麻疹疫苗减毒机制及疫苗接种后我国麻疹流行病学特点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疹是由麻疹病毒(Measles Virus,MV)引起的一种呼吸道传染病,是少数可以用疫苗有效控制的病毒性传染病之一。虽然麻疹疫苗的使用使麻疹的发病率和死亡率大幅度降低,但是至今,麻疹仍是严重威胁儿童健康和生命安全的全球(特别是发展中国家)公共卫生问题。麻疹病毒为单一血清型,一直被认为遗传性较为稳定,但是近年来分离的麻疹野毒株与上个世纪60年代分离的麻疹病毒比较,在基因水平上已经有了较大的变异,麻疹疫情的回升是否与病毒的变异有关?麻疹野毒株的变异是否会造成麻疹疫苗保护能力的降低?是否需要开发研制新型麻疹疫苗以达到最终在全世界消除麻疹的目标?这些已经成为世界各国学者广泛关注的话题。
     为探讨麻疹野毒株的变异情况、现行麻疹减毒活疫苗的免疫效果以及麻疹减毒活疫苗的减毒机制等问题,本研究开展了下述研究工作:
     1.麻疹野毒株变异情况研究:
     收集2008~2009年麻疹疑似病例标本40份(咽拭子32份,尿液8份),用Vero/SLAM细胞成功分离到4株病毒。经典型的细胞融合病变、麻疹单克隆抗体和N基因羧基末端450个核苷酸扩增检测,鉴定4株病毒全部为麻疹病毒。
     应用逆转录-聚合酶链反应(reverse transcript polymerase chain reaction,RT-PCR)对16株麻疹野毒株(本实验分离的4株麻疹野毒株和本实验室保存的2005~2007年吉林省麻疹野毒株12株)的N基因羧基(-COOH)末端450个核苷酸片段进行扩增,测序后使用MEGA 4.0软件对测定结果与国际标准株Edmonston株、疫苗株沪-191株和长-47株的对应序列进行基因亲缘性分析。结果显示:16株麻疹野毒株之间N基因羧基端450个核苷酸和150个氨基酸同源性分别为99.11%和99.33%,其组内遗传距离小于0.009;16株麻疹野毒株与标准株Edmonston株比较,组间遗传距离介于0.069~0.074之间,核苷酸和氨基酸的差异率分别为6.00%~7.55%和8.00%~8.67%;16株麻疹野毒株与疫苗株沪-191株比较,遗传距离为0.084~0.091,核苷酸和氨基酸的差异率分别为6.67%~8.22%和10.00%~10.67%;16株麻疹野毒株与疫苗株长-47株比较,遗传距离为0.071~0.076,核苷酸和氨基酸的差异率分别为6.22%~6.67%和8.67%~9.33%。
     此结果说明16株麻疹野病毒基因序列差异较小,其组内遗传距离上差异不大,而与标准株Edmonston株、疫苗株沪-191株和长-47株相比,组间遗传距离差异较大,核苷酸水平和氨基酸水平上都出现了较大的变异。
     通过以上实验研究证明,现今的麻疹野毒株与标准株Edmonston株、麻疹疫苗株相比,在基因水平上发生了较大的变化,变异逐渐被累积并且有可能影响到现行麻疹疫苗的免疫效果。
     2.麻疹疫苗减毒机制的研究
     应用病毒蚀斑实验的方法对所分离的麻疹野毒株进行纯化,观察病毒蚀斑的形态特征和出斑速度,并对挑斑后的病毒克隆株进行病毒扩增,观察产生的细胞病变特点,测定其毒力。模拟麻疹疫苗制备的减毒技术,将分离于麻疹患者标本的麻疹野毒株和经纯化后的麻疹克隆株进行减毒培养,观察减毒效果。
     实验结果显示,同一株麻疹野毒株所产生的蚀斑,其斑块的大小、形状、中心和边缘特征以及出斑的速度均存在明显的差异,经过挑斑后得到的各个克隆株,其毒力从6.17 lgTCID_(50)/0.1ml~7.40 lgTCID_(50)/0.1ml之间不等,挑斑扩增后出现细胞病变的时间和病变的特点也有较大的差别。通过减毒实验对2株野毒株和来源于同一麻疹野毒株的6株克隆株进行减毒培养,结果显示,麻疹野毒株的毒力有所下降,而克隆株的毒力未见明显变化。麻疹病毒的毒力下降只发生在野毒株的减毒过程,克隆株的毒力l并无变化,提示野毒株与克隆株之间存在差异。
     野毒株毒力的降低主要发生在病毒由原代人羊膜细胞(HAM)向原代鸡胚细胞(CEC)的适应过程中,而病毒由原代人胚肾细胞(HK)适应HAM的过程和病毒在CEC上连续传代的过程均未见毒力的明显变化。结果提示,麻疹野毒株可能是一个混合体,其中包含了大量的强毒株和少量的弱毒株,CEC对病毒起到筛选作用,将能适应CEC的弱毒株保留下来,强毒株由于不能很好的适应CEC而被淘汰,弱毒株在CEC上的传代起到了将弱毒株大量扩增的目的。
     3.疫苗接种与麻疹流行病学研究
     本研究收集了1988年至今我国麻疹的流行病学资料,采用描述性流行病学方法分析了1990~2007年我国麻疹疫苗接种率与全国发病率变化的情况和2003~2009年我国31个省的发病率差异情况,并且分析了2004~2010年全国麻疹的发病季节分布特点及吉林省强化免疫后麻疹的发病情况。
