食品冷链物流的安全可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对食品冷链物流系统研究中安全性量化指标缺乏的问题,本文借助食品科学和系统可靠性等相关理论和方法,构建了食品冷链物流的安全可靠度模型,并将模型应用于食品冷链物流系统的设计、评估和优化等方面。
     (1)食品冷链物流的安全可靠度模型。以微生物生长动力学模型和致病菌剂量-反应曲线为基础,借鉴系统可靠性理论,提出食品冷链物流安全可靠度概念,建立食品冷链物流单元的安全可靠度模型R=R0-d△T2t和食品冷链物流系统的安全可靠度模型Ri=R0-d(?)△Tj2tj。模型表明:冷链单元的失效率与食品经过冷链单元的时间成正比,与冷链单元的温度的平方成正比;冷链系统各单元的安全可靠度是相互独立的,且只与本单元的温度和时间有关,与系统初始状态和其他单元无关;在冷链系统中,安全可靠度从起始点到目的地都不可能增加,其安全可靠度下降是累积的,而且具有不可逆性。通过巴氏杀菌乳的冷链实验验证模型的可靠性。实验结果表明:食品冷链物流的安全可靠度模型在一定的条件下可以用来表征食品冷链物流的安全性。
     (2)食品冷链物流系统安全可靠度分配设计。以食品冷链物流系统安全可靠度模型为基础,利用温度与制冷系统能耗之间的函数关系,构建无成本约束和有成本约束的食品冷链物流系统优化决策模型,并给出了求解的启发式算法和算例。并以冷链物流单元的安全影响因子作为其重要度,进一步研究了食品冷链物流系统的安全可靠度再分配策略。
     (3)基于安全可靠度的食品冷链系统分析和评价。利用安全可靠度的概念和模型,确定冷链系统的关键单元、食品货架期和保存期以及利用GO-FLOW法进行冷链物流系统的安全评价。通过安全可靠度模型的灵敏度分析,得出了安全影响因子最大的单元就是影响冷链系统安全性的关键单元的结论,并利用排序法确定影响系统安全的关键单元。安全可靠度模型为预测食品的货架期和保存期提供了一种新的方法。巴氏杀菌乳保存期实验表明,温度的上升导致保存期快速缩短,销售环节是影响巴氏杀菌乳冷链物流安全的关键环节,要保证巴氏杀菌乳的销售安全,必须控制冷藏陈列柜的温度保持在10℃以下,并且外层的牛奶和里层的牛奶最好能每天调换位置。
     (4)基于安全可靠度的食品配送优化。比较分析两种主要食品配送模式(定量配送和定时配送)的安全性和经济性,提出集约化配送模式选择方法。研究表明对于服务水平要求高的食品,采用定时配送较好,而对于时效性要求不强的食品采用定量配送较好。将食品冷链物流安全可靠度引入车辆路径优化问题,以配送综合成本最低和安全可靠度损失最小作为目标函数,建立模型并利用最大最小蚁群算法进行了求解。以巴氏杀菌乳配送为例,利用安全可靠度,研究了食品配送时间、配送温度、装载堆码以及收货环节的优化问题。研究表明:巴氏杀菌乳的配送时间以不超过12h为宜;装载时尽量避免堆码在车辆的最里面,并且保持冷气顺畅循环;目前收货作业是影响配送安全的主要环节,应尽量缩短收货作业时间,以及消除冷链“断链”现象等。
     (5)基于安全可靠度的食品库存策略优化。主要针对食品的订货和出货模型进行优化,得到最优的库存控制策略。订货策略方面,利用安全可靠度模型构建生鲜食品的过期罚函数,通过对订货模型的比较分析,得到以下食品订货策略:一、安全性要求越高的食品订货周期要求越短,在同样的库存条件下,越容易腐败变质的食品其订货周期要求越短;二、需求率越大的食品订货周期要求越短,对于需求量较大的生鲜食品,必须采取高频率的订货策略,而不能采取大批量、小频率的订货策略。反之,对于需求量较小的食品,可以适当提高订货周期;三、库存条件越好的食品订货周期可以越长。出货策略方面,通过模拟仿真,比较了先进先出(FIFO)制度和最小安全可靠度先出(MSFO)制度的安全性。结果表明最小安全可靠度先出策略在安全性方面明显优于先进先出策略。
Aiming at the problem of lacking safety quantitative index in the research of food cold chain logistics system, based on related theories and methods of food science and system reliability, this dissertation builds up the safety reliability models of food cold chain, and applies these models to the design assessment and optimization of food cold chain logistics system.
