平行流冷凝器的热分布特性和流量分配特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平行流冷凝器换热系数高、结构紧凑、制冷剂充灌量少,且其铝质结构能够大量替代铜材,是最有前途的换热器形式之一。目前平行流冷凝器主要应用于汽车空调中,将其用于家用空调可以降低能耗,/提高空调效率,但也会面临工况改变、系统匹配和结霜除霜等一系列问题。本研究获得“基于平行流换热器的节能型低成本家用空调的开发及其产业化(2007A090302115)”及“微(小)通道换热器及其空调系统关键技术产业化(2007241)”资助,对平行流冷凝器的热分布特性和流量分配特性进行了系统研究。
     基于有限体积法原理建立了平行流冷凝器稳态分布参数模型,包括过热气体、气液两相和过冷液体三种模块,每一模块通过ε-NTU迭代求解热量与压降,经实验结果证实该模型是有效的。采用该仿真模型分析了现有6流程平行流冷凝器中制冷剂传热系数、压力、温度等的热分布特性,统计分析了换热面积与冷凝热量的关系:第一流程的换热面积权重为28.2%,冷凝热权重为34.2%,而第六流程则分别为7.69%和2.27%,可见前者单位换热面积的热利用效率比后者高;扁管总数不变时,分别设计了8个典型流程方案和7个典型扁管方案并进行比较,从理论上论证了从第一流程至第六流程扁管数逐渐增加的方案不如逐渐减少的方案,并非第一流程扁管数越多、最后一个流程扁管数越少冷凝器性能越好,流程数并非越多越好,以六流程、三流程为宜,此时换热面积的变化与制冷剂的物态相互匹配,强化了传热。
     试制了含6流程40根扁管平行流冷凝器的窗式空调样机,并在焓差实验室提供的标准工况T1,T3和最大工况T3下分别进行了实验研究:与原来采用翅片铜管的样机相比,T1工况下采用平行流冷凝器的空调样机制冷量提高了4.27%,而能效比则提高了12.32%,达到了2.28,这说明采用微通道冷凝器能够增加空调容量,降低耗功,提高能效。选择6个流程中的19根扁管布置T型表面热电偶得到了冷凝器中制冷剂的温度分布:工况T1,T3和最大工况T3下,同一流程各扁管间的最大入口温差存在于第一流程,分别为5.36℃,6.35℃,8.49℃;而最大出口温差存在于第五流程,分别为10.04℃,8.72℃,8.18℃,该温度分布表明单相和两相流体在同一流程并列扁管中温度分布都存在不均匀现象,同一流程各扁管的入口制冷剂温度随着制冷剂在竖直集管中的向下流动而降低,其不均匀性与制冷剂流量分配不均是相互关联的。
     制冷剂在集管和同流程多并列扁管之间的分流与汇流,是热力学第二定律涉及到的典型不可逆过程,尤其是两相流不仅有流量分配还涉及到不同相的分离问题,其作用机理和耦合规律十分复杂,文中总结归纳了影响两相制冷剂在扁管中流量分配的因素:结构特征、运行工况以及二者的耦合作用。基于可压缩流体模型,根据流体网络理论建立了气态氮气在单流程41根扁管的流量分配仿真模型:扁管流量呈抛物线型分布,、两侧大中间小,第41根扁管流量最大,达到了0.3493g/s,是平均值0.29242g/s的1.2倍,而接近于管网正中间的第21根扁管流量最小,为0.2636g/s,仅为最大值的75.5%,该结果与Yin的实验结果是一致的。基于均相流模型,建立了两相制冷剂在9根扁管中流量分配的预测模型,得到了呈抛物线型的流量分布曲线和分配规律,为揭示建立相应的工程抑制机制提供了有力的理论工具。
     现场测试表明多联机所连接的多台室内机容量是相互影响且不均匀的,这些室内机及其连接管道构成一个复杂的异程式制冷剂流体网络,这就导致了制冷剂流量在各室内机之间分配的不平衡。在考虑了连接管段阻力的条件下,根据流体网络理论建立了由5台室内机及连接管管网的仿真模型:将该管网中的每一个部件包括两相及单相流部件都视为一个流阻,按照管网拓补结构以并联、串联和混联的方式连接各个部件而构成管网。仿真结果表明:在总制冷剂质量流量改变时,越靠近该流体管网中心位置的室内机,其流量越接近设计值,而两端的室内机有最大的不平衡率;还提出了综合分流不平衡率(IDDR)来评价其管网的总不平衡程度。
With compactactness, high-efficiencey, less refrigerant charge and totally aluminum rather than copper, microchannel heat exchanger is one of the most promising heat exchangers in future. However, the microchannel heat exchanger previously used for automobile air conditioner must be redesigned as operating condition, system match and frost and defrost change for household air conditioner. The present research was supported by the cooperation project in industry, education and research of Guangdong province and Ministry of Education of P.R.China (Grant No.2007A090302115) and (Grant No.2007Z41) to investigate thermophysical properties and flow distribution of microchannel condenser.