     结果显示,虽然我国麻疹疫苗的接种率一直维持较高的水平,但麻疹的发病率与死亡率在我国法定传染病中仍居于前列,每隔2~3年就会出现一次小规模的暴发流行,并且各个省市自治区的麻疹发病率相差悬殊;麻疹患病出现高峰的时间明显推迟,麻疹发病的季节性已经发生了较大的变化;加强免疫可以在短期内收到较好的预防效果,但麻疹的流行周期并没有被强化免疫所打破,强化免疫的长期效果有待进一步观察和研究。
     本研究提示,有较好的计划免疫基础并不能有效的避免麻疹的暴发,为达到消除麻疹的目标,除继续加强麻疹野病毒的血清学和分子流行病学监测,扎实开展儿童免疫规划基础工作外,还需对我国现行的麻疹免疫策略及免疫程序进行调整,适时研究开发更有效的新型麻疹疫苗提高疫苗的免疫效力。
Measles is a kind of respiratory infectious diseases caused by the measles virus, and it is one of limited kinds of infectious diseases that could be effectively controlled via vaccination. Although the morbidity and mortality caused by measles were significantly reduced by the widely use of measles vaccines, measles is still a problem of public health and still threats to the children's health and safety all over the world. Measles virus is single serotype, and its heredity has been considered relatively stable. However, measles strains isolated in recent years had a great genetic variation compared to the ones which were isolated in the 60s of last century. Whether the elevation of prevalence of measles has significant correlations with the variations of measles? Whether the variations of wild measles strains will result in reduction in protection of measles vaccine? Is there a need of developing new measles vaccines to achieve the ultimate goal of measles elimination in the world? All of these topics above have attracted wide attention from scholars around the world.
     To investigate the variations of wild strains of measles, the effects of current live attenuated measles vaccine and the mechanisms of live attenuated measles vaccine and other issues, this research carried out the following works:
     1. Variations of wild measles strains:
     40 samples of suspected cases of measles from 2008 to 2009 (32 of throat swabs and 8 of urine samples) were collected and 4 virus strains were successfully isolated by Vero / SLAM cells. According to results of cross-neutralization assays and the sequences of the 450 nucleotides carboxyl(-COOH) terminus of N gene, all of 4 strains of the virus were identified as measles virus.
