的还原剂通常为含亚铁离子的化合物。然而,因为每个亚铁离子仅能提供一个电子,所以仅通过亚铁离子自身去还原Cr6+效果不是十分显著。故本文采用投加亚铁离子与硫化物联合处理的方法,用阴阳离子聚合物作为絮凝剂进行处理,比起以往单纯使用一种聚合物进行絮凝,二者联用不仅能通过“架桥作用”降低废水中致浊物质的含量,还可依靠其鳌合作用去除废水中溶解态的Cr6+离子,从而减少后续处理单元,此方法保证出水水质,操作简单,处理周期短,成本较低,不会造成二次污染,但该方法目前国内研究较少。
     还原絮凝法是利用阴阳离子聚合物与硫化钠、硫酸亚铁结合共同处理含有Cr6+的废水。选择Na2S、FeSO4作为还原剂,明胶、PAM作为絮凝剂进行处理,其中包括对两种还原剂的投加反应浓度、2种絮凝剂的投加反应浓度以及pH值的选择,同时运用正交实验设计方法处理数据,最终选定适合于处理含有Cr6+废水的反应条件。
With the commonly using of chrome in industrial production, and the emissions of chromium-containing waste water are gradually increasing, chrome has become one of maintain environmental pollutants. The existence form of chromium are mainly trivalent chromium and hexavalent chromium in the natural environment. Toxicity of hexavalent chromium is stronger than others, and it is recognized that is a kind of carcinogen, and having great harm for the health. The toxicity of trivalent chromium is not stronger as hexavalent chromium, and it is an essential trace elements for the human beings and animals.
     At present. there are a number of approaches including physical method, chemical method, physical and chemical method and biological method to deal with chromium wastewater, and among these methods the specific ones are osmosis process, floatation process, reduction and sedimentation process, activated carbon adsorption process, ion exchange method, electrolytic method and biochemical method, etc. This paper adopts reduction-flocculation process to deal with chromium-containing waste water. The main characteristics of this method are high efficiency, low cost, high processing speed, and suitable for dealing with serious pollution and emissions from big industrial wastewater. The former methods of chromium-containing waste water treatment usually adopt ferrous ion as reducing reagent. Because one ferrous ion can only provide an electron, so the effect is not quite significant through electronic ferrous ion itself to restore hexavalent chromium. The test uses FeSO4 and Na2S. two reducing reagents joint together, as well as utilize anionic polymers and cationic polymers combine with sodium sulfide (Na2S) and ferrous sulfate (FeSO4) to deal with hexavalent chromium containing wastewater. Compared with using only one flocculent, using two flocculents can not only through its chelating cooperation to purify hexavalent chromium wastewater, but also can use "bridging role" to reduce turbidity of waste material content. The advantages of this method are low cost, quick response, and water quality, and never produce secondary pollution.
     The experiment choose Na2S and FeSO4 as reducing reagent, and choose gelatin, PAM as flocculant, the experiment result lies on the two reducing reagents reaction concentration, the two of flocculant dosing reaction concentration and pH value. And the experiment use orthogonal experimental design method processing data, finally, we find the suitable reaction conditions for treatment of wastewater containing Cr6+ Through a series of experiment we get the research conclusion.
     Through orthogonal experiment, we qualitative analyse the influence of each experimental factor for the result of the experiment, find the several factors which can increase or reduce flocculation:FeSO4 dosing quantity, water pH value, Na2S dosing quantity, gelatin dosing quantity and PAM dosing quantity. Among them, through comparing FeSO4 dosing quantity, give the biggest influence of Cr6+ ion concentration in the experimental process, plays a key role; Na2S dosing quantity is just follow FeSO4 dosing quantity influence:Gelatin and PAM these two kinds of polymerization precipitation agent:the influence of both below Na2S, The influence of the pH value is the smallest.
     According to orthogonal experimental quantitative analysis, identified using reductive flocculation processing chromium-contained 20 mg/L wastewater the best reaction conditions:using Na2S as one step reductant, and dosing reaction concentration for 24.7 mg/L; For two step reductant concentration with FeSO4. dosing reaction for 25 mg/L; With gelatin and PAM for flocculating agent, dosing reaction concentration for 100 mg/L and for 10 mg/L respectively:PH value at nine or so.
     Flocculant with PAM collocation by gelatin, first add gelatin into the water, positive charge cationic of polymer gelatin can make the colloidal gelatin molecules take off instability, then, add shredded PAM, anionic polymer PAM anion make the negatively charged off the colloid particles, through strong bridge function and net catch function, the colloid particles quick trap flocculation, precipitation. So the alternate use of the settlement of the particle acceleration suspension, a very obvious accelerate solution clarification effects.
     Experimental results show that the good results of the flocculation treatment to processing wastewater containing Cr6+, according to the best conditions of processing data show that when containing Cr6+ for 20 mg/L concentration of waste water after treatment Cr6+ concentration of wastewater can reach 0.28 mg/L. removal rate was 98.6%. reach the national wastewater discharge standards.