     According to s-NTU and finite control volume, a steady distributed mathematical model was developed to simulate heat transfer and pressure drop of air and refrigerant through louver fin and microchannel, and the simulated result agreed well with experiment. It is the key to the overall performance of microchannel condenser whether the flowing area of tubes and passes matches with refrigerant condensation.15 configuration schemes with different pass and tube setup were compared to obtain the optimum configuration for microchannel condenser.
     A 6kW window type air conditioner prototype with 6-pass microchannel condenser was built and investigated experimentally under T1 standard, T3 standard and T3 maximum operating condition. The result showed that under T1 standard operating condition the new developed prototype performed better than the one with traditional finned copper round tube heat exchanger:254W about 4.27% higher in refrigerating capacity,204W less in input power and 12.32% higher to 2.28 in EER, which revealed superior performance of the prototype. Testing refrigerant temperature distribution instead of mass flow of tubes was proposed to evaluate the thermal performance of microchannel condenser in operating condition. Both near ends of 19 parallel flat tubes were set 38 T-type surface thermocouples to collect the temperature distribution. The experiment showed that the temperature distribution was uneven both in single phase and in two-phase:inlet refrigerant temperature of each horizontal tube in the same pass decreased along refrigerant flow in the vertical header. For T1 standard, T3 standard and T3 maximum operating condition, the maximum inlet temperature differences between the tubes of the same pass were 5.36℃,6.35℃, 8.49℃in the 1st pass while the maximum outlet temperature differences were 10.04℃, 8.72℃,8.18℃in 5th pass.
     The flow distribution between multiple parallel tubes and header is typically inreversible and difficult to understand especially phase separation involved in two phase flow. Many different factors were summarized as three types:operating condition, structural parameter and the match of the above two. In the assumption of homogeneous flow, a mathematical model based on fluid network theory was developed to predict flow distribution and phase separation in 9 flat tubes and their connecting headers on the second pass of the microchannel condenser. The simulated mass flow rate distribution in 9 tubes is parabolic and approaches to even distribution when inlet quality comes to the median 0.45 from both directions.
     The field test on GMV-R620W4/A with 16 indoor machine units installed in Hubei Chinese Medical Hospital showed that cooling capacity was uneven for indoor machine. It was supposed to be refrigerant mass flow maldistribution in the multi-connected airconditioning unit's fluid network. Fluid network theory was employed to develop a model by a series of fluid circuits of different refrigerating components including single-phase pipes and two-phase electronic expansive valve (EEV), evaporator, pipes in parallel or series. Then a particular iterating control algorism was developed to overcome the nonlinearity of fluid resistance and to distribute refrigerant mass flow in proportion to corresponding fluid resistance until the pressure of fluid network achieves a balance. It was found that the closer the indoor unit is to the centre of fluid network, the less its mass flow deviates from nominal value, and the units at both two poles of the pipe network are the ones with maximum disequilibrium.
引文
[1]阙雄才,陈江平.汽车空调实用技术[M].北京:机械工业出版社,2003.
    [2]Bullard C W, Proctor J, Joseph Brezner E A. Modeling and Testing of a Utility Peak Reducing Residential Hot/Dry Air Conditioner(HDAC) Using Microchannel Heat Exchangers[C]. ASHRAE transactions,2006.
    [3]Park C Y, Hrnjak P. Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system[J]. International Journal of Refrigeration 31(5):822-831,2008.
    [4]宋振华,袁秀玲.平流式冷凝器应用于顶置式汽车空调的试验研究[J].制冷空调与电力机械.2003(06).
    [5]包涛,黄东,董玉军等.平流式冷凝器与管片式冷凝器在冷藏车中的应用分析比较[J].制冷空调与电力机械.2005(01).
    [6]陈芝久,陈江平.家用空调系统以Al代Cu是个可行的方向[J].制冷技术.2003(01).
    [7]陈芝久,陈江平,刘敬辉.平行流换热器用于家用空调的可行性分析[C].上海市制冷技术研讨会,上海,2003.
    [8]李俊明,李红旗.家用空调器采用微细尺度强化传热技术展望[J].中国建设信息供热制冷.2005(11).
    [9]罗顺春,崔炳禄.浅谈平行流冷凝器在家用空调上的应用[A].第八届全国空调器、电冰箱(柜)及压缩机学术交流会论文集[C],2006
    [10]Brauer H. Compact heat exchangers [C]. London Chem. Progress Eng:1964.
    [11]Yang C Y, Webb R L. Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer.1996,39(4): 791-800.
    [12]Yang C-, Webb R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer.1996,39(4): 801-809.