     The 450 nucleotides fragments of carboxyl end of N gene on 16 wild measles strains(4 wild strains isolated in this research and 12 wild strains stored in our laboratory which were isolated in Jilin Province from 2005 to 2007) were amplified with RT-PCR. Software MEGA4.0 was applied to analyze the genetic affinity of corresponding sequences between test results and international standard strain Edmonston strain, Shanghai-191 and Changchun-47 vaccine strains. The results showed that the sequence homologies of 450 nucleotides and 150 amino acid in carboxyl-terminal of N gene were respectively 99.11% and 99.33%, the group genetic distance is less than 0.009; The genetic distance among 16 wild strains and Edmonston standard strain was 0.069 ~ 0.074, and the differences in nucleotide and amino acid were 6.00% ~ 7.55% and 8.00%~8.67%, respectively; The genetic distance among 16 wild strains and Shanghai-191 vaccine strain was 0.084 ~ 0.091, and the differences in nucleotide and amino acid were 6.67% ~ 8.22% and 10.00% ~ 10.67%, respectively; The genetic distance among 16 wild strains and Changchun-47 vaccine strain was 0.071 ~ 0.076 and the differences in nucleotide and amino acid were 6.22%~ 6.67% and 8.67%~9.33%, respectively.
     The results showed that the 16 strains of measles virus had neither significant genome sequences differences nor evident group genetic distance differences each other. But the 16 strains of measles virus had evident differences in group genetic distance and great variations in nucleotide and amino acid levels compared with Edmonston standard strain, Shanghai -191 and Changchun-47 vaccine strains.
     These experiments above showed that great variations in genetic level existed in the wild type strains compared with Edmonston strain and measles vaccine strain The variations accumulated gradually and might affect the effects of the current measles vaccine.
     2. Research of the mechanism of measles vaccine attenuation.
     Wild type measles strains were purified via the method of virus plaque experiments, and we observed the morphological characteristics of the virus plaque and the spot rates, then picked the spot and amplified the clone of the virus. Consequently we observed the characteristics of produced cytopathic and determined their virulence. In this research, we simulated the attenuated measles vaccine cultivation technology, cultured the attenuated measles wild strains which was separated from the specimens of the patients and the purified measles cloning strains to see the attenuation result.
     The results showed that the plaques generated from the same wild strains of measles had different size, shape, center and edge features as well as the spot rate. After picking out from the spot of each clone strains, different strains had different virulence ranged, which is 6.17lgTCID50/0.1ml~7.40lgTCID50/0.1ml. The characteristics and appears time of cell lesions were different. These results showed that the virulence of wild strains of measles had declined, while the clone strains had no significant change in virulence, which revealed that there were differences between clone strains and wild-type strains.
     Reduction of the virulence of wild strains occurred in the process of adaptation of virus from Primary human amnion cells(HAM) to Primary chick embryo cells(CEC). But there were no obvious changing neither in the process of virus adapts primary human embryonic kidney cells(HK) to HAM nor in the process of continuous reproduction on CEC. The result showed that one wild type measles strain may be a hybrid, which contained a large number of virulent strains and a small amount of attenuated strains, CEC played a selection role of the virus, the attenuated strains which were adapted to CEC would be retained while virulent strain which were not well adapted to CEC were eliminated. The reproduction of attenuated strain on CEC had amplified the attenuated strain to a large number.
     3. Vaccination and Epidemiological studies of measles
     We collected the epidemiological data of measles since 1988 in China and then analysed the circumstances of the rate of measles vaccination and the changing of national incidence rates in 1990~2007 and the differences of incidence in 31 provinces in China in 2003~2009 by the way of descriptive epidemiology. And then, we analysed the characteristics of distributions of measles’seasonal incidence of nationwide in 2004~2010 and the incidence of measles after immunization in Jilin Province.