     (1) Safety reliability models of food cold chain. It puts forward the concept of safety reliability of food cold chain, and constructs the safety reliability models of cold chain logistics unit (R= R0-d△T2t) and cold chain logistics system (Ri= R0-d(?)△Tj2tj), based on microbial growth model and dose-response curve. These models show that the failure rate of cold chain unit is proportional to the time and the square of temperature; the safety reliability of cold chain units are mutually independent, it only relats to their respective time and temperature yet unrelated to initial state of system and the other units. The system model also reveals that the safety reliability of cold chain system reduces gradually and irreveribly. Finally, it verifies the models by pasteurized milk cold chain experiment; the results indicate that this model can represent the safety of food cold chain.
     (2) The allocation design of safety reliability of food cold chain system. Non-cost constrained optimization model and cost constrained optimization model have been built on the basis of safety reliability model and the function of temperature and energy consumption. Moreover, a new heuristic algorithm has been designed to find the solution. Further, it studies the reallocation dicision of safety reliability of system. Safety factors of cold chain units are in accordance with their component importance.
     (3) Safety analysis and assessment of cold chain system based on safety reliability. The concept and model of safety reliability can be applied to determine the key unit of cold chain, shelf life and use-by date of food. It also can assess the safety of cold chain logistics system based on GO-FLOW method. With the sensitivity analysis of safety factors of food cold chain system, it draws a conclusion that the unit having maximum safety factor is just the key unit of cold chain. The safety reliability model also provides a new method to predict the shelf life and use-by date of food. Based on pasteurized milk cold chain experiment, it is known that use-by date of food is quickly shortened with the temperature rising and the sale is the key safety unit. It is necessary to control the temperature of refrigerated display cabinet not exceed 10℃and outer milk and inner milk should change position every day.
     (4) Food distribution optimization based on safety reliability. Through a comparative analysis of fixed quantity distribution and fixed time distribution, some intensive distribution operation strategies have been provided. Fixed time distribution model is better than fixed quantity distribution model for those foods that require high service level, however, fixed quantity distribution model is better than fixed time distribution model for those foods with low timeliness. A model of vehicle route problem with time window based on safety reliability has been built, and solved using max-min ant colony optimization algorithms. Used the safety reliability model and dateof pasteurized milk experiment, it studies distribution time, distribution temperature, stacked and reception of food. The results show that the milk temperature at the doorway and in the middle of carriage is lower than the milk temperature in the innermost of carriage. So, milk should not be stacked in the innermost of carriage but loaded at the doorway and the middle of carriage; distribution time of milk should be limited to no more than 12 hours; reception time should be shorten as possible and cold chain breaking must be avoided.
     (5) Food inventory optimization based on safety reliability. By means of safety reliability of fresh food, a food ordering model integerated with penalty function of expiration is put forward to study the ordering policies. A. The higher food safety requirement is, the shorter food ordering cycle needed. Perishables require the shortest ordering cycle under same storing condition. B. The larger food demand rate is, the shorter ordering cycle needed. Fresh food at high demand rate must take high frequency ordering rule. Yet, it is proper to prolong ordering cycle for those at low demand rate. C. The better food storing condition is the longer ordering cycle could be. As regards out-stock strategy, the safety of two rules, which are first in first out (FIFO) rule and minimum safety reliability first out(MSFO) rule, have been compared by the means of simulation. The conclusion shows that minimum safety reliability first out rule is much safer than first in first out rule.