    [13]Yeon-pun C, Rueyyih T, Jiin-wen H. Condensing heat transfer characteristics of aluminum flat tube[J]. Applied Thermal Engineering.1997,17(11):1055-1065.
    [14]Agostini B, Watel B, Bontemps A, et al. Friction factor and heat transfer coefficient of R134a liquid flow in mini-channels[J]. Applied Thermal Engineering.2002,22(16):1821-1834.
    [15]Agostini B, Watel B, Bontemps A, et al. Liquid flow friction factor and heat transfer coefficient in small channels:an experimental investigation[J]. Experimental Thermal and Fluid Science.2004, 28(2-3):97-103.
    [16]N B F. An Aerodynamic Look at Automotive radiators[J]. SAE Paper No.650470.1965.
    [17]Davenport, C. J.. Heat transfer and fluid flow in the louvered fin triangular ducts[D]. CNAA: Lanchester Polytechnic,1980.
    [18]Davenport C J. Correlation for heat transfer and friction characteristics of louvered fin[C]. Seattle, WA, USA:AIChE, New York, NY, USA,1983.
    [19]Achaichia A, Cowell T A. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces[J]. Experimental Thermal and Fluid Science.1988,1(2):147-157.
    [20]Cowell T A, Heikal M R, Achaichia A. Flow and heat transfer in compact louvered fin surfaces[J]. Experimental Thermal and Fluid Science.1995,10(2):192-199.
    [21]Huihua Z, Xuesheng L. The experimental investigation of oblique angles and interrupted plate lengths for louvered fins in compact heat exchangers[J]. Experimental Thermal and Fluid Science. 1989,2(1):100-106.
    [22]Webb R L. Flow structure in the louvered fin heat exchanger geometry[C]. Detroit, MI, USA:Publ by SAE, Warrendale, PA, USA,1990.
    [23]Sahnoun A, Webb R L. Prediction of heat transfer and friction for the louver fin geometry[J]. Journal of Heat Transfer, Transactions ASME.1992,114(4):893-900.
    [24]Springer M E, Thole K A. Entry region of louvered fin heat exchangers[J]. Experimental Thermal and Fluid Science.1999,19(4):223-232.
    [25]Aoki H, Shinagawa T, Suga K. An experimental study of the local heat transfer characteristics in automotive louvered fins[J]. Experimental Thermal and Fluid Science.1989,2(3):293-300.
    [26]Chang Y J, Wang C C.A generalized heat transfer correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer.1997,40(3):533-544.
    [27]Chang Y J, Hsu K C, Lin Y T, et al. A generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer.2000,43(12):2237-2243.
    [28]Chang Y J, Chang W J, Li M C, et al. An amendment of the generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer.2006,49(21-22): 4250-4253.
    [29]Kim M H, Youn B, Bullard C W. Effect of inclination on the air-side performance of a brazed aluminum heat exchanger under dry and wet conditions[J]. International Journal of Heat and Mass Transfer.2001,44(24):4613-4623.
    [30]Kim M H, Bullard C W. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers[J]. International Journal of Refrigeration.2002,25(3):390-400.
    [31]Kim M H, Bullard C W. Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions[J]. International Journal of Refrigeration.2002,25(7):924-934.
    [32]Dong J, Chen J, Chen Z, et al. Air-side thermal hydraulic performance of offset strip fin aluminum heat exchangers[J]. Applied Thermal Engineering.2007,27(2-3):306-313.
    [33]Dong J, Chen J, Chen Z, et al. Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers [J]. Energy Conversion and Management.2007,48(5):1506-1515.
    [34]Lee K S, Kim W S, Lee T H. A one-dimensional model for frost formation on a cold flat surface[J]. International Journal of Heat and Mass Transfer.1997,40(18):4359-4365.
    [35]J M W, L W R. Wet Air Side Performance of Louver Fin Automotive Evaporators[J]. SAE Technical Paper Series.2000.
    [36]Xia Y, Hrnjak P S, Jacobi A M. An empirical study of frost accumulation effects on louvered-fin, microchannel heat exchangers[C]. Purdue University:2004.
    [37]Xia Y, Hrnjak P S, Jacobi A M. Air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers with sequential frost-growth cycles[C]. Orlando, FL, United States:Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA 30329, United States,2005.
    [38]Xia Y, Zhong Y, Hrnjak P S, et al. Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers[J]. International Journal of Refrigeration.2006,29(7):1066-1079.
    [39]Tafti D K, Wang G, Lin W. Flow transition in a multilouvered fin array[J]. International Journal of Heat and Mass Transfer.2000,43(6):901-919.
    [40]Perrotin T, Clodic D. Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers[J]. International Journal of Refrigeration.2004,27(4):422-432.
    [41]Qi Z G, Chen J P. CFD Analysis of Flow Characteristics of Corrugated Louvered Fins at Low Reynolds[J]. Journal of Shanghai Jiaotong Unlversity(Science).2005,10(1):72-75.
    [42]周益民,董军启,陈江平.百叶窗翅片传热与流动的三维数值模拟[J].节能技术.2007(02).
    [43]漆波,李隆键,崔文智等.百叶窗式翅片换热器中的耦合传热[J].重庆大学学报(自然科学版).2005(10).
    [44]田晓虎,李隆键,童明伟等.车用百叶窗翅片式热交换器空气侧性能的CFD研究[J].天津理工大学学报.2007(02).
    [45]包涛,董玉军,周翔等.平流式冷凝器传热流动性能理论研究[J].制冷与空调.2004(05).
    [46]包涛,陈蕴光,董玉军等.多元平行流冷凝器传热流动性能研究[J].制冷学报.2005(03).
    [47]龚堰珏,张兴群,郑维智等.汽车空调平行流式冷凝器热力性能计算机辅助分析[J].北京工商大学学报(自然科学版).2006(06).
    [48]向立平,曹小林,欧阳琴.汽车空调平行流式冷凝器空气侧性能研究[J].流体机械.2007(10).
    [49]王铁军,刘杰,韩丰云等.客车空调多元平行流冷凝器模型[J].合肥工业大学学报(自然科学 版).2007(12).
    [50]Choi, J. M., Payne, V., Domanski P A. Effects of non-uniform refrigerant and air flow distribution on finned-tube evaporator performance[C]. Washington, D.C:2003.
    [51]A.C. Beaver, M.J. Yun, C.W. Bullard, PS. Hrnjak, An experimental investigation of transcritical carbon dioxide systems for residential air conditioning[R], ACRC CR-18,1999.
    [52]Hrnjak P S. Flow distribution issues in parallel flow heat exchangers[C]. Anaheim, CA, United States:Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA 30329, United States, 2004.
    [53]Kulkarni T, Bullard C W, Cho K. Header design tradeoffs in microchannel evaporators[J]. Applied Thermal Engineering.2004,24(5-6):759-776.
    [54]Vist S, Pettersen J. Two-phase flow distribution in compact heat exchanger manifolds[J]. Experimental Thermal and Fluid Science.2004,28(2-3):209-215.
    [55]Vist S. Two-phase refrigerant distribution in round tube manifolds[C]. Anaheim, CA, United States: Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA 30329, United States,2004.
    [56]Vist S. Two-phase Flow Distribution in Heat Exchanger Manifolds[D]. Norwegian University of Science and Technology,2003.
    [57]Seeger, W., J. Reimann A U M. Two-phase flow in a T-junction with a horizontal inlet—Part 1: Phase separation[J]. Int. J. of Multiphase Flow.1986,12:575-586.
    [58]Castiglia, F. A M G. Mass discharge through branches in horizontal two-phase flow[C]. Grenoble, France:2002.
    [59]Asoh M, Hirao Y, Aoki Y, et al. Phase separation of refrigerant two-phase mixture flowing downward into three thin branches from a horizontal header pipe[C]. Reno, NV, USA:Publ by ASME, New York, NY, USA,1991.
    [60]Watanabe, M., M. Katsuta A K N. General characteristics of two-phase flow distribution in multi pass tube[J]. Heat transfer—Japanese Research.1995,24:32-44.
    [61]Watanabe, M., M. Katsuta A K N. Two-phase flow distribution in multi-pass tube modeling serpentine type evaporator[C].1995.
    [62]Fei P. Adiabatic Developing Two-phase Refrigerant Flow in Manifolds of Heat Exchangers[D]. University of Illinois at Urbana-Champain,2004.
    [63]Kirby E S, Bullard C W, Dunn W E. Effect of airflow nonuniformity on evaporator performance[C]. Toronto, Can:ASHRAE, Atlanta, GA, USA,1998.
    [64]Liang S Y, Wong T N, Nathan G K. Numerical and experimental studies of refrigerant circuitry of evaporator coils[J]. International Journal of Refrigeration.2001,24(8):823-833.
    [65]Brix, W., Jakobsen, A., Rasmussen, B.d., Carlsen H. Analysis of air flow distribution in refrigeration system[C]. Beijing:2007.
    [66]Lockhart R W. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress.1949,45(1):39-48.
    [67]Yang C Y, Webb R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer. 1996,39(4):801-809.
    [68]Yang C Y, Webb R L. Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer.1996,39(4): 791-800.
    [69]W.w. Akers, H.a. Deans O K. Crosser, Condensation heat transfer within horizontal tubes[J]. Chemical Engineering Progress Symposium Series.1959,55(29):171-176.
    [70]M. Zhang S L K. Two-phase frictional pressure drop for refrigerants in small diameter tubes[M]. New York:Begell House,1999.
    [71]Chang Y P, Tsai R, Hwang J W. Condensing heat transfer characteristics of aluminum flat tube[J]. Applied Thermal Engineering.1997,17(11):1055-1065.
    [72]Agostini B, Watel B, Bontemps A, et al. Liquid flow friction factor and heat transfer coefficient in small channels:an experimental investigation[J]. Experimental Thermal and Fluid Science.2004, 28(2-3):97-103.
    [73]Kim M H, Shin J S. Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration.2005,28(6):949-957.
    [74]Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[C]. Ispra, Italy:1979.
    [75]Nino V G, Jassim E W, Hrnjak P S, et al. Flow-regime-based model for pressure drop predictions in microchannels[J]. HVAC and R Research.2006,12(1):17-34.
    [76]Jassim E W, Newell T A. Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping[J]. International Journal of Heat and Mass Transfer.2006, 49(15-16):2446-2457.
    [77]Jassim E W, Newell T A, Chato J C. Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps[J]. International Journal of Heat and Mass Transfer.2008,51(3-4): 485-496.
    [78]Thome J R. Boiling in microchannels:A review of experiment and theory[J]. International Journal of Heat and Fluid Flow.2004,25(2):128-139.
    [79]C C J. Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow[J]. I&EC Process Design & Development.1966,5(3):322-328.
    [80]Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model[J]. Heat Transfer Engineering.1992,13(2):43-69.
    [81]Kattan N, Thome J R, Favrat D. Flow boiling in horizontal tubes:Part 1-development of a diabatic two-phase flow pattern map[J]. Journal of Heat Transfer, Transactions ASME.1998,120(1): 140-147.
    [82]Kattan N, Thome J R, Favrat D. Flow boiling in horizontal tubes:Part 2-new heat transfer data for five refrigerants[J]. Journal of Heat Transfer, Transactions ASME.1998,120(1):148-155.
    [83]Kattan N, Thome J R, Favrat D. Flow boiling in horizontal tubes:Part 3-development of a new heat transfer model based on flow pattern[J]. Journal of Heat Transfer, Transactions ASME.1998, 120(1):156-165.
    [84]Thome J R, Dupont V, Jacobi A M. Heat transfer model for evaporation in microchannels. Part I: presentation of the model[J]. International Journal of Heat and Mass Transfer.2004,47(14-16): 3375-3385.
    [85]Pehlivan K, Hassan I, Vaillancourt M. Experimental study on two-phase flow and pressure drop in millimeter-size channels[J]. Applied Thermal Engineering.2006,26(14-15):1506-1514.
    [86]Saitoh S, Daiguji H, Hihara E. Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes[J]. International Journal of Heat and Mass Transfer.2005, 48(23-24):4973-4984.
    [87]Chung K, Lee K S, Kim W S. Optimization of the design factors for thermal performance of a parallel-flow heat exchanger[J]. International Journal of Heat and Mass Transfer.2002,45(24): 4773-4780.
    [88]Payne, W. V., Domanski P A. Potential benefits of smart refrigerant distributors[R]. National Institute of Standards and Technology Building Environment Division,2003.
    [89]Webb R L, Chung K. Two-phase flow distribution to tubes of parallel flow air-cooled heat exchangers[J]. Heat Transfer Engineering.2005,26(4):3-18.
    [90]李越峰,陈俊智,王晰.平行流换热器在家用空调的应用和分析[J].家电科技.2009(01).
    [91]张荣荣,杨静,陆向迅等.微通道换热器在户式中央空调上应用的实验研究[C].中国制冷学会2009年学术年会论文集,中国天津,2009年.
    [92]饶荣水,陈俊伟,蔡宗军等.微通道换热器在空调器上的应用研究[J].制冷与空调.2009(04).
    [93]J. P. Chiou. The effect of nonuniformity of inlet fluid temperature on the thermal performance of crossflow heat exchanger[J]. Heat Transfer.1982,vol.6,179-184.
    [94]Lalot S, Florent P, Lang S K, Bercles A E. Flow maldistribution in heat exchangers [J]. Applied Thermal Engineering,1999,19(8):847-863.
    [95]Yin, J.M., Bullard, C.W., Hrnjak, P.S.. Single-phase pressure drop measurements in a micro-channel heat exchanger [J]. Heat Transfer Eng.2002,23 (3),3-12.
    [96]Y. Hwang, D.-H. Jin and R. Radermacher. Refrigerant distribution in minichannel evaporator manifolds[J]. HVAC&R Research.2007,13(4),543-555.
    [97]陆平,陈江平,陈芝久.微通道平行流气冷器流量分配的数值模拟[J].应用科学学报.2007,25(3),317-322.
    [98]M. A. Habib, R. Ben-Mansour, S. A. M. Said, et al. Evaluation of flow maldistribution in air-cooled heat exchangers[J]. Computers & Fluids,2009,38 (3):677-690.
    [99]S. Horiki et al. Thin flow header to distribute feed water for compact heat exchanger [J]. Experimental Thermal and Fluid Science 28 (2004) 201-207.
    [100]M. Ahmad et al., General characteristics of two-phase flow distribution in a compact heat exchanger[J], Heat Mass Transfer (2008).
    [101]Yunho Hwang, Dae-Hyun Jin, Reinhard Radermacher. Refrigerant distribution in micorchannel evaporators[C]. International Congress of Refrigeration 2007, Beijing. ICR07-B1-670.
    [102]Cho, H., Cho, K., and Kim, Y.-S., Mass Flowrate Distribution and Phase Separation of R-22 in Multi-Microchannel Tubes under Adiabatic Condition[C], Proc.1st International Conference on Microchannels and Minichannels, Ed. S. G Kandlikar, Rochester,New York, pp.527-533,2003.
    [103]Lee, J. K., and Lee, S. Y, Dividing Two-Phase Annular Flow within a Small Vertical Rectangular Channel with a Horizontal Branch[C], Proc.3rd International Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries,Davos, Switzerland, July 1-6, 2001, Ed. R. K. Shah, pp.361-368,2001.
    [104]Lee, J. K., and Lee, S. Y, Distribution of Two-Phase Annular Flow at Header-Channel Junctions [J], Experimental Thermal and Fluid Science, vol.28, pp.217-222,2004.
    [105]Kim, J.-S., Im, Y.-B., Kim, J.-H., and Lee, K.-T., Two-Phase Flow Distribution in a Compact Heat Exchanger Header[C], Proc.1st International Conference on Microchannels and Minichannels, Ed. S. G. Kandlikar, Rochester, New York, pp.513-518,2003.
    [106]Watanabe, M., M. Katsuta, and K. Nagata.1995a. General characteristics of two-phase flow distribution in multi-pass tube[J]. Heat transfer—Japanese Research, Vol.24,pp.32-44.
    [161]Watanabe, M., M. Katsuta, and K. Nagata.1995b.Two-phase flow distribution in multi-pass tube modeling serpentine type evaporator[C]. ASME/JSME Thermal Engineering Conference, Vol.2, pp.35-42.
    [108]Seeger, W., J. Reimann, and U. Muller. 1986. Two-phase flow in a T-junction with a horizontal inlet—Part 1:Phase separation[J]. Int. J. of Multiphase Flow, Vol.12, pp.575-586.
    [109]S.-J. Tae, K. Cho. Two-phase split of refrigerants at a T-junction[J]. International Journal of Refrigeration 29 (2006) 1128-1137.
    [110]S.T. Hwang, H.M. Soliman, R.T. Lahey Jr., Phase separation in dividing two-phase flows[J], Int. J. Multiph. Flow 14 (4) (1988) 439-458.
    [111]J.W. Coleman and P.E. Krause, Two-phase pressure losses of R134a in microchannel tube headers with large free flow area ratios, Exp Therm Fluid Sci 28 (2004)123-130.
    [112]J. Schmidt, L. Friedel, Two-phase pressure drop across sudden contractions in duct areas[J], Int. J. Multiphase Flow.23 (2) (1997),283-299.
    [113]F.F. Abdelall, G. Hahn, S.M. Ghiaasiaan, et al. Pressure drop caused by abrupt flow area changes in small channels[J]. Experimental Thermal and Fluid Science 29 (2005) 425-434.
    [114]M. Zhang, R.L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes[J], Exper. Therm. Fluid Sci.25 (2001) 131-139.
    [115]R.L. Webb, K. Ermis, Efect of hydraulic diameter on conden-sation of R-134a in flat, extruded aluminum tubes[J], Enhanced Heat Transfer 8 (2001) 77-90.
    [116]A. Cavallini, D. Del Col, L. Doretti, M,et al. Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels[J]. Experimental Thermal and Fluid Science 29 (2005) 861-870.
    [117]Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[C]. European Two-Phase Flow Group Meeting, Paper E2; 1979 June; Ispra, Italy.
    [118]N.-H. Kim, S.-P. Han. Distribution of air-water annular flow in a header of a parallel flow heat exchanger[J]. International Journal of Heat and Mass Transfer 51 (2008) 977-992.
    [119]Lee, J. K., and Lee, S. Y., Distribution of Two-Phase Annular Flow at Header-Channel Junctions[J], Experimental Thermal and Fluid Science, vol.28, pp.217-222,2004.
    [120]中国建设部,GB 50189-2005,公共建筑节能设计标准[S].
    [121]Gu L, Swami MV, Fairey PW. System Interactions in Forced-Air Heating and Cooling Systems, Part Ⅰ:Equipment Efficiency Factors[C], Chicago, IL, United States:2003. Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA 30329, United States; 2003. p.469-478.
    [122]Kim Y-S, Kim K-S. Simplified energy prediction method accounting for part-load performance of chiller[J]. Building and Environmen.2007,42(1):507-515.
    [123]Air-Conditioning and Refrigeration Institute, ANSI/ARI 340-1986, Commercial and Industrial Unitary Heat Pump Equipment[S].
    [124]Air-Conditioning and Refrigeration Institute, ANSI/ARI 360-1986, Commercial and Industrial Unitary Air-conditioning Equipment[S].
    [125]Air-Conditioning and Refrigeration Institute, ANSI/ARI 365-1987, Commercial and Industrial Unitary Air-conditioning Condensing Units[S].
    [126]Air-Conditioning and Refrigeration Institute, ANSI/ARI 210/240-1989, Unitary Air-Conditioning and Air-Source Heat Pump Equipment[S].
    [127]Air-Conditioning and Refrigeration Institute, ANSI/ARI 210/240-2006, Unitary Air-Conditioning and Air-Source Heat Pump Equipment[S].
    [128]Air-Conditioning and Refrigeration Institute, ANSI/ARI 340/360-2004, Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment[S].
    [129]中国制冷设备标准化委员会,GB/T 18837-2002,多联式空调(热泵)机组[S].
    [130]American Society of Heating Refrigerating and Air-conditioning Engineer, ANSI/ASHRAE 116-1983, Methods of Testing for Seasonal Efficiency of Unitary Air-Conditioners and Heat Pumps[S].
    [131]Air-Conditioning and Refrigeration Institute, ANSI/ARI 210/240-1989, Unitary Air-Conditioners and Air-Source Heat Pump Equipment[S].
    [132]Chan KT, Yu FW. Part load efficiency of air-cooled multiple-chiller plants[J]. Building Services Engineering Research and Technology.2002,23(1):31-41.
    [133]Chan KT, Yu FW. Analysis of the component characteristics of air-cooled chillers for modelling floating condensing temperature control[J]. Energy Conversion and Management.2005,46(6): 927-939.
    [134]Liu S-C, Ma Y-T, Lu W. Analysis about EER and SEER of air conditioner. Journal of Tianjin University Science and Technology[J].2006,39(9):1088-1092
    [135]Shengchun L, Yitai M, Jianhong C. Study on Regional SEER of Frequency Conversion Room Air Conditioner[J]. Journal of Refrigeration.2005(2):47-50.
    [136]ASHRAE Standard 37-78. Method of testing for rating unitary air conditioning and heat pump equipment[S].1978.
    [137]Mitsubishi Heavy Industries, Technical maintenance handbook of KX2 series of MAU[M].
    [138]中国质量监督检查办公室,GB/T 7725-2004,房间式空调器[S].
    [139]石文星.变制冷剂流量空调系统特性及其控制策略研究[D].北京:清华大学建筑学院建筑技术科学系,2000.
    [140]石文星,彦启森,陈华俊等.论变频空调器性能评价体系[J].暖通空调,2004,34(5):52-58.
    [141]GB/T 17758-1999,单元式空气调节机[S].1999.
    [142]赵容义,范存养,薛殿华等.空气调节[M].北京:中国建筑工业出版社,2005.
    [143]邵双全,石文星,彦启森.空调器性能测试实验台中空气焓值测试方法的改进[J].实验技术与管理,2002,19(5):38-42.
    [144]陈华,邸倩倩,申江等.定静压控制变风量空调系统模拟与实验研究[J].流体机械,2005,33(10):65-67.
    [145]曹志荣.变频空调器测试方法及测试仪器探讨[J].家用电器科技,2000,(09)
    [146]蒋念平,李建波,余晓明等.空调测试系统的现场总线应用方案设计[J].工程设计学报,2007,(02).
    [147]Shao S, Shi W, Li X, Chen H. Performance representation of variable-speed compressor for inverter air conditioners based on experimental data[J]. International Journal of Refrigeration,2004, 27(8):805-815.
    [148]Youn Cheol P, Young Chul K, Min MK. Performance analysis on a multi-type inverter air conditioner[J].Energy Conversion and Management 2001,42(13):1607-1621.
    [149]GB 50243-2002,通风与空调工程施工质量验收规范[S].2002.
    [150]倪健斌,余晓明,陈丽娜.某商场中央空调系统现场测试及故障分析[J].制冷技术,2006,(04).
    [151]T. T, Future of specific technique of multi-room system[C], JAR International Symposium, Tokyo, Japan,1988.
    [152]H.F. Teruhisa Takano, Katsumi Ishii, Michimasa Hori, Air conditioning system having a plurality of indoor units[P], Matsushita Electric Industrial Co., Ltd., Japan,1981.
    [153]Y. Gotou, Inverter-aided multisystem air conditioner with control functions of refrigerant distribution and superheating states[P], Kabushiki Kaisha Toshiba,Japan, Japan,1988.
    [154]H. Iijima, Y. Sumida, N. Tanaka, and T. Nakamura, The development of a new multi-system air conditioner with concurrent heating and cooling[J]. Mitsubishi Denki Giho 64 (1990) 92-7.
    [155]H. Iijima, N. Tanaka, Y. Sumida, and T. Nakamura, Development of a New Multi-system Air Conditioner with Concurrent Heating and Cooling Operation[C]. ASHRAE Transactions 97 (1991) 309-315.
    [156]M. Masuda, K. Wakahara, and K. Matsuki, Development of a multi-system air conditioner for residential use[C], Publ by ASHRAE, Atlanta, GA, USA, New York, NY, USA,1991, pp. 127-131.
    [157]Y.C. Park, Y.C. Kim, and M.K. Min, Performance analysis on a multi-type inverter air conditioner[J]. Energy Conversion and Management 42 (2001) 1607-1621.
    [158]J.M. Choi, and Y.C. Kim, Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves[J]. Energy 28 (2003) 141-55.
    [159]W. Shi, Study on performance and control strategy of variable refrigerant volume air conditioning system[D], Tsinghua University, Beijing 2000.
    [160]W. Shi, S. Shao, X. Li, X. Peng, and X. Yang, A network model to simulate performance of variable refrigerant volume refrigeration systems[C], Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Kansas City, MO, United States,2003, pp.61-68.
    [161]S. Shao, W. Shi, X. Li, and Q. Yan, Simulation model for complex refrigeration systems based on two-phase fluid network-Part Ⅰ:Model development[J]. International Journal of Refrigeration In Press, Corrected Proof.
    [162]W. Shi, S. Shao, X. Li, and Q. Yan, Simulation model for complex refrigeration systems based on two-phase fluid network-Part Ⅱ:Model application[J]. International Journal of Refrigeration In Press, Corrected Proof.
    [163]X.-X. Zhou, Y.-Q. Wu, Y. Shao, and W. Chen, Modeling and research on the characteristics of double-evaporator air conditioner with inverter[J]. Journal of Shanghai Jiaotong University 36 (2002) 1675-1679.
    [164]C. Wu, Z. Xingxi, and D. Shiming, Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)[J]. Energy Conversion and Management 46 (2005) 451-465.
    [165]R. Shah, A.G. Alleyne, and C.W. Bullard, Dynamic modeling and control of multi-evaporator air-conditioning systems[C], Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA 30329, United States, Anaheim, CA, United States,2004, pp.111-121.
    [166]S.-C. Hu, R.-H. Yang, Development and testing of a multi-type air conditioner without using AC inverters[J]. Energy Conversion and Management 46 (2005) 373-383.
    [167]M. Tshuva, D. Barnea, and Y. Taitel, Two-phase flow in inclined parallel pipes[J]. International Journal of Multiphase Flow 25 (1999) 1491-1503.
    [168]U. Minzer, D. Barnea, and Y. Taitel, Flow rate distribution in evaporating parallel pipes-modeling and experimental[J]. Chemical Engineering Science 61 (2006) 7249-7259.
    [169]E.C.G. C. P. Rohmann, On the dynamics of pneumatic transmission lines[C], Trans. ASME,1957.
    [170]H. Jiang, V. Aute, and R. Radermacher, CoilDesigner:a general-purpose simulation and design tool for air-to-refrigerant heat exchangers[J]. International Journal of Refrigeration 29 (2006) 601-610.
    [171]L. Pustylnik, D. Barnea, and Y. Taitel, Prediction of two-phase flow distribution in parallel pipes using stability analysis[J]. AIChE Journal 52 (2006) 3345-3352.
    [172]A. Paliwoda, Generalized method of pressure drop calculation across pipe components containing two-phase flow of refrigerants[J]. International Journal of Refrigeration 15 (1992) 119-125.
    [173]D. Steiner, VDI-Warmeatlas (VDI Heat Atlas), Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GCV)[M], Dusseldorf, Chapter Hbb.,1993.
    [174]Z.a.E.A. Rouhani, Calculation of void volume fraction in the subcooled and quality boiling regions[J]. International Journal of Heat and Mass Transfer 13 (1970) 383-393.
    [175]C. Tribbe, H. Muller-Steinhagen, An evaluation of the performance of phenomenological models for predicting pressure gradient during gas-liquid flow in horizontal pipelines[J]. International Journal of Multiphase Flow,26 (2000) 1019-1036.
    [176]H. Muller-Steinhagen, K. Heck.. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering Progress,20 (1986) 297-308.
    [177]J. R. Thome, M.B. Ould Didi, and N. Kattan. Prediction of two-phase pressure gradients of refrigerants in horizontal tubes[J]. International Journal of Refrigeration.25 (2002).935-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700