     The results indicated that although the rate of measles vaccination had remained high level in China, however measles was still one of the leading legal infectious diseases in China. There would be a small-scale outbreak every 2 to 3 years, and there were significant differences in the incidence of measles in different provinces. The peak time of the measles disease was delayed obviously and seasonal incidence of the measles disease had changed greatly. Strengthening the vaccination might soon receive nice preventive effect; however the epidemic cycle of measles had not been broken through the Strengthened vaccination, long-term effects of vaccination needed further observation and research.
     This study suggests that good basis of immunization through vaccination can’t effectively prevent the outbreaks of measles. To achieve the goal of the elimination of measles, we should continue strengthening the epidemiological surveillance of the serological and molecular epidemiology of measles virus, as well as carry out the basic works of children's immunization and vaccination. More over, checking and adjusting the current strategies and immunization programs in our country, developing new measles vaccines in time are needed to improve the efficacy of the measles vaccine.
引文
[1]李凡,刘晶星,徐志凯.医学微生物学.第7版[M] :人民卫生出版社,2008.
    [2] ENDERS JF, KATZ SL, MILOVANOVIC MV, et al. Studies on an attenuated measles-virus vaccine. I. Development and preparations of the vaccine: technics for assay of effects of vaccination[J]. N Engl J Med, 1960,263:153-159.
    [3] Katz SL. John F. Enders and measles virus vaccine--a reminiscence[J]. Curr Top Microbiol Immunol, 2009,329:3-11.
    [4] Progress towards interrupting indigenous measles transmission, WHO Region of the Americas[J]. Wkly Epidemiol Rec, 2002,77(3):21-24.
    [5]中华人民共和国卫生部. 2006-2012年全国消除麻疹行动计划[J].卫生部公报, 2006,(12):30-35.
    [6] ter MV. Pathogenetic aspects of measles virus infections[J]. Med Microbiol Immunol, 1974,160(2-3):165-172.
    [7] Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis[J]. J Gen Virol, 2006,87(Pt 10):2767-2779.
    [8] Devaux P, Buchholz CJ, Schneider U, et al. CD46 short consensus repeats III and IV enhance measles virus binding but impair soluble hemagglutinin binding[J]. J Virol, 1997,71(5):4157-4160.
    [9] Hunt DM, Hutchinson KL. Amino acid changes in the L polymerase protein of vesicular stomatitis virus which confer aberrant polyadenylation and temperature-sensitive phenotypes[J]. Virology, 1993,193(2):786-793.
    [10] Ayata M, Komase K, Shingai M, et al. Mutations affecting transcriptional termination in the p gene end of subacute sclerosing panencephalitis viruses[J]. J Virol, 2002,76(24):13062-13068.
    [11] Moyer SA, Baker SC, Horikami SM. Host cell proteins required for measles virus reproduction[J]. J Gen Virol, 1990,71 ( Pt 4):775-783.
    [12] Helin E, Salmi AA, Vanharanta R, et al. Measles virus replication in cells of myelomonocytic lineage is dependent on cellular differentiation stage[J]. Virology, 1999,253(1):35-42.
    [13] Dorig RE, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor for measles virus (Edmonston strain)[J]. Cell, 1993,75(2):295-305.
    [14] Lecouturier V, Rizzitelli A, Fayolle J, et al. Interaction of measles virus (Hallestrain) with CD46: evidence that a common binding site on CD46 facilitates both CD46 downregulation and MV infection[J]. Biochem Biophys Res Commun, 1999,264(1): 268-275.
    [15] Tatsuo H, Ono N, Tanaka K, et al. SLAM (CDw150) is a cellular receptor for measles virus[J]. Nature, 2000,406(6798):893-897.
    [16] Dhiman N, Jacobson RM, Poland GA. Measles virus receptors: SLAM and CD46[J]. Rev Med Virol, 2004,14(4):217-229.