引文
[1]Marion Nestle著.程池,黄宇彤 等译.食品安全——细菌、生物技术和生物恐怖主义.北京:社会科学文献出版社,2004.8-10
    [2]金征宇 主编.食品安全导论.北京:中国轻工业出版社,2007.2-79
    [3]中华人民共和国国家统计局.2008年国民经济和社会发展统计公报
    [4]于学军,张国治.冷冻、冷藏食品的贮藏与运输.化学工业出版社,2007.20
    [5]陈锦汉,庞杰,龚加顺.食品物流学.北京:中国轻工业出版社,2007.2-179
    [6]G. C. Barker, N. L. C. Talbot, M. W. Peck. Risk assessment for Clostridium botulinu:a network approach. International Biodeterioration& biodegradation,2002,50(3-4):167-175
    [7]D. J. Parsons, T. G. Orton, J. D'Souza, et al. A comparison of three modeling approaches for quantitative risk assessment using the case of Salmonella spp in poultry meat, International Journal of Food Microbiology,2005,98(1):35-51
    [8]McMeekin T A, Olley J. Predictive microbiology: theory and application. John Wiley and Sons,1993
    [9]McMeekin T A, Olley J N, Ross T. Predictive Microbiology:Theory and Application, Research Studies Press,1993
    [10]Buchanan, R. L. Predictive food microbiology. Trends in food Science& Science,1993,4(1):6-11
    [11]M.H. Zwietering,I. Jongenburger,F. Rombouts.K. Van't Riet. Modeling of the bacterial growth ezrve. Appl. Environ. Microbial,1990,56(6):1875-1881
    [12]Jan F. Van Impe, Bart M. Nicolai, Mia Schellekens, Toon Martens, Josse De Baerdemaeker. Predictive microbiology in a dynamic environment:a system theroty approach. Food Microbiology,1995,25(3):227-249
    [13]Karl McDonald, Da-Wen Sun. Predictive food microbiology for the meat industry:a review. International Journal of Food Microbiology,1999,52(11):1-29
    [14]M. H. Zwietering. Quantification of microbial quality and safety in minimally processed foods. International Dairy Journal,2002,12(2-3):263-271
    [15]Rosa Maria Garcia-Gimeno, Cesar Hervas-Martinez, Maria Isabel de Siloniz. Improving artificial neural networks with a pruning methodology and generic algorithms for their application in microbial growth prediction in food. International Journal of Food Microbiology,2002,72(1-2):19-30
    [16]M. H. Zwietering, J. K. De Koos, B. E. Hasenack, J. C. DeWit, K. Van't Riet. Modeling of bacterial growth as a function of temperature. Appl. Environ. Microbial,1991,57(4):1094-1101
    [17]M. H. Zwietering, J. C. De Wit, S. Notermans. Application of predictive microbiology to estimate the number of bacillus cereus in pasteurized milk at the point of consumption. International Journal of Food Microbiology,1996,30(1-2): 55-70
    [18]McMeekin T A, Ross T, Olley J. Application of predictive microbiology to assure the quality and safety of fish and fish products. Food Microbiol,1992,15(3): 13-32
    [19]M. H. Zwietering, F. M. Rombouts. Some aspects of modeling microbial quality of food. Food Control,1993,4(5):89-96
    [20]P. A. Voysey, M-Brown, Microbiological risk assessment:a new approach to food safety control[J]. International Journal of Food Microbiology,2000,58(3): 173-179
    [21]Angelika M. Tritscher. Human health risk assessment of processing-related compounds in food. Toxicology Letters,2004,149(1-3):177-186
    [22]S. Notermans, M. J. Nauta, J. Jansen, J. L. Jouve, G. C. Mead. A risk assessment approach to evaluating food safety based on product surveillance. Food Control,1998,9(4),217-223
    [23]F. Poscheta, A. H. Geeraerda, N. Scheerlinckb, B. M. Nicola, J. F. Van Impe. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiology,2003,20(3):285-295
