基于低温气体环境冰粒即时制备及冰射流表面脱漆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰射流技术作为绿色加工新工艺,在表面清洗除垢和表面脱漆等领域表现出了巨大的应用潜力和广阔的应用前景。本论文以教育部科学技术研究重点项目“过冷水动态生成高压冰射流技术及应用”(编号:03026)为依托,以冰射流表面脱漆工程应用为背景,提出并开展了低温气体环境冰粒生成机理和射吸式冰射流喷嘴内冰粒引射机理的研究;设计并构建了低温气体环境冰粒即时制备系统和冰射流表面脱漆系统;开展了冰粒即时制备基本规律和冰射流表面脱漆试验研究。
     本文全面分析了冰射流技术的研究现状,重点介绍了现有技术中的冰粒制取方法,提出了低温气体环境快速制取低温球形冰粒的系统模型。利用相变动力学、传热传质及多相流理论对冰粒生成过程进行理论分析,提出了水滴凝固阶段的“冰球”物理模型,并在此基础上建立了低温气体环境冰粒生成过程数学模型。结合“温度回升法”计算分析了水滴在低温气体中的冻结成冰规律。基于液滴沸腾蒸发机理的分析,结合离散液滴多相流模型建立了液氮雾化蒸发过程数学模型。计算分析了有限空间内液氮雾化蒸发生成低温气体的温度场和速度场特点。开展了低温气体中冰粒即时制取基本规律的试验研究,重点研究了水雾化参数对生成冰粒温度、粒度分布和粘结情况的影响。基于可压缩流体动力学理论和气固两相流理论,建立了射吸式冰射流喷嘴内气体冰粒两相流动数学模型,开展了冰粒气力喷射形成冰射流机理的数值研究,计算分析了不同喷射压力下冰射流喷嘴内部气体射流特性、冰粒在喷嘴中的引射加速过程以及气体射流对冰粒速度和温度的影响。构建了冰射流表面脱漆试验系统,针对铝合金2A12和聚丙烯树脂基体开展了冰射流表面脱漆试验研究。
     本文的主要结论如下:
     ①在分析冰的基本热物理属性、力学特性和粘结特性基础上,结合冰射流技术的特点,提出了适合冰射流技术使用的冰粒温度范围是-27℃到-60℃。
     ②通过建立的低温气体环境冰粒生成过程数学模型,计算分析了水滴在低温气体中的冻结成冰规律。计算结果表明在-60℃的低温气体中,粒径为0.15mm的水滴在下落约0.4m的过程中就可生成-50℃的冰粒。针对有限空间内液氮雾化蒸发过程的数值模拟表明液氮雾化蒸发形成的低温气体空间温度场分布不均匀、不稳定,但气流组织比较简单且流速较低。
     ③在液氮雾化沸腾蒸发制冷和冰粒生成过程计算分析的基础上,设计了可连续即时制取低温冰粒的试验系统,试验研究了冰粒制取的基本规律。结果表明该系统可以连续制取温度低于-30℃、粒径小于0.425mm的球形冰粒。
     ④针对冰粒在射吸式冰射流喷嘴内的引射加速过程数值计算表明,被引射低温气体流量是形成冰射流的关键。低的引射气体流量容易造成冰粒驻留时间过长,引起冰粒堵塞喷嘴。
     ⑤针对铝合金2A12和聚丙烯树脂试样的冰射流表面脱漆表明,冰射流可以有效清除两种试样的油漆涂层;压力较高时,冰射流会导致聚丙烯树脂基体表面粗化,表面粗糙度随喷射压力的增大及喷射时间的延长而增大,但没有引起铝合金基体表面的明显改变。
Ice jet technology shows a promising prospect of application and extension insurface cleaning and depainting engineering because of its environment-friendlyfeature. Aimed at development and design of an effective equipment producing iceparticle, this dissertation presented mainly a comprehensive study of the ice particleproduction through experimentation and numerical methods using computational fluiddynamics and computational heat transfer and a systemic research on the depaintingby use of ice blasting technology.