    [17] Li L, Qi Y. A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding[J]. Arch Virol, 2002,147(4):775-786.
    [18] Tatsuo H, Yanagi Y. The morbillivirus receptor SLAM (CD150)[J]. Microbiol Immunol, 2002,46(3):135-142.
    [19] Fleischli C, Sirena D, Lesage G, et al. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor[J]. J Gen Virol, 2007,88(Pt 11):2925-2934.
    [20] Fleischli C, Verhaagh S, Havenga M, et al. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35[J]. J Virol, 2005,79(15):10013-10022.
    [21] Manchester M, Naniche D, Stehle T. CD46 as a measles receptor: form follows function[J]. Virology, 2000,274(1):5-10.
    [22] Ohno S, Ono N, Seki F, et al. Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection[J]. J Virol, 2007,81(4):1650-1659.
    [23] Yanagi Y, Takeda M, Ohno S, et al. Measles virus receptors[J]. Curr Top Microbiol Immunol, 2009,329:13-30.
    [24] Hashiguchi T, Ose T, Kubota M, et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM[J]. Nat Struct Mol Biol, 2011,18(2):135-141.
    [25] Dhiman N, Poland GA, Cunningham JM, et al. Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors[J]. J Allergy Clin Immunol, 2007,120(3):666-672.
    [26] Watanabe A, Yoneda M, Ikeda F, et al. CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells[J]. J Virol, 2010,84(9):4183-4193.
    [27] Liszewski MK, Post TW, Atkinson JP. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster[J]. Annu Rev Immunol, 1991,9:431-455.
    [28] Yanagi Y. The cellular receptor for measles virus--elusive no more[J]. Rev Med Virol, 2001,11(3):149-156.
    [29] Reuter D, Schneider-Schaulies J. Measles virus infection of the CNS: human disease, animal models, and approaches to therapy[J]. Med Microbiol Immunol, 2010,199(3):261-271.
    [30] Cocks BG, Chang CC, Carballido JM, et al. A novel receptor involved in T-cell activation[J]. Nature, 1995,376(6537):260-263.
    [31] Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells[J]. PLoS Pathog, 2011,7(2):e1001290.
    [32] de Witte L, Abt M, Schneider-Schaulies S, et al. Measles virus targets DC-SIGN to enhance dendritic cell infection[J]. J Virol, 2006,80(7):3477-3486.
    [33] Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains[J]. Wkly Epidemiol Rec, 2003,78(27):229-232.
    [34] Global measles and rubella laboratory network--update[J]. Wkly Epidemiol Rec, 2005,80(44):384-388.
    [35] Bellini WJ, Rota PA. Genetic diversity of wild-type measles viruses: implications for global measles elimination programs[J]. Emerg Infect Dis, 1998,4(1):29-35.
    [36] Chibo D, Birch CJ, Rota PA, et al. Molecular characterization of measles viruses isolated in Victoria, Australia, between 1973 and 1998[J]. J Gen Virol, 2000,81(Pt 10):2511-2518.
    [37] Measles--United States, 1999[J]. MMWR Morb Mortal Wkly Rep, 2000,49(25):557-560.
    [38] Truong AT, Mulders MN, Gautam DC, et al. Genetic analysis of Asian measles virus strains--new endemic genotype in Nepal[J]. Virus Res, 2001,76(1):71-78.
    [39] Rima BK, Earle JA, Yeo RP, et al. Temporal and geographical distribution of measles virus genotypes[J]. J Gen Virol, 1995,76 ( Pt 5):1173-1180.
    [40] Riddell MA, Rota JS, Rota PA. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras[J]. Virol J,2005,2:87.
    [41] Rota PA, Liffick S, Rosenthal S, et al. Measles genotype G2 in Indonesia and Malaysia[J]. Lancet, 2000,355(9214):1557-1558.
    [42] Chibo D, Riddell M, Catton M, et al. Novel measles virus genotype, East Timor and Australia[J]. Emerg Infect Dis, 2002,8(7):735-737.