    [24]Maarten J. Nauta. Separation of uncertainty and variability in quantitative microbial risk assessment models. International Journal of Food Microbiology, 2000,57(1-2):9-18
    [25]M. J. Nauta, J. Dufrenne. Variability in growth characteristics of different E. coli 0157: H7 isolates and its implications for predictive microbialogy. Quantitative Microbiology,1999,19(1)137-155
    [26]Michael H. cassin, Anna M. Lammerding, et al. Quantitative risk assessment for Escherichia coil 0157:H7 in ground beef hamburgers. International Journal of Food Microbiology,1998,41(1):21-44
    [27]A. R. Standaert, A. H Geeraerd, K. Bemaerts, et al. Obtaining single cells: analysis and evaluationof an experimental protocol by means of a simulation model. International Journal of Food Microbiology,2005,100(1-3):55-66
    [28]G. Comini, G. Cortella,O. Saro. Finite-element analysis of coupled conduction and convection in refrigerated transported. International Journal of Refrigeration, 1995,18(2):123-131
    [29]R. Lindqvist. Reefer air distribution, Refrigerated transport, storage and retail display. In:Meeting of IIR Commission D2/3 with D1, Cambridge(UK), International Institute of Refrigeration, Paris,1998,121-129
    [30]J. Moureh, N. Menia, D. Flick. Numberical and experimental study of airflow in a typical refrigerated truck configuration loaded with pallets. Computers and Electronics in Agriculture,2002,34(1-3):25-42
    [31]J. Moureh, D. Flick. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. Int. J. Refrigeration.2004, 27(5):464-474
    [32]C. P. Tso, S. C. M. Yu, H. J. Poh, et al. Experimental study on the heat and mass transfer characteristics in a refrigerated truck. Int. J. Refrigeration,2002, 25(5):340-350
    [33]A. J. Rushbrook. Temperature control of chilled meat shipments in containers: part 1, One-dimensional model studies. Meat Industry Research Institute of New Zealand Report. No.418,1974
    [34]H. F. Th. Meffert. Modelling conditions in refrigerated vehicles and containers: II. Cargo temperature distribution, cold chain refrigeration equipment by design. In: Meeting of IIR Commissions D1, D2/D3 Cambridge(UK). International Institute of Refrigeration, Paris,1998,70-83
    [35]J. Moureh, E. Derens. Numerical modeling of the temperature increase in frozen food package in pallets in the distribution chain. International Journal of Refrigerated,2000,23:540-552
    [36]R. Bennahmias, R. Gaboriau, J. Moureh. The insulating cover, a particular logistics means for thermo-sensitive foodstuff. International Journal of Refrigerated, 1997,20:359-366
    [37]D. M. Stubbs, S. H. Pulko, A. J. Wilkinson. Wrapping strategies for temperature control of chilled foodstuffs during transport. Transactions of the Institute of Measurement and Control,2004,26(1):69-80
    [38]N. D. Amos, A. F. Bollen. Predicting the deterioration of asparagus quality during air transport, storage and retail display. In:Meeting of IIR Commissions D1, D2/D3 Cambridge(UK). International Institute of Refrigeration, Paris,1998, 163-170.
    [39]P. G. Jolly, C. P. Tso, Y. M. Wong, et al. Simulation and measurement on the full-load performance of a refrigeration system in a shipping container. International Journal of Refrigeration,2000,23:112-126.