     According to the in-depth discussions about the thermal physical properties,mechanical performance and surface behavior of ice, a conclusion could be drawn thatthe ice particles with the temperature of-27℃~-60℃should be produced for iceblasting. An “ice sphere” physical model was established and the correspondingnumerical equations were solved to obtain the basic factors influencing the freezingprocess of a water droplet. The results showed that a water droplet of0.15mm indiameter had changed into ice particle with temperature of-50℃at a falling distanceof0.4m in the atmosphere with temperature of-60℃. In order to create a cryogenicatmosphere, liquid nitrogen was used. A numerical model describing the evaporationprocess of liquid nitrogen droplets was solved to obtain the basic laws of evaporation.Furthermore, the evaporation of atomized liquid nitrogen in a specific volume wassimulated.
     Based on the numerical analysis of freezing of a water droplet and evaporation ofthe atomized liquid nitrogen, an experimental apparatus was established.Experimental research was made to find basic laws of producing ice particles. Resultsshowed that ice particle, ranged from0.425mm to0.075mm in diameter, withtemperature below-30℃were produced continuously by use of the apparatus.
     The accelerating process of ice particles in a conventional industrial siphon-typesand blasting nozzle were investigated numerically in detail. The numerical equations,including conservation equations of mass, momentum and energy of gas phase, werebuilt based on compressible fluid dynamics. The turbulent flow characteristic wasintroduced by means of RNG k-ε turbulence model and the gas-solid interactions werereflected by discrete phase model.
     The applications of ice blasting technology in the industrial field of depaintingwere investigated experimentally in the last part of the dissertation. The substrates of depainting samples were aluminum alloy (2A11) and poly propylene. The acrylicpaint was sprayed on the substrate surfaces. The depainting experimental resultsshowed that gas pressure of the ice jet was the most important working parameterinfluencing the de-painting effect. Even at0.2MPa blasting pressure, the two kinds ofpaint coatings samples were stripped effectively. SEM pictures showed that polypropylene surface was roughened obviously when the blasting pressure was above0.3MPa, but the aluminum alloy surface changed little under different blastingconditions.
引文
[1] Kenneth E. Abbott. Dry media blasting for the removal of paint coatings on aerospacesurfaces [J]. Metal Finishing,1996(5):33-35.
    [2] Joseph Kozol, Dayle Conrad. Aircraft Depainting Technology[M]. Maryland: Naval AirWarfare Center Aircraft Division,1999:5-35.
    [3] Joseph Kozol. An environmentally safe and effective paint removal process for aircraft [J].Journal of the Minerals,2001(23):20-21.
    [4] Randall B. Ivey. Carbon dioxide pellet blasting paint removal for potential application onwarner robins managed air force aircraft [J]. Pollution Technology Review,1993(22):91-94.
    [5] P. Tangestanian, M. Papini. Starch media blast cleaning of artificially aged paint films [J].Wear,2001(248):128-139.
    [6] Sp.G Pantelakis, G.N Haidemenopoulos. Effect of novel paint removal processes on thefatigue behavior of aluminum alloy2024[J]. Surface and Coatings Technology,1998(106):198-204.
    [7]郑光.飞机蒙皮激光脱漆技术研究[D].中国科学院研究生院学位论文,2005.
    [8] X.Zhou,K.Imaskai. Experimental study on surface decontamination by laser ablation[J],Journal of Laser Applications,2002(14):574-583.
    [9] Dan H. Weisslingr. A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft[J]. International Journal of Aerospace,2011(4):1125-1132.
    [10] D.P. Weston, P.H. Shipway. Coating removal from an industrial polypropylene blend bycryogenic blasting: the development of substrate damage [J].Wear,2005(258):392-401.
    [11] H. Teimourian, M.R. Shabgarda, A.W. Momberb. De-painting with high-speed water jets:Paint removal process and substrate surface roughness[J]. Progress in Organic Coatings,2010(69):455–462.
    [12] LaurieL. Williams. Removal of polymer coating with supercritical carbon dioxide [D].Colorodo State University,2001.