    [43] New genotype of measles virus and update on global distribution of measles genotypes[J]. Wkly Epidemiol Rec, 2005,80(40):347-351.
    [44] Xu W, Tamin A, Rota JS, et al. New genetic group of measles virus isolated in the People's Republic of China[J]. Virus Res, 1998,54(2):147-156.
    [45] Liffick SL, Thi TN, Xu W, et al. Genetic characterization of contemporary wild-type measles viruses from Vietnam and the People's Republic of China: identification of two genotypes within clade H[J]. Virus Res, 2001,77(1):81-87.
    [46] Ji Y, Xu S, Zhang Y, et al. Genetic characterization of wild-type measles viruses isolated in China, 2006-2007[J]. Virol J, 2010,7:105.
    [47] Na BK, Lee JS, Shin GC, et al. Sequence analysis of hemagglutinin and nucleoprotein genes of measles viruses isolated in Korea during the 2000 epidemic[J]. Virus Res, 2001,81(1-2):143-149.
    [48] Tamin A, Rota PA, Wang ZD, et al. Antigenic analysis of current wild type and vaccine strains of measles virus[J]. J Infect Dis, 1994,170(4):795-801.
    [49] Fournier P, Brons NH, Berbers GA, et al. Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis[J]. J Gen Virol, 1997,78 ( Pt 6):1295-1302.
    [50] Rota JS, Hummel KB, Rota PA, et al. Genetic variability of the glycoprotein genes of current wild-type measles isolates[J]. Virology, 1992,188(1):135-142.
    [51]孙英杰,刘春梅, LIJi.辽宁省麻疹病毒流行株血凝蛋白特性分析[J].疾病控制杂志, 2001,5(2):99-101.
    [52] Rota PA, Bloom AE, Vanchiere JA, et al. Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics[J]. Virology, 1994,198(2):724-730.
    [53]孙英杰, LiJin,葛力. 1995~1997年中国部分地区麻疹病毒流行株基因分析[J].中华流行病学杂志, 1998,19(6):330-333.
    [54]葛力, LiJin,邵燕,等. 1995年大连麻疹病毒流行株的部分基因分析[J].中华微生物学和免疫学杂志, 1999,19(1):9-12.
    [55]何维宽,余文周,周淑洁,等.安徽省麻疹野毒株的首次分离和鉴定[J].中国计划免疫, 2001,7(1):4-6.
    [56]朱建琼,彭志强,雷满根,等. 2000年东莞市麻疹病毒流行株基因型分析[J].中华流行病学杂志, 2001,22(5):355-358.
    [57] Bankamp B, Bellini WJ, Rota PA. Comparison of L proteins of vaccine and wild-type measles viruses[J]. J Gen Virol, 1999,80 ( Pt 7):1617-1625.
    [58]徐闻青,陈志慧.沪191麻疹减毒活疫苗为中国消除麻疹做出贡献[J].上海医药, 2010,31(2):59-61.
    [59] http://www.moh.gov.cn/publicfiles//business/htmlfiles/wsb/index.htm .
    [60] Ji Y, Zhang Y, Xu S, et al. Measles resurgence associated with continued circulation of genotype H1 viruses in China, 2005[J]. Virol J, 2009,6:135.
    [61]金奇.医学分子病毒学[M].北京:科学出版社.
    [62] Beale AJ. Vaccine development reconsidered[J]. Vaccine, 1988,6(2):138-140.
    [63] Black FL. Measles active and passive immunity in a worldwide perspective[J]. Prog Med Virol, 1989,36:1-33.
    [64]邹小兵.儿童心理行为及其发育障碍[J].中国实用儿科杂志, 2002,17(6):380-382.
    [65]黄祯祥.医学病毒学基础及实验技术[M].北京:科学出版社,1990.