引文
[1]史黎薇.铬化合物的健康效应[J].中国环境卫生.2003,6:125-129
    [2]肖华文.中国的水资源危机[J].城乡建设.2004.9:11-25
    [3]黄辉,李克锋.我国水资源危机及发展策略[J].四川水力发电.2005.24(2):21-23
    [4]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究.2004.21(4):54-56
    [5]王绍文,姜有凤.重金属废水治理技术[J].北京:冶金工业出版社,1993.
    [6]张芳西.实用废水处理技术[M].黑龙江科学技术出版社.1983
    [7]何凤娇主编,无机化学[M].科学出版社2001:214
    [8]张建梅.重金属废水处理技术研究进展[J].西安联合大学学报.2003,6(:2)55-59.
    [9]梅光泉.金属废水的危害与治理[J].微量元素与健康研究.2004,2(1:4)54-56.
    [10]杨丽芳,王喆.王宜明.铬渣及其解毒与资源化探讨[J].环境污染与防治.2006.8:1-9.
    [11]吴继明.程胜高.探讨六价铬对人体健康的影响及防治措施[J].现代预防医学.2009.36(24):4610-4616.
    [12]谭西顺.危害人体健康的杀手—六价铬[J].劳动保护.2003,1:61-61.
    [13]张芳西.实用废水处理技术[M].黑龙江科学技术出版社.1983
    [14]马荣骏.工业废水的治理[M].长沙:中南工业大学出版社.1991
    [15]刘俊良,杨全利,刘明德.含铬废水处理技术综述[J].河北科技图苑.1997,37(3:)13-15.
    [16]牛晓霞.含铬废水的处理方法综述[J].洛阳大学学报.1999,14(2:)3-43.
    [17]J.W帕尔森(美),工业废水处理技术手册.北京.化学工业出版社
    [18]南京大学《无机及分析化学》编写组.无机及分析化学(第3版)[M].北京:高等教育出版社,1998
    [19]刘淑云.李小明.曾光明.含铬(Ⅵ)废水处理研究进展[J]湖南城市学院学报(自然科学版).2006.(02)
    [20]瞿建国.申如香,徐伯兴.李福德.微生物法处理含铬(Ⅵ)废水的研究[J]化工环保.2005.(01)
    [21]赵如金,吴春笃.常温铁氧体法处理重金属离子废水研究[J]化工环保.2005.(04)
    [22]汤心虎.韦朝海.谭淑英,龙保根.稀水溶液中Cr(Ⅵ)光化学还原的研究[J]环境化学.2004,(06)
    [23]耿振香,孙颖.微生物法处理含铬废水[J]化学工程师,2003,(02)
    [24]张永吉.化学沉淀法处理电镀废水的新认识和新进展[J]环境污染与防治.1993.(06)
    [25]木冠南.活性炭自溶液中除6价铬[J]云南化工.1992,(04)
    [26]李健.石凤林,尔丽珠,张惠源.离子交换法治理重金属电镀废水及发展动态[J]电镀与精饰.2003,(06)
    [27]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J]广东化工.2005.(04)
    [28]潘献辉.利用吸附法净化含铬废水[J]工业水处理,1986,(03)
    [29]张建民.宗刚.朱宝瑜等.生物处理电镀铬废水的研究[J].工业水处理.1999.19(5):21-22
    [30]黄炳辉.用液膜技术处理含铬废水的研究[J].环境与开发,1999.14(2):31-32
    [31]李中华.含铬废水的处理[J].铁道机车车辆工人,1993,(10)
    [32]贾铸胜.含铬电镀废水的化学处理法[J]材料保护,2001,(11)
    [33]光建新.铁屑还原法处理含铬废水的研究[J]电镀与环保.2007,(03)
    [34]杨际.粉煤灰处理含铬废水的研究与试验[J].辽宁大学学报(自然科学版).2001.(04)
    [35]房秀福,李浩然,王玉兰,水处理中絮凝剂的研究进展[J],黑龙江水利科技,2005,33(3):36-37.
    [36]]黄泽涓,郭丽梅,武首香,阳离子聚丙烯酞胺絮凝剂制备与应用[J],天津化工,2005,19(5):13-15.
    [37]酒红芳,多功能阳离子聚丙烯酞胺的研究[D],硕士论文,河北:河北工学院,2002,
    [38]Robert W. Puls. Cynthia J. Paul. Robert et al. The application of in situ permeable reactive(zera-valent iron) barrier technology for the remediation of chromate-contamin-ated groundwatera field test[J]. Applied.Geoehemistry. 1999.14.989-1000.
    [39]Wittbrodt P.R.and Palmer C.D. Reduction of Chromium (Ⅵ) in the presence of excess soil fulvic acid[J]. Environ Sci Technol.1995.29.255-263.
    [40]郭壮.还原沉淀法处理含铬废水的研究及应用[D].哈尔滨:哈尔滨工业大学市政环境工程学院,2007.
    [41]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社.1993.1-2
    [42]杜美蓉、赵翠瑞、李振娥,铬黄废水治理方案的研究[J],山东化工,2001(5),7-9;
    [43]房兴堂,张彩荣,陈宗方.有机铬的研究进展及应用前景[Z].饲料与畜牧,1998,(5):15-17
    [44]刘仁保,梁建功,韩素琴等.铬的形态分析研究进展[J].理化检验—化学分册,3,39(6):368-371
    [45]李宾.化学法处理含重金属废水的应用介绍[J].材料保护,2000,33(10):18-19
    [46]谢少雄,黄功浩,黄美燕.铁屑法处理电镀含铬废水的试验及应用[Z].工业水处理,2003,23(6):28-30
    [47]Saleh F.Y.. Parkerton T.F..Lewis R.V..et al. Kinetics of chromium transformations in the environment[J].Sci Total Environ.1989.86.25-41
    [48]王志忠,反渗透技术处理电镀废水的探讨[J],工业水处理,1985,(5):17-21
    [49]李京,气浮法处理电镀废水的研究[J],环境技术,2001,(2):41-43
    [50]鞠建林,集中污染治理理论与实践研究[J],环境污染与防治,1998.20(5):5-9
    [51]Viraraghavan T, Use of Peat in pollution control.Intern[J].Environmental Studies.1991.37:163-169
    [52]Exposito Eduardo.Removal of heavy metals in wastewater by electrochemical treatment[J].Chem.Eng.Edu.,1999.33(2):172-176
    [53]Moggio Guido E.Recycling and treatment of electroplation wastewater[J]. Technol. Chim.1999.19(5):89-95
    [54]崔俊华,赵秀娟,章美文等,国外工业废水集中处理的典型模式[J],中国给水排水,2002,18(8):88-89
    [55]孟祥和,胡国飞,重金属废水处理[J],北京:化学工业出版社,2000.
    [56]曹宇等,处理六价铬的方法比较[J],福建环境,1999,16(5):35
    [57]李峥,吴效东,程鸣等,微电解法处理电镀废水[J],安全与环境工程,2003,10(3):35~37
    [58]J W帕特森著,许之谨译,工业废水处理技术手册[J],北京:化学工业出版社,1993.
    [59]吴克明,潘留明,黄羽,反应柱充填活性炭法处理轧钢含铬废水的研究[J],环境污染与防治,2005.27(5):379~381
    [60]Bhide et al. Biotechnol Lett[J],1996,18,667-672
    [61]Bosinco.S.Interaction Mechanisms between Hexavalent Chromium and Comcob[J].Environmental Technology.1996.17(1):55
    [62]R.S.Prakasham.Biosorption of chromium(Ⅵ)by free and immobilized Rhizo pusarrhizus Envir[J].Pullu.1999.104:421-427
    [63]Wang J.L.et al.Removal of Cr(Ⅵ)from aqueous solution by macroporous resin adsorption. [J].Environ.Sci.Health A.2000.35(7):1211-1230.
    [64]贺金泉,马子权,王拥宪等,利用含铬废液生产液体铬鞣剂,环境工程[J].1997.15(5):53-55
    [65]范力,张建强,程新.刘伟,夏明芳.王志良.离子交换法及吸附法处理含铬废水的研究进展[J].水处理技术.2009,35(1):30-33.
    [66]李桂影.铬中毒的临床反应和实验研究[J].国外医学:医学地理分册2002.23(1):33-35:
    [67]Avijit Bhowal. Siddhartha Datla. Studies transport mechanism of Cr(Ⅵ)extraction from an acidic solution using liquid surfactant membranes[J]. Journal of membrane science,2001.188(1):1-8.
    [68]邓小红,宋仲容.电镀含铬废水处理技术研究现状与发展趋势[J].重庆文理学院学报:自然科学版2008.27(5):70-73.
    [69]刘歆,刘泽洋,冷粟等.絮凝处理染料废水的电解实验研究[J].东北师大学报:自然科学版2010.42(4):96-100.
    [70]刘淼,董德明.张白羽等.光催化法处理电镀含铬(Ⅵ)废液[J].吉林大学自然科学学报:1998.25(2):99-101.
    [71]谢翼飞,李旭东.李福德.生物硫铁复合材料处理含铬废水及铬资源化研究[J]. 中国环境科学2009,29(12):1260-1265.
    [72]刘淼,董德明.邱立民等.过氧化氢加Fe(Ⅱ)作催化剂处理电镀废液中Cr(Ⅵ)[J].吉林大学学报:理学版2003.41(3):406-409.
    [73]徐仲安,王天保,李常英,暴丽艳,马青梅,苗玉宁.正交试验设计法简介[J].科技情报开发与经济,2002.12(5):148-150.
    [74]刘睿,周启星,张兰英,等,水处理絮凝剂研究与应用进展[J],应用生态学报,2005,16(8):1558-1562
    [75]姚晓军,马迎,城市污水处理用阳离子絮凝剂的生产[J],河南化工;,2005,22(10):50-51.
    [76]中迎华,王斌,王志忠,有机高分子絮凝剂在污泥脱水中的应用[J],高分子材料科学与工程,2004,20(5):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700