    [40]S. F. Almonacid-Merino, J. A. Torres. Mathematical models to evaluate temperature abuse effects during distribution of refrigerated solid foods. Journal of Food Engineering, 1993,20:223-245
    [41]C. O. Gill, D. M. Phillips. The efficiency of storage during distribution continental transportation of beef sides and quarter. Food Research International, 1993,26(4):239-245
    [42]P. Dalgaard. Modelling of microbial activity and prediction of shelf life for packed fresh fish. International of Food Microbiology,1995,26:305-317
    [43]K. Koutsoumanis, M. C. Giannakourou, P. S. Taoukis, et al. Application of shelf life decision system(SLDS)to marine cultured fish quality. International of Food Microbiology,2002,73:375-382
    [44]K. Koutsoumanis, P. S. Taoukis, G. J. E. Nychas. Development of a Safety Monitoring and Assurance System for chilled food Product. International of Food Microbiology,2005,100:253-260
    [45]R. P. Covert and G. C. Philip. An EQQ model deterioration. AIIE Trans.1973, 5,323-326
    [46]P. R. Tadikamall. An EOQ inventory model for items with Gamma distribution. AIIE Trans,1978,10:100-103
    [47]Parker R. P, Kapuscinski R. Optimal Policies for a Capacitated Two-Echelon Inventory System. Operations Research,2004,52(5):739-755
    [48]K. Aardal, O. Jonsson and H. Jonsson. Optimal inventory policies with service-level constraints. J. Opl Res. Soc,1989,40:65-73
    [49]I. Moon, S. Choi, The distribution free continuous review inventory system with a service level constraint. Computer and Ind. Eng,1994,27,209-212
    [50]M. S. Chen, C. C. Chuang. An extended newsboy problem with shortage-level constraints. Int J. Prod. Econ,2000,67:269-277
    [51]I. Moon, S. Choi. A note on lead time and distributional assumptions in continuous model. Comp. Opns Res,1998,25:1007-1012
    [52]L. Y. Quyang, N. C. Yeh, K. S. Wu. Mixture inventory model with backorders and lost sales for variable lead time. J. Opl Res. Soc,1996,47:829-832
    [53]I. Moon, S. Choi. A note on lead time and distributional assumptions in continuous renew inventory models. Comp. Opns Res,1998,25:1007-1012
    [54]M. Hariga, M. Ben-Daya. Some stochastic invenory models with deterministic variable lead time. Eur. J. Opl Res,1999,113:42-51
    [55]T. R. Sexton, Y. M. Choi. Pickup and Delivery of Partial Loads with"Soft" Time Windows. American Journal of Mathematical and Management Sciences, 1986,6(4):369-398
    [56]Taillard, E., Badeau, P., Gendreau, M. Guertin et al. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows. Transportation Science,1997,31(2):170-186
    [57]Koskosidis, Y. A., Powell, W. B., Solomon, et al. An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints. Transportation Science,1992,26(2):69-85
    [58]Lambert, V., Laporte, G, Louveaux, F. Designing Collection Routes through Bank Branches. Computers Ops. Res.,1993,20(7):783-791
    [59]Fisher, M, Jaikumar R. A Generalized Assignment Heuristic for the Vehicle Routing Problem. Networks,1981,11:109-124
    [60]Tijskens L. M. M, Polderdijk J. J. A generic model for keeping quality of vegetable produce during storage and distribution. Agric. System,1996,51:431 -452
    [61]Ahn, B. H., Shin, J. Y. Vehicle-routing with Time Windows and Time-Varying Congestion. Journal of Operational Research Society,1991,42(5):393-400
    [62]Malandraki, C., Daskin, M. S. Time Dependent Vehicle Routing Properties and Heuristic Algorithms. Transportation Science,1992,26(3):185-200
    [63]S. Andrew Starbird. Supply Chain Contracts and Food Safety. CHOISES, 2005,20(2):123-128
    [64]Andrew Fearne, Susan Hornibrook, Sandra Dedman. The management of perceived risk in the food supply chain:a comparative study of retailer-led beef quality assurance schemes in Germany and Italy. The International Food and Agribusiness Management Review,2001,4(1):19-36
    [65]Jill E. Hobbs, John Spriggs, Andrew Fearne. Institutional arrangements and incentive structures for food safety and quality assurance in the food chain. Interdisciplinary Food Safety Research,1999(9)
    [66]Adrie J. M. Beulens, Douwe-Frits Broens, et al. Food safety and transparency in food chains and networks. Food Control,2005,16(6):481-486
    [67]韩宇红.发展我国冷链物流的对策研究[J].农产品加工,2006,7(6):29--2
    [68]谢如鹤,陈宝星.关于食品物流安全管理问题的探讨.中国制冷学会2005年制冷空调学术年会,668-672.
    [69]何静,程均谟,宗传宏.我国食品冷链物流发展现状及对策研究.商场现代化,2006(5):115-116
    [70]杨晓楼,许茂增.我国冷藏食品物流市场现状及发展措施.重庆交通学院学报,2005(2):24-26.
    [71]张改清.我国现代农产品物流的发展困境与出路.江苏商论,2007(1):62-64
    [72]阙师鹏,陈章跃.我国农产品物流的发展对策研究.石河子大学学报(哲学社会科学版),2006,20(6):67-39
    [73]王树祥,张明玉.我国农产品现代物流发展战略研究.中国流通经济,2006(6):19-21
    [74]刘东英,李建平.发展生鲜农产品现代物流的战略选择.中国禽业导刊,2005,22(1):14-15
    [75]杜晓军.促进我国农产品物流业发展.赤峰学院学报(汉文哲学社会科学版),2006,27(6):62-64
    [76]赵勤.中国现代农业物流问题研究:[博士学位论文].哈尔滨:东北林业大学,2006
    [77]龚树生,梁怀兰.生鲜食品冷链物流网络研究.现代物流,2006(2):7-9.
    [78]汪云华.我国发展第三方冷链物流的环境和资源配置分析.中国西部科技,2006,9:52:54.
    [79]李敬.发展农产品第三方物流企业的对策.新乡教育学院学报,2006,19(2):7-9
    [80]杜小芳,张金隆.农产品第三方物流的管理模式.中国合作经济,2004(1):49-50
    [81]陈善晓,王卫华.基于第三方物流的农产品流通模式研究.浙江理工大学学报,2005,22(1):72-74
    [82]贺峰.中国农产品物流问题研究:[博士学位论文].武汉:华中农业大学,2006
    [83]武云亮.农产品物流组织形式及其发展趋势.资源开发与市场,2007,23(1):68-70
    [84]陈宝星,谢如鹤,朱元诚.2010年广州亚运食品物流安全体系框架与建设 探讨.广州大学学报,2008(1):40-44
    [85]鲍长生.冷链物流系统内食品安全保障体系研究.现代管理科学,2007(9):66-67
    [86]张文敏.食品供应链中的安全保障体系研究:[博士学位论文].北京交通大学,2007
    [87]邓淑芬,吴广谋,赵林度,等.食品供应链安全问题的信号博弈模型.物流技术,2005(10):135-137
    [88]苏永龙,钟磊刚.HACCP在物流作业管理中的应用.物流技术,2004(1):25-27
    [89]张莹.基于HACCP监测的冷链物流.物流技术,2006(1):105-107
    [90]朱莉,王海燕.基于超市食品供应链的质量控制体系研究.物流技术,2005(10):206-208
    [91]韩月明,赵林度.超市食品物流安全控制分析.物流技术,2005(10):142-144
    [92]李正明.连锁超市保障零售环节食品安全的实证研究.食品工业科技,2006,5(27):167-169
    [93]宋汉利,于勇.农产品冷链物流中的安全监控应用研究.物流技术,2007,26(2):177-179
    [94]林凌,周德翼.构筑食品质量安全可追踪系统研究.商业研究,2005,32(9):41-44
    [95]叶存杰.基于.NET的食品安全预警系统研究.科学技术与工程,2007,2:258-260
    [96]姜国辉,章伟,吴丽雅.食品物流与安全管理信息系统之初探.管理学报,2005(9):200-202
    [97]张凡建,于丽萍,黄保续,等.利用风险分析原理完善动物源性食品安全标准体系.中国动物检疫,2004,21(8):2-3
    [98]周绪宝,金志雄,风险分析在绿色食品管理体系中的应用;世界农业,2005(5):8-11
    [99]周应恒,彭晓佳.风险分析在各国食品安全管理中的应用.世界农业,2005(3):4-6
    [100]罗祁,姚李四,储晓刚.食品安全微生物风险评估.食品工业科技,2005(6):18-24
    [101]毕金峰,魏益民,潘家荣.微生物风险评估的原则与应用.农产品加工2004(11):19-24
    [102]郭剑飞,李柏林,欧杰.基于食品安全性的预测微生物学研究模式.食品 科技,2004(2):5-8
    [103]徐大宇.食品微生物生长预测模型.食品科学,1995,16(1):17-23
    [104]徐跃.食品卫生管理和食品微生物学的最新进展(2)-预测食品微生物学.食品与发酵工业,1997,23(2):73-77
    [105]李柏林,郭剑飞,欧杰.预测微生物学数学建模的方法构建.食品科学,2004,25(11):52-57
    [106]刘於勋.食品安全综合评价指标体系的层次与灰色分析.河南工业大学学报,2007(10):53-57.
    [107]邱祝强.基于冷藏链的生鲜农产品物流网络优化与物流安全风险研究:[博士学位论文].长沙:中南大学,2007
    [108]李延晖,马士华,刘黎明.基于时间约束的配送系统模型及一种启发式算法.系统工程,2003,21(4):23-28
    [109]李延晖、马士华.基于时间约束的单源/p个中转点配送系统的MINLP模型.中国管理科学,2004,12(3):86-90.
    [110]李延晖,马士华,刘黎明.基于时间约束的供应链配送系统随机模.预测,2004,23(4):45-47.
    [111]李延晖,马士华,刘黎明.基于时间约束的多源多品种配送系统模型及一种启发式算法.系统工程理论方法应用,2004,13(5):395-399
    [112]李延晖,马士华.基于时间竞争的配送系统多目标决策模型研究.计算机集成制造系统,2005,11(11):1516-1519.
    [113]李延晖,刘向,马士华.基于时间约束的多源多品种随机配送系统模型.科技进步与对策,2006(6):69-71
    [114]何明珂,石一兵.在我国食品流通领域实行集约共同配送的有关问题.北京商学院学报,1995(6):58-60
    [115]胡勇.食品零售业的供应物流配送分析.食品科技,2002(8):75-77
    [116]李江萍,但斌,陈军.基于货损约束的配送系统优化模型.工业工程,2006,9(6):66-69
    [117]李江萍.基于货损和时间约束的流通型配送中心配送作业管理研究:[硕士学位论文].重庆:重庆大学,2006、
    [118]鲍长生.冷链物流运营管理研究:[博士学位论文].上海:同济大学,2007
    [119]屈颖.连锁经营配送下的库存控制策略研究:[硕士学位论文].成都:西南交通大学,2004
    [120]张晶.我国连锁零售业库存管理模式研究:[硕士学位论文].成都:西南财经大学,2007
    [121]王战.食品饮料行业的库存管理和决策研究.现代管理科学,2003(7):49-50
    [122]王冬梅.基于遗传算法的低温物流配送方案优化设计:[硕士学位论文].沈阳:辽宁工学院,2007
    [123]杨茂盛,谢静.基于多目标规划在物流配送系统优化中的应用研究.物流科技,2007(8):41-43
    [124]陈宗道,赵国华主编.食品物流安全的管理与技术.北京:化学工业出版社,2007.24
    [125]Kramer A, Twigg B A. Quality Control for the food Industry. AVI Pub. Co, Westport
    [126]Steenkamp J. Conceptual Model of the Quality Perception Process. Journal of Business Research,1990,21,309-33
    [127]罗铮.物流安全保障体系研究.物流科技,2005(10):8-10
    [128]李炯.物流安全管控技术分析.权威论坛,2005(4):96-98
    [129]张诚,单圣涤.浅谈物流安全管理.管理纵横,2006(5):39-40
    [130]张延平,谢如鹤.生鲜农产品物流安全管理政策与法律建设亟待加强.中国储运,2006(5):103-104
    [131]何远成.广东荔枝物流现状及对策.世界热带农业信息,2006(5):1-4.
    [132]谢如鹤.我国冷藏食品运输的现状.中国食品工业,2005(1):40-41
    [133]谢如鹤,张得志,罗荣武.物流系统规划.北京:中国物资出版社2007.53-65
    [134]金星,洪延姬.系统可靠性评定方法.北京:国防工业出版社,2005.4-8
    [135]沈祖培,黄祥瑞.GO法原理及应用.北京:清华大学出版社,2004.157-162
    [136]SHEN Zupei, WANG Yao, HUANG Xiangrui. A quantification algorithm for a repairable system in the GO methodology. Reliability Engineering and System Safety,2003,80(3):293-298
    [137]蔡鉴明,曾峰. 基于GO法的供应链可靠性分析.公路交通科技,2007,24(3):141-144
    [138]王建,张文杰.供应链系统可靠性分析.中国安全科学学报,2003,13(11):73-75
    [139]沈祖培,高佳.GO法原理和改进的定量分析方法.清华大学学报(自然科学版),1999,39(6):15-19
    [140]SHEN Zupei, GAO Jia, HUANG Xiangrui. An Exact Algorithm Dealing with Shared Singals in the GO Methodology. Reliability Engineering and System Safety, 2001,73(4):177-181
    [141]G. J. Medema, P. F. M. Teunis, A. H. Havelaar., et al. Assessment of the dose-response relationship of Campylobacter jejuni. International Journal of Food Microbiology,1996,30:101-111
    [142]Michael H., Cassin, Anna M. Lammerding, et al. Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers. International Journal of Food Microbiology,1998,41:21-24
    [143]Isabel Walls. Role of quantitative risk assessment and food safety objectives in managing Listeria mooctogenes on ready-to-eat meats. Meat Science,2006,74: 66-75
    [144]C. N. Haas. Estimation of risk due to low doss of microorganisms:A comparison of alternative methodologies. Am. J. Epidemiol,1983,118:573-582
    [145]R. E. Black, M. M. Levine, M. L. Clements, et al. Experimental Campylobacter jejuni infection in humans. Journal of Infection Disease,1988,157:472-479
    [146]中华人民共和国国家技术监督局.GB 5408.1-1999.中华人民共和国国家标准——巴氏杀菌乳.北京:,中国标准出版社,1999
    [147]Min-Jeong Rho, Donald W. Schaffner. Microbial risk assessment of staphylococcal food poisoning in Korean kimbab. International Journal of Food Microbiology,2007,116:332-338
    [148]李苗云.冷却猪肉中微生物生态分析及货架期预测模型的研究:[博士学位论文].南京:南京农业大学,2006
    [149]G. Betts, L. Everis. Shelf-life determination and challenge. CCFRA Guideline No.11, CCFRA, Chipping, Campden, UK,1996
    [150]邓汝春.冷链物流运营实务.北京:中国物资出版社,2007.277
    [151]大连轻工业学院等八校.食品分析.北京:中国轻工业出版社1994.118-121
    [152]陈钧辉,陶力,李俊等.生物化学实验.北京:科学出版社,2003.63-64
    [153]谷雪莲,华泽钊.冷藏时间对牛乳品质影响的实验研究.制冷学报,2005,26(4):48-50
    [154]徐学军,何来刚.生鲜食品的二级补货系统优化研究.物流科技,2006(3):45-47
    [155]秦建红,韩瑞珠,赵林度.超市生鲜食品保存量优化决策分析.物流科技,2007(9):125-128
    [156]杨文涛,徐明磊.策略在二级库存管理中的应用.物流技术,2003(3):24-26
    [157]R. P. Covert, G. C. Philip. An EQQ model deterioration. AIIE Trans,1973 (5): 323-326.
    [158]P. R. Tadikamalla. An EOQ inventory model for items with Gamma distribution. AIIE Trans,1978(10):100-103.
    [159]K. L. Mak. A production lot-size inventory model for deteriorating items. Computers Ind., Engng,1982(6):309-317
    [160]F. F. Rafaat, P. M. Wolfh and H. K. Eldin. A inventory model for deteriorating items. Computers Ind., Engng,1991,20:89-94
    [161]Arni Halldorsson, Jesper Aastrup. Quality criteria for qualitative inquires in logistics. European Journal of Operation Research,2003,144:321-332
    [162]Wayne L. Winston著,李乃文,崔群法,林细财,等译.Operations Research Introduction to Probability Models.北京:清华大学出报社,2006,162-168
    [163]刘广海. 冷藏运输能耗分析与装备优化研究:[博士学位论文]. 长沙:中南大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700