    [66] Cutts FT, Henao-Restrepo A, Olive JM. Measles elimination: progress and challenges[J]. Vaccine, 1999,17 Suppl 3:S47-52.
    [67]朱燕凤.麻疹疫苗接种的新进展[J].国外医学.儿科学分册, 2002,29(6):291-293.
    [68] Omer MI. Measles: a disease that has to be eradicated[J]. Ann Trop Paediatr, 1999,19(2):125-134.
    [69]左树岩.开展麻疹疫苗强化免疫发生的预防接种不良反应[J].中国计划免疫, 2005,11(6):510-511.
    [70] Measles vaccines: WHO position paper[J]. Wkly Epidemiol Rec, 2009,84(35):349-360.
    [71]赵铠,章以浩,李河民.医学生物制品学[M].第第二版版:人民卫生出版社,2007.
    [72]徐斌,王弢,周园,等.冻干麻疹减毒活疫苗残余水分影响因素的探讨[J].微生物学免疫学进展, 2010,38(1):22-25.
    [73]魏至栋,胡磊,王玉琳.麻疹疫苗生产工艺的改进研究[J].微生物学免疫学进展, 2002,30(3):29-32.
    [74]王玉琳,曾鸣,王玲,等.病毒活疫苗冻干保护剂筛选研究[J].微生物学免疫学进展, 1996,24(1):22-27.
    [75]王森若.疫苗冷链系统管理探讨[J].浙江预防医学, 2007,19(7):78-79.
    [76] Drillien R, Spehner D, Kirn A, et al. Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein[J]. Proc Natl Acad Sci U S A, 1988,85(4):1252-1256.
    [77] Brinckmann UG, Bankamp B, Reich A, et al. Efficacy of individual measles virus structural proteins in the protection of rats from measles encephalitis[J]. J Gen Virol, 1991,72 ( Pt 10):2491-2500.
    [78] Wild TF, Bernard A, Spehner D, et al. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice[J]. J Gen Virol, 1992,73 ( Pt 2):359-367.
    [79] Stittelaar KJ, Wyatt LS, de Swart RL, et al. Protective immunity in macaques vaccinated with a modified vaccinia virus Ankara-based measles virus vaccine in the presence of passively acquired antibodies[J]. J Virol, 2000,74(9):4236-4243.
    [80] Alkhatib G, Richardson C, Shen SH. Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus[J]. Virology, 1990,175(1):262-270.
    [81] Takehara K, Hashimoto H, Ri T, et al. Characterization of baculovirus-expressed hemagglutinin and fusion glycoproteins of the attenuated measles virus strain AIK-C[J]. Virus Res, 1992,26(2):167-175.
    [82] Vialard J, Lalumiere M, Vernet T, et al. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene[J]. J Virol, 1990,64(1):37-50.
    [83] Warnes A, Fooks AR, Stephenson JR. Production of measles nucleoprotein in different expression systems and its use as a diagnostic reagent[J]. J Virol Methods, 1994,49(3):257-268.
    [84] Pedersen IR, Bog-Hansen TC, Dalsgaard K, et al. Iscom immunization withsynthetic peptides representing measles virus hemagglutinin[J]. Virus Res, 1992,24(2): 145-159.
    [85] Wyde PR, Stittelaar KJ, Osterhaus AD, et al. Use of cotton rats for preclinical evaluation of measles vaccines[J]. Vaccine, 2000,19(1):42-53.
    [86] van BRS, van BCA, Poelen MC, et al. Measles virus transmembrane fusion protein synthesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I- and class II-restricted cytotoxic T cell recognition[J]. J Exp Med, 1992,176(1):119-128.
    [87]戴斌.麻疹病毒与麻疹疫苗[J].中华流行病学杂志, 1996,17(2):108-110.
    [88]Streatfield SJ, Jilka JM, Hood EE, et al. Plant-based vaccines: unique advantages[J]. Vaccine, 2001,19(17-19):2742-2748.
    [89]陈章权.转基因植物疫苗的研究进展[J].国外医学.免疫学分册, 2002,25(1):9-13.
    [90] Webster DE, Cooney ML, Huang Z, et al. Successful boosting of a DNA measles immunization with an oral plant-derived measles virus vaccine[J]. J Virol, 2002,76(15):7910-7912.
    [91]陈晓琦,徐葛林.麻疹植物疫苗研究进展[J].国际生物制品学杂志, 2006,29(3):110-112.
    [92] Bennett JV, de Castro J F, Valdespino-Gomez JL, et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren[J]. Bull World Health Organ, 2002,80(10):806-812.
    [93]胡钰.吉林省麻疹野毒株病原学及强化免疫对麻疹流行影响的研究[D].长春:吉林大学.
    [94] Mori Y, Akkapaiboon P, Yonemoto S, et al. Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46[J]. J Virol, 2004,78(9):4609-4616.
    [95]殷震;刘景华.动物病毒学[M] :科学出版社,1997.
    [96]边疆,李凡,易世红. 2005年吉林省野型麻疹病毒的基因特征分析[J].中华预防医学杂志, 2006,40(5):348-350.
    [97]边疆,李凡,易世红.吉林省流行麻疹野病毒的核蛋白基因特征[J].中国公共卫生, 2007,23(1):97-98.
    [98]胡钰,李凡. 2006年吉林省野生型麻疹病毒分离鉴定及核蛋白基因序列分析[J].中国卫生检验杂志, 2007,17(8):1400-1402.
    [99] Rota PA. RNA extraction and reverse transcription-polymerise chain Reaction (RT-PCR). Standard protocols for molecular epidemiology measles Section. http://www.cdc.gov/ ,2002.
    [100] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol, 2007,24(8):1596-1599.
    [101] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987,4(4):406-425.
    [102]刁连东.麻疹[M].上海:上海科学技术文献出版社,2001.
    [103]孙英杰,余宏杰,马艳,等.麻疹病人不同标本的麻疹病毒分离结果[J].中国计划免疫, 2002,8(1):11-13.
    [104]姬奕昕,许文波,张燕,等.中国6省2005年麻疹病毒分离株分子特征分析[J].病毒学报, 2005,21(6):407-415.
    [105]刘冷,郑焕英,郭雪,等. Vero/SLAM细胞在麻疹病毒分离中的应用[J].中国计划免疫, 2006,12(5):353-356.
    [106]董作亮,任丽.麻疹病毒变异的分子生物学研究进展[J].国外医学.流行病学.传染病学分册, 2003,30(2):96-99.
    [107] Birrer MJ, Udem S, Nathenson S, et al. Antigenic variants of measles virus[J]. Nature, 1981,293(5827):67-69.
    [108] Saito H, Sato H, Abe M, et al. Isolation and characterization of the measles virus strains with low hemagglutination activity[J]. Intervirology, 1992,33(1):57-60.
    [109] Kobune F, Funatu M, Takahashi H, et al. Characterization of measles viruses isolated after measles vaccination[J]. Vaccine, 1995,13(4):370-372.
    [110]李海峰,卢亦愚,严菊英,等.我国麻疹病毒流行株的H和N基因变异速率探讨[J].中国病毒学, 2006,21(6):541-545.
    [111] Rota JS, Wang ZD, Rota PA, et al. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains[J]. Virus Res, 1994,31(3):317-330.
    [112]严菊英,卢亦愚,张健华,等.浙江省麻疹病毒分离株的基因特性与免疫原性研究[J].中国病毒学, 2006,21(1):1-5.
    [113]徐闻青,杨忠东,陈蕾,等.麻疹病毒分离及现行疫苗免疫效果分析[J].中国疫苗和免疫, 2008,14(3):198-202.
    [114] Reeve P, Poste G. Studies on the cytopathogenicