冷藏链中易腐食品冷藏运输品质安全与能耗分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平的提高,对食品品质的要求也越来越高,与此同时伴随而来的是食品冷藏运输量激增。相应的,运输安全和节能问题也日益为人们所关注。如何能在保障食品品质的同时降低运输能耗已成为国内外相关领域的研究热点。本文通过调研、试验、模拟等相结合的方法,对陆路冷藏运输食品品质安全和节能策略及能耗评价问题展开研究。主要工作如下:
     (一)针对我国冷藏运输的市场状况、陆路运输装备(公路、铁路)运输特点和能耗情况展开全面的调查分析。研究表明我国正处在冷藏运输的快速发展期,年运量达8000万吨以上,但与此同时,冷藏运输率仍不足30%,食品腐损严重。我国冷藏运输装备、技术虽迅速发展但仍未能满足市场的需求,在运输管理、技术措施上存在的不足使得能耗偏高,亟待改进。因此,掌握食品品质与节能的平衡点,分析影响运输能耗的关键控制点是当前应尽快开展的最为基础也是最为关键的工作。
     (二)以典型易腐食品为例,对其常温运输和冷藏运输进行比对试验,分析其运输品质的变化情况。为考虑不同品类的差异性,分别对鲜奶、猪肉、水果(香蕉、荔枝)、蔬菜(黄瓜、菜豆、生菜、小白菜、胡萝卜、辣椒)等展开试验分析。研究表明,适当的冷藏运输环境对食品品质起到了良好的保护作用,虽然制冷会使得能耗增加,但由于其大大减少食品腐损,在提高运输总体经济效益上是有益的。
     (三)在能耗方面,以香蕉运输为例展开能耗跟踪分析,并就冷藏运输装备的气密性、隔热性测试方法、老化问题及对能耗的影响展开试验分析;其中在漏气量测试过程中,不同于国内常见的压差法,研究采用气体成分测定法获得漏气量与车速的关系,为相关研究提供有益补充。
     (四)在上述能耗调查、试验分析的基础上,研究者从冷藏运输的能耗机理出发,建立了具体冷藏运输过程的冷藏运输能耗分析与评价模型。在此基础上,给出了影响能耗各主要因素的基准值,特别是针对目前陆路冷藏运输装备漏热量、漏气量标准不统一的问题,给出其相应的分级体系,并对运输速度提出了相应的要求。并以公路和铁路的实际冷藏运输为例,进行其能耗的分析和评价,找到各自存在的问题,给出相应解决策略。研究表明,该体系将能较好的对能耗状况进行实时分析,并辅助企业找到能耗的关键点、薄弱点,从而实施有效的节能策略,在保障食品品质安全的基础上实现降低能耗的目标。
     (五)在冷藏运输企业能耗水平评价方面,研究者借鉴了HACCP的思想,建立了冷藏运输能耗分析与节能关键控制点(EACCP)体系。即在能耗分析(EA)的基础上,得到节能关键控制点(CCP),并确定其重要性程度,进而制定出相应的节能措施、监控体系、纠正措施等。通过上述方法,达到客观评价、全面分析、改进优化的目标。在体系构建过程中,研究者采用层次熵分析法,得到了各关键控制点的权重并予以分级,认为运输速度和预冷措施是影响能耗的最为关键的因素。在此基础上,以某冷藏运输公司为例进行分析,得到其整体节能水平状况并提出改进意见。
     上述工作的展开,在优化冷藏运输管理、完善我国冷藏运输体系、改进冷藏运输装备、提高货物运输品质、降低运输能耗等方面均具有一定的理论意义和实用价值,在冷藏运输管理及应用方面也具有一定的参考价值和借鉴意义。
With the improvement of living standards, the requirement to the quality of food is becoming more and higher. At the same time, the quantity of refrigerated food transportation increases greatly. Accordingly, the transport energy issues are increasingly drawing people's attention as well. How to protect food quality with lowing transport energy consumption has become a focus of domestic and foreign research in the field. The text points at the strategy of land refrigerated transport energy and evaluation of energy consumption issues, through combining research with testing, simulation and other methods. Main tasks as follows:
     According to the market situation in refrigerating transportation and land transport equipment (highway, railway) transportation characteristics and energy consumption situation, make comprehensive investigation and analysis. The research shows that China is in the period of rapid development of refrigerated transportation, the annual transport capacity reaches to 80 million tons or more, while the refrigerated transported rate is still less than 30%, the rot of food was heavy. Refrigerated transport equipment in China, although the technology developed rapidly, it failed to meet the demand of market. The shortage of transportation management and technical measures made energy consumption higher and urgent to improve. Therefore, it is the key work to master the balance between the quality of food and energy saving and analyzed the influence on transported energy consumption.
     Take perishable food for example, an experiment is being tried to compare common and refrigerated transportation, and analysis the quality of its transportation changing situation. According to the differences of different categories, make an experiment analysis respectively to milk, pork, fruits (bananas, litchi) and vegetables (cucumber, beans, lettuce, cabbage, carrots, peppers). The result shows that the appropriate environment for food quality refrigerated transport played a good protective effect, although cooling would make energy consumption increase, because it decrease the rot of food, on the whole, to improve transportation economic benefits would be beneficial.
     In terms of energy wastage, we take transport of banana for instance, analyzing gas tightness of the equipment of refrigerated transport the test way of heat insulation、the problem aging and the influence of energy wastage. During the process of air leakage test, it is not as same as the Differential-pressure method in China. The relation between air leakage and car velocity can be obtained and some relevant researches can be supplied by studying the test way of air components.
     Based on the investigation of energy consumption and experimental analysis as mentioned above, researchers established a specific energy consumption of refrigerated transport analysis and evaluation model in refrigerated transport process, according to the mechanism of the energy consumption of refrigerated transport. On this basis, the major factors affecting the energy consumption of the benchmark value are given, especially for the issue that the standards on heat leakage, gas leakage of the land refrigerated transport equipment at present are not uniform, the corresponding classification system and the transport rate made the corresponding request are also given. And take the practical refrigerating transportation of highway and rail for example, the analysis and evaluation of their energy are carried out and the appropriate solution strategies to the existing problem are given. Research shows that the system will be able to better real-time analysis of the energy situation and to assist enterprises to find the critical points and weak points of energy, so as to implement effective energy conservation strategies, on the basis of keeping food quality safety to realize the goal of reducing energy consumption.
     In terms of assessing of the energy wastage in refrigerated transport, researcher draw lessons from the HACCP, setting up the Energy Analysis and Critical Control Point system (EACCP). We can obtain the Critical Control Point(CCP) basis on Energy Analysis(EA), further more we can formulate relevant some conservation measures、supervisory control system、corrective measures and so on. During the process of structure, the weight of each critical control point can be acquired and be ranked. The transport velocity and the pre-cooling measures are the most pivotal elements to influence energy wastage. On that basis, we take a refrigerated transport company for instance and acquire the whole condition level of energy conservation, making suggestions to improve.
     It is valuable for optimizing in refrigerated transport management、perfecting refrigerated transport system in China、improving refrigerated transport equipment、improving transport quality of goods and reducing energy wastage and so on. It is also significative for management and some applied aspects of refrigerated transport.
引文
[1]国务院.中华人民共和国节约能源法.2007.10.28
    [2]广东省人民政府.广东省国民经济和社会发展十一五规划纲要.2006.7.31
    [3]中国物流与采购联合会.中国物流统计年鉴.2010.3
    [4]James S J, James C, Evans J A. Modelling of food transportation systems-a review. International Journal of Refrigeration.2006,29(6):947~95
    [5]IIR. IIR list of refrigeration research priorities. Journal of Refrigeration,2006.3
    [6]Robert Heap. Refrigeration and food safety. Beijing:The 22nd International Congress of Refrigeration.2007.8.21~26
    [7]国务院.国发(2006)28号关于加强节能工作的决定.2006.8.6
    [8]Jill E. Hobbs, Linda M. Young. Closer vertical co-ordination in agri-food supply chains a conceptual framework and some preliminary evidence. Supply Chain Management,2000,5(3):131~142
    [9]Henk Folkerts, Hans Koehorst. Challenges in international food supply chains: vertical co-ordination in the European agribusiness and food industries. Supply Chain Management.1997,2(1):11~14
    [10]E Hajnal. IT Support and Statistics in Traceability and Product Recall at Food Logistics Providers. Periodica polytechnica ser chem. Eng.2004,48(1):21~29
    [11]Cleland A C. Market-pull factor for refrigerated transport services. Frio Calor Aire acond, ES.2000.3
    [12]Beulens A.J.M. Food safety and transparency in food chains and networks Relationships and challenges. Food Control,2005,16:481-486
    [13]Georgiadis P. A system dynamics modeling framework for the strategic supply chain management of food chains. Journal of Food Engineering,2005,70:351~364
    [14]Salema M I G. An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. European Journal of Operational Research,2007,179:1063~1077
    [15]Jan Rernund, Stefan Kunz, Ralf Lang. Meteo Norm 6.1 Edition. Switzarland: Swiss Federal Office of Energy,2009.
    [16]G Comini, G Cortella, O Saro, Finite-element analysis of coupled conduction and convection in refrigerated transport, International Journal of Refrigeration.1995, 18(2):19~34
    [17]R Lindqvist, Reefer air distribution, Refrigerated transport, storage and retail display, Cambridge:Meeting of IIR Commission D2/3 with D1,1998
    [18]P G Jolly, C P Tso, Y M Wong, S M Ng, Simulation and measurement on the full-load performance of a refrigeration system in a shipping container, International Journal of Refrigeration.2000,23:273~293
    [19]J Frith, Temperature prediction software for refrigerated container cargoes. Proceedings of the Institute of Refrigeration,2003-2004
    [20]S Parry-Jones, S J James. Modelling air movement and temperature control in chilled distribution vehicles. IChemE Food Process Engineering Symposium.1994
    [21]S J James. Local delivery of meat and meat products. Proceedings of Meat Refrigeration e Why and How? EU concerted action programme CT94 1881, Langford,UK,1997
    [22]A Gigiel. Predicting food temperatures in refrigerated transport. Proceedings of the Institute of Refrigeration.1997
    [23]IIR. Recommendation of the IIR on the quick-frozen-zones cold chain: quick-freezer design and construction, cold stores, transport, retail.2009.2
    [24]Billiard F. New Trends in Refrigerating Equipment and Refrigerants. The 10th European Conference on Technological Innovations in Air Conditioning and Refrigeration Industry.2005
    [25]Repice C, Stumpf A. Energy efficiency in transport refrigeration. Bull. IIF-IIR, FR,2008.6
    [26]Franceschi M, Rossi S. Energy consumption of a refrigerated vehicle. Transfrigoroute int., Annu. Meet., Rome, BE/IT,2007.10.11-12
    [27]Jedermann R, Lang W. Semi-passive RFID and beyond:steps towards automated quality tracing in the food chain. Int. J. Radio Frequency Identification Technology and Applications,2007,1(3):179~187
    [28]J Moureh, D Flick. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration.2004,27:43~56
    [29]K P C Hui, G S V Rahavan, et al. Evaluation of the air circulation uniformity inside refrigerated semi-trailer trans-porting fresh horticulture produce. Journal of food, agriculture and environment.2006,4(1):19~28
    [30]谢如鹤,刘广海.国际制冷学会关于制冷领域应优先研究问题的列表.制冷学报.2006,30(3):59-62
    [31]谢如鹤,李夏苗.论我国易腐货物运输的综合发展.综合运输.1996,8-10
    [32]谢如鹤,胡思继.对易腐货物在运输中干耗的研究分析.制冷学报.1999,(3):51-56
    [33]谢如鹤,胡思继,罗贵秀.冷藏运输中货物干耗问题的研究.制冷学报.1999,(2):42-49
    [34]Xie Ruhel. Research on the Problem of Weight loss of Perishable Goods in Refrigerated Transportation. The 20th International Congress of Refrigeration. Sydney, Australia.1999
    [35]谢如鹤.机械冷藏车装运荔枝的容许装货量.制冷学报.1994,(4):49-52
    [36]刘金平.5000吨组装式冷库围护结构保温性能测试研究.制冷.1994,(2):8-15
    [37]李绍容.测定冻肉在装车过程中温升时的测点布置与误差分析.铁道货运.1996,(3):37-41
    [38]曾莲.荔枝、龙眼等亚热带水果商品流通上存在的问题和解决途径.中国南方果树.1996,25,(3):32-33
    [39]欧阳仲志.铁路冷冻板冷藏车放冷时间的分析.制冷.1997,(3):23-27
    [40]谢如鹤.冷藏链中的包装及对食品质量的影响.制冷学报.1997,(1):35-39
    [41]冯雅.冷库空气层围护结构防潮节能研究.制冷学报.1998,(3):45-48
    [42]唐鸣放.冷库阁楼层中柱子的包柱高度对传热量的影响.重庆建筑大学学报.1997,19(1):1-7
    [43]赵进如.关于我国铁路蔬菜水果运输预冷环节的探讨.铁道货运.1998,(4):40-46
    [44]王健敏.冷板式冷藏集装箱换热方式与温度控制的探讨.仲恺农业技术学院学报.2000,13(2):27-29
    [45]蒲亮.冷库温度场的实验研究及数值模拟[硕士学位论文].西安:西交通大学.2002
    [46]谢如鹤,李夏苗,罗荣武等.冷藏运输的市场需求及技术发展的研究.长沙:中南大学.2001.3
    [47]陈耀邦.中国农业统计年鉴.北京:中国农业出版社,2008
    [48]黄圣明.中国食品年鉴.北京:中华书局,2002-2008
    [49]中国统计年鉴.北京:中国统计年鉴出版社,2001-2008
    [50]广州大学物流与运输研究中心.食品产业研究报告.2010
    [51]丁正斌.果蔬真空预冷.冷藏技术,1998(4):40-42
    [52]张志刚.猪肉食品安全监控与认证体系的创建.肉类工业.2007,(5):36-39
    [53]周全,刘红.猪肉食品安全卫生质量的管理和监控.中国动物检疫.2002,19(10):17-18
    [54]黄高明,蒋利明,张菊芳等.猪肉食品安全中亟待强化监管的问题.猪业科学.2007,(11):35-37
    [55]金征宇.食品安全导论.北京:化学工业出版社,2005.
    [56]刘玉满,尹晓青,杜吟棠等.猪肉供应链各环节的食品质量安全问题—基于山东省某市农村的调查报告.中国畜牧杂志,2007,43(2):47-49
    [57]宋汉利,于勇.农产品冷链物流中的安全监控应用研究.物流技术,2007,26(2):177-178
    [58]Williams T M. Risk management infrastruture. In.J.Project Management,1993, 1(11):5~10.