    [14] Anirban Guha, Ronald M. An experimental and numerical study of water jet cleaningprocess[J]. Journal of Materials Processing Technology.2011(211):610-618.
    [15]张凤莲.磨料水射流切割工程陶瓷机理及关键技术的研究[D].大连:大连交通大学学位论文,2010
    [16]李晓红,卢义玉等.水射流理论及在矿业工程中的应用[M].重庆:重庆大学出版社,2007.
    [17]王明波.磨料水射流结构特性与破岩机理研究[D].中国石油大学学位论文,2007.
    [18]赵健新.水力挤注式磨料水射流形成机理及装备的研究[D].重庆:重庆大学学位论文,2010.
    [19]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.
    [20]李德玉,段雄.煤层水力割缝喷嘴特性的数值研究[J].煤炭学报,2010(4):686-690.
    [21] H.Z. Li, J. Wang,. Analysis and modelling of particle velocities in micro-abrasive air jet [J].International Journal of Machine Tools and Manufacture,2009(49):850-858.
    [22] G. Fowler, I.R. Pashby. The effect of particle hardness and shape when abrasive water jetmilling titanium alloy Ti6Al4V [J]. Wear,2009(266):613-620.
    [23] Andreas Momber. Blast cleaning technology[M].Berlin:Springer,2008.
    [24]沈国良.喷丸清理技术[M].北京:化学工业出版社,2004.
    [25]曹玮.基于CFD的气动喷砂机理与喷砂流场特性研究[D].大庆:大庆石油大学学位论文,2006.
    [26]周良.喷丸、砂喷涂技术及装备[M].北京:化学工业出版社,2008.
    [27] Courts, E.J. Means and Methods for Cleaning and polishing Automobiles. US Patent no.2,699,403.[P].1995.
    [28] Fong, C.C. et al,, Blasting Machine Utilizing Sublimable Particles. US Patent no.4,389,820.
    [P].1983.
    [29] Liu B L. The rotated injection abrasive jet rust cleaning system[C]. Proceeding of the10thInternational Symposium on jet Cutting Technology.1991.
    [30] F. Lee Development of Ice Jet Machining Technology[C]. Proceding of the8th AmericanWater Jet Conference.371-378
    [31] E.Geskin. Development of ice jet machining technology.[C] USA Proceeding of13thInternational Conference on Jetting Technology.1995.
    [32] Dimitri V. Shishkin. Development of icejet-based surface processing technology [D]. NewJersey: New Jersey Institute of Technolofy,2002.
    [33] Dimitri V. Shishkin. Development of icejet machining technology [D]. New Jersey: NewJersey Institute of Technolofy,1999.
    [34] Krzysztof Kluz. Application of ice-air jet blasting in treatment of sensitive surfaces[J]. Inter-national Journal Abrasive Technology,2007(1):59–77.
    [35]刘力红,张东速.冰粒参数对冰粒射流表面清洗性能的影响[J].管道技术与设备,2008(6):64-66.
    [36]赵陆.冰粒射流工艺及装备的基础研究[D].西安:西北工业大学学位论文,2005.
    [37] Visaisouk, S., Fisher, N. Apparatus and method for continuous ice blasting. US Patent no.6,001,000.[P].1999.
    [38] Utter, Robert P, Tandeski, David. An auger-type ice making apparatus for producing highquality ice. US Patent no.4497184.[P].
    [39] Yoon Pyo Lee. Method and apparatus for making spherical ice particle. US Patent no.6038869.[P]
    [40] H.T. Shin, Y.P. Lee. Spherical-shaped ice particle production by spraying water in a vacuumchamber[J]. Applied Thermal Engineering,2000(20):439-454
    [41] Sebastian Vonhoff. The influence of Atomization conditions on protein secondary andtertiary structure during micro-particle formation by spray-freeze-drying[D]. Erlangen-Nürnberg,2009
    [42] Kanno, Itaru. Cleaning device using fine frozen particles. US Patent no.5074083[P]
    [43] U.C.Sung, C.N.Yoon. Surface cleaning by ice-jet(II)-preparation of contaminated surfaceand its cleaning[J]. Korean Journal of Chemistry Engineering,1997(14):15-22
    [44] P. Hobbs. Ice Physics[M]. Oxford, England: Clarendon Press,1974
    [45] B. J. Mason. The Physics of Clouds[M]. Oxford: Clarendon Press,1971
    [46] M. Choukrouna, O. Grasse. Thermodynamic model for water and high-pressure ices up to2.2GPa and down to the metastable domain[J]. Journal of Chemistry and Physics.2007(127):124506.
    [47]马永昆,刘晓庚.食品化学[M]南京:东南大学出版社,2007.
    [48] Ashton, G.D. River and Lake Ice Engineering[M].Colorado: Water ResourcesPublications,1986.
    [49]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M]北京:机械工业出版社,1987.
    [50] Taoshiaki Ohmori. Method of cleaning a surface by blasting the fine frozen particles againstthe surface. US Patent no.514746.[P]
    [51] P. Borkowski. Basis of high-pressure water-ice jet creation and application for surfacetreatment[J]. Surface Treatment.2000(6):85~95.
    [52] Y. Boluk. Adhesion of freezing precipitates to aircraft surfaces [M]. Canada:OptimaSpecialty Chemicals and Technology Inc.1996.
    [53]张克立.固体无机化学[M].武汉:武汉大学出版社,2004.
    [54] Szijcs. J. A method for cleaning surfaces. European patent:0509132B1,[P].1991.
    [55]杨晓东,金敬福.冰的粘附机理与抗冻粘技术进展[J]长春理工大学学报.2002(4):17~19.
    [56]任俊,沈健.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [57] Narayan R. Dependence of freezing temperature of supercooled water drops on rate ofcooling[J]. Journal of Atmospheric Sciences,1965(22):212-216.
    [58]张强.冰雹和冰雹云[M].北京:气象出版社,2006.
    [59]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002.宫秀敏.
    [60]相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.
    [61]张寅平.相变贮能--理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [62]吴锐.过冷法动态冰浆制取的分析及实验[D].华中科学技术大学硕士论文,2006.
    [63] M.Strub, O.Jabbour. Experimental study and modeling of crystallization of a water droplet[J].International Journal of Refrigeration,2003(26):59-68.
    [64] F. Feuillebois, A. Lasek. Freezing of a subcooled liquid droplet[J]. Journal of Colloid andInterface Science,1995(169):90–102.
    [65]李梅娥.传输过程数值计算[M].西安:西安交通大学出版社,2008.
    [66] Hagen, D. E., R. J. Anderson, J. L. Kassner. Homogeneous condensation freezing nucleationrate measurements for small water droplets in an expansion cloud chamber. Journal ofAtmospheric Sciences,1981(38),1236–1243.
    [67] John D. Spengler. Freezing of freely suspended, supercooled water drops in a large verticalwind tunnel [J]. Journal of Applied Meteorology.1972(11):1101-1107.
    [68] Narayan R. Gokhale. Droplet freezing by surface nucleation[J]. Journal of Applied Meteor-ology.1968(7):870-874.
    [69] W. Gao, D.W. Smith. Freezing behavior of freely suspended industrial wastewater [J]. ColdRegions Science and Technology,2000(31):13–26.
    [70] B. J. Murray et al. Heterogeneous freezing of water droplets containing kaolinite and mont-morillonite Particles[J]. Atmospheric Chemistry and Physics Discussions,2010(10):9695–9729.
    [71] K. Al-hakimi, G. Wigley. Phase Doppler Anemometry Studies of Spray Freezing [J].Chemical Engineering Research and Design,2006(84):1142–1151.
    [72] J.P. Hindmarsh, D.I. Wilson. Using magnetic resonance to validate predictions of the solidfraction formed during recoalescence of freezing drops[J]. Heat and Mass Transfer,2005(48):1017-1021.
    [73] Diehl K.Wurzler S. Spengler. Heterogeneous drop freezing in the immersion mode modelcalculations considering soluble and insoluble particles in the drops [J]. Journal ofAtmospheric Sciences,2004(61):2063-2072.
    [74] J.P. Hindmarsh, C. Buckley. Imaging droplet freezing using MRI [J]. Chemical EngineeringScience,2004(59):2113-2122.
    [75] Thomas E. Hoffer. A laboratory investigation of droplet freezing[J]. Journal of Meteorology,1962(18):766-778.
    [76] J.P. Hindmarsh, A.B. Russell, X.D. Chen. Experimental and numerical analysis of the temp-erature transition of a suspended freezing water droplet[J]. Heat and Mass Transfer,2003(46):1199-1213.
    [77]奥齐西克.热传导[M].北京:高等教育出版社,1983.
    [78]靳静洪荣华等.两种结冰方式影响蓄冷速率的数值分析[J].能源工程,2006,3:12~15.
    [79]杨世铭.传热学[M].北京市:高等教育出版社,1998.
    [80](美)G.鲁丁格.气体-颗粒流基础[M].北京市:国防工业出版社,1986.
    [81]徐家骝.冰雹微物理与成雹机制[M].北京市:农业出版社,1979
    [82] W.N. Gill, J.Y. Jang. Rapid solidification of subcooled small metallic drops[J]. ChemicalEngineering Communications,1981(12):3–31.
    [83]杨全,张真.金属凝固与铸造过程数值模拟[M].杭州市:浙江大学出版社,1996.
    [84]李艳.液氮冷藏车喷淋冷冻冷藏性能模拟分析[D].吉林大学学位论文,2006.
    [85] Nicholas P.Cheremisinoff. Handbook of heat and mass transfer[M]. Gulf Pub Co.1990.
    [86]王补宣.工程传热传质学[M].北京:科学出版社,1982.
    [87]王喜忠.喷雾干燥[M].北京:化学工业出版社,2003.
    [88]周致富,辛慧.激光手术喷雾冷却中单个液滴蒸发特性[J].中国激光,2008(6):51-55.
    [89](英)斯柏尔丁.燃烧与传质[M].北京:国防工业出版社,1984.
    [90](美)K·K·肯尼斯.燃烧原理[M].武汉:华中理工大学出版社,1991.
    [91]岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [92]陈义良.燃烧原理[M].北京:航空工业出版社,1992.
    [93] W.E. Ranz. Evaporation from drops Part I[J]. Chem. Eng. Prog.1952(47):141~146
    [94] W.E. Ranz. Evaporation from drops Part II[J]. Chem. Eng. Prog.1952(48):173~180
    [95]傅维标.燃烧物理学基础[M].北京:机械工业出版社,1984.
    [96]周力行.燃烧理论和化学流体力学[M].北京:科学普及出版社,1986.
    [97]蒋勇,朱宁.喷雾过程液滴蒸发计算研究[J].火灾科学,2001(1):P20~23.
    [98]夏兴兰.涡流室式柴油机三维燃烧模拟计算与分析[D].江苏理工大学学位论文,1998.
    [99]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.
    [100]范维澄.计算燃烧学[M].合肥:安徽科学技术出版社,1987.
    [101]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社,1997.
    [102]赵治国,解茂昭.泡沫陶瓷中燃油喷雾液滴蒸发混合的数值研究[J].燃烧科学与技术,2006(12):233-235
    [103]袁江涛,杨立.有限气体容积内的液滴传热传质模型与理论分析[J].海军工程大学学报,2010(03):77-81.
    [104] A.Haider, O.Levenspiel. Drag Coefficient and Terminal Velocity of Spherical and Non-spherical particles[J]. Powder Technology,1989(58):63~70.
    [105]冉景煜.不同物性液滴在低温烟气中的蒸发特性数值研究[J].中国电机工程学报,2010(30):62-68.
    [106]袁亚雄,张小兵.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社,1997.
    [107]王秀峰,数据分析与科学绘图软件ORIGIN详解[M].北京:化学工业出版社,2008.
    [108] Youngchul Ra, Rolf D, Reitz.A vaporization model for discrete multi-component fuelsprays[J].International Journal of Multiphase Flow,2009,35(2):101-117.
    [109] Е.Я.索科洛夫, Н.М.津格尔.喷射器[M].北京:科学出版社,1977.
    [110]陆宏圻等.喷射技术理论及应用[M].武汉:武汉大学出版社,2004.
    [111]郑金宝,史慧玲,气固喷射器理论和实验研究[J].水泥,1993(7):35-39.
    [112] M.C.Sharma, N.Nath. Design and development of pneumatic induction type ball peeningnozzle [C]. The7th International Conference on Shot Peening.432-440.
    [113] S.K.Rautary. Development of pneumatic induction type ball peening nozzle [C]. The6thInternational Conference on Shot Peening and Blasting Cleaning.167-173.
    [114] Yuanquan Xiong, Mingyao Zhang. Three-dimensional numerical simulation method forgas–solid injector[J]. Powder Technology,2005(160):80–189.
    [115] Wang Xiaofang, Jin Baosheng. Flow behaviors of gas-solid injector by3D simulation withkinetic theory of granular flow [J]. Chinese Journal of Chemical Engineering,2008(16):823–831.
    [116] Chuanzhen Huang. Two dimensional simulation of velocity field of fwo-phase flow for gasand solid in the abrasive air jet nozzle [J]. Key Engineering Material,2008(356-369):465-469.
    [117]刘沛清.自由紊动射流理论[M].北京:北京航空航天大学出版社,2005.
    [118]徐旭常,周力行.燃烧技术手册[M].北京:化学工业出版社出版,2008.
    [119]李隆键.超音速冷气体动力喷涂过程中的气固两相流动[D].重庆大学学位论文,2004.
    [120]吴继平.高增压比多喷管超声速引射器设计理论、方法与实验研究[D].国防科学技术大学学位论文,2007.
    [121]韩省思.超声速燃烧中湍流模型研究[D].中国科学技术大学学位论文,2009.
    [122]李雪松.基于可压缩流方法的大涡模拟及其工程化应用[D].中国科学院研究生院学位论文,2006.
    [123]孙小波.可压缩剪切湍流的直接模拟和大涡模拟研究[D].中国科学技术大学学位论文,2007.
    [124] R.C. Dykhuizen, M.F.Smith. Gas dynamic principles of cold spray [J]. Journal of ThermalSpray Technology,1998(7):205-212.
    [125] A.P. Alkhimov, V.F. Kosarev. The features of cold spray nozzle design [J]. Journal ofThermal Spray Technology,2001(10):375-381.
    [126]孔珑.可压缩流体动力学[M].济南:山东工业大学出版社,1991.
    [127]王新月气体动力学基础[M].西安:西北工业大学出版社,2006.
    [128] B. Samareh, O. Stier. Assessment of CFD modeling via flow visualization in cold sprayprocess [J]. Journal of Thermal Spray Technology,2009(18):934-943.
    [129] C.T. Crowe, Drag coefficient on particles in a rocket nozzle, AIAA Journal.,1967(5):1021-1022.
    [130] R. Lupoi,W. O’Neil. Powder stream characteristics in cold spray nozzles[J]. Surface&Coatings Technology,2011(206):1069-1076.
    [131] B. Jodoin. Cold spray nozzle mach number limitation[J].Journal of Thermal SprayTechnology,2002(11):496-507.
    [132] Wen-Ya Li, Hanlin Liao. Optimal design of a cold spray nozzle by numerical analysis ofparticle velocity and experimental validation with316L stainless [J]. Materials and Design,2007(28):2129–2137.
    [133] M. Karimi, A. Fartaj. Numerical simulation of the cold gas dynamic spray process [J].Journal of Thermal Spray Technology,2006(15):518-523.
    [134] D.E. Roberts. Pulsed laser coating removal by detachment and ejection [J]. Applied PhysicsA: Materials Science&Processing,2004(79):1067-1070.
    [135] Terry Foster. Paint removal and surface cleaning using ice particles[C]. Environmentally1995:6-1~6-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700