    [59]Emmett J, Vaughan. Fundamentals risk and insurance. John Willeys & Sons,1996
    [60]邓宁,刘加顺,罗荣桂.基于Agent对供应链风险管理的研究.中国管理科学.2006,14(10):412-416
    [61]马开玉.气候统计原理与方法.北京:气象出版社,1993
    [62]屠其璞.气候应用概率统计学.北京:气象出版社,1984
    [63]么枕生.气候统计.北京:气象出版社,1991
    [64]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,1997
    [65]李世才.彭月英,魏文展.皮尔逊-Ⅲ型曲线新的数值算法及其应用研究.广西水利水电.2001,(1):18-23
    [66]任伯帜,周赛军,王云波.皮尔逊-Ⅲ型分布曲线的快速通用算法研究.长沙交通学院学报.2002,18(1):65-69
    [67]任伯帜,廖继源.确定皮尔逊-Ⅲ型分布统计参数的方法研究及其应用.湘潭矿业学院学报.2000,15(3):81-86
    [68]周玉文,周胜昔,曹丽虹.极大似然法求皮尔逊-Ⅲ型分布参数.给水排水.1997,23(6):19-21
    [69]姚允龙.频率曲线法及皮尔逊-Ⅲ型曲线在水质评价中的应用探讨.水文.2001,21(1):42-44
    [70]马秀峰,阮本清.对权函数法求概率分布参数讨论.水利学报.2001,46(11):34-40
    [71]陈开德.P-Ⅲ型分布Φ值的样条函数拟合及插值计算.西北水电.2000,19(1):4-7
    [72]王建刚,刘亚萍.P-Ⅲ型分布Φ值数值计算方法比较.水文.1997,17(5):10-14
    [73]McClellan T M, Pedersen C O. Investigation of outside heat balance models for use in a heat balance cooling load calculation procedure. ASHRAE Trans.1997, 103(1):467~484
    [74]Liesen R J, Pedersen C O. An evaluation of inside surface heat balance models for cooling load calculations. ASHRAE Trans.1997,103(1):485~502
    [75]Knebel D E. ASHRAE technical committee 4.7 development of simplified energy analysis procedures. ASHRAE Trans.1995,101(1):869~881
    [76]Clarke J A. Assessing building performance by simulation. Building and Environment.1993,28(4):419~427
    [77]Kawashima M. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an artificial neural network. ASHRAE Trans.1995,101(1):186~200
    [78]Davies M G. Current methods to handle wall conduction and room internal heat transfer. ASHRAE Trans.1999,105(2):142~153
    [79]Liesen R J, Pedersen C O. Modeling the energy effects of combined heat and mass transfer in building element:part 1 --- theory. ASHRAE Trans.1999,105(2): 941~953
    [80]刘广海,谢如鹤,丁力行.列车空调室外综合温度场的确定与探讨.中国铁道科学.2006,27(1):99-103
    [81]SHRAE. Climatic design information. U.S.A.:1997 ASHRAE Handbook Fundamentals, Chapter 26
    [82]Colliver D G, Gates R S. Development of the design climatic data for the 1997 ASHRAE handbook-fundamentals. ASHRAE Trans.2000,106(1):3~14
    [83]Harriman III L G, Colliver D G, Hart K Q. New weather data for energy calculations. ASHRAE Journal,1999,41(3):31~38
    [84]Colliver D G, Gates R S. Sequences of extreme temperature and humidity for design calculations. ASHRAE Trans.1998,104(1):133~144
    [85]Schmitt D D, Klein S A, Reindi D T. Automated generation of hourly design sequences. ASHRAE Trans.2000,106(1):158~168
    [86]Levin H. Building ecology:an architect's perspective on healthy buildings. Proceedings of Healthy Building'95, Milan, Italy, September,1995
    [87]Asksaka H. Development of expanded AMeDAS weather data for building energy calculation in Japan. ASHRAE Trans.2000,106(2):455~465
    [88]Crawley D B. Which weather data should you use for energy simulations of commercial buildings? ASHRAE Trans.1998,104(2):498~515
    [89]Huang J. The impact of different weather data on simulated Residential heating and cooling loads. ASHRAE Trans.1998,104(2):516~527
    [90]Ding L. Analysis and Application of the Dynamic Design Process Model for HVAC System. Proceedings of the 4th International Conference on IAQVEC2001, 1375~1380
    [91]李万秋.冷链物流系列讲座之一:冷链物流链现状及问题[J].物流技术与应用,2006(9):102-104
    [92]李晓文.何文炯.风险管理.北京:中国财政经济出版社,2001,4
    [93]威廉姆斯等著(陈伟等译).风险管理与保险.北京:中国商业出版社,1990,11
    [94]沈小峰,胡岚.耗散结构论.上海:上海人民出版社,1987,12:36-45
    [95]孙飞,李青华.耗散结构理论及其科学思想.黑龙江大学自然科学学报,2004,21(3):77-78
    [96]张彦等.系统自组织概论.南京:南京大学出版社,1990,3
    [97]吴大进等.协同学原理和应用.武汉:华中理工大学出版社,1991
    [98]陈宝林.最优化理论与方法.北京:清华大学出版社,1989,8
    [99]王凌.智能优化算法及其应用.北京:清华大学出版社,2001,10
    [100]唐晓芬HACCP生鲜农产品安全管理体系的建立与实施:中小企业实用指南.北京:中国计量出版社,2003.7
    [101]杨永华.生鲜农产品安全管理体系HACCP推行实务.深圳:海天出版社,2002.9
    [102]郭波.系统可靠性分析.长沙:国防科技大学出版社,2002
    [103]陈喜山等.安全系统工程学.中国建材工业出版社,北京:2006,1
    [104]王金波,陈宝智,徐竹云.系统安全工程.沈阳:东北工学院出版社,1992,1
    [105]张景林,崔国璋.安全系统工程.北京:煤炭工业出版社,2003,12
    [106]韩一军,张宇萍.国外农产品物流发展特点分析及启示.农业展望,2006(10):32-34
    [107]罗铮.物流链安全保障体系研究.物流科技,2005(10):8-10
    [108]李炯.物流安全管控技术分析.权威论坛,2005(4):96-98
    [109]张诚,单圣涤.浅谈物流安全管理.管理纵横,2006(5):39-40
    [110]罗一新.关于我国物流安全的现状及对策研究.科技与产业,2006(5):16-19
    [111]罗云,樊运晓,马晓春.风险分析与安全评价.北京:化学工业出版社,2004
    [112]秦庭荣,陈伟炯.综合安全评价(FSA)方法.中国安全科学学报,2005,15(4):89-93
    [113]Eric Granryd. Hydrocarbons as refrigerants --- an overview. International Journal of Refrigeration,1999,22(7):56~66
    [114]C P Tso, S C M. Yu, H J Poha, P G Jolly. Experimental study on the heat and mass transfer characteristics in a refrigerated truck. International Journal of Refrigeration,2002 (25):340~350
    [115]AntonoA n Ryska, Filip KraA, JiroA Ota. Method of determination of the active capacity of refrigeration and A/C units of variable speeds. International Journal of Refrigeration,2000 (23):402~405
    [116]Stephen W T Spence, W John Doran, David W Artt. Design, construction and testing of an air-cycle refrigeration system for road transport. International Journal of Refrigeration,2004, (27):503~510
    [117]Jean Moureh, Denis Flickb. Wall air-jet characteristics and airflow patterns within a slot ventilated enclosure. International Journal of Thermal Sciences,2003, (42):703~711
    [118]David J Forkenbrock. Comparison of external costs of rail and truck freight transportation. Transportation Research Part A,2001, (35):321~337
    [119]Paul Spoonley. Technological and social changes into the third millennium and the impact on refrigeration. International Journal of Refrigeration,2001, (24):593~601
    [120]Silvia E & David T. Interpretation of the Australian standard for the thermal testing of refrigerated road vehicles, EcoLibriumTM.2005.11
    [121]Xie Ruhe. Liu Guanghai, Qu Ruigui. Heat balance model for refrigerated car and simulation and experimentation on the temperature field. The 22nd International Congress of Refrigeration 2007
    [122]Craig Allen Hill. An empirical study of the impact of supply chain integration and information technology within food industry [PhD Dissertation]. USA:Vanderbilt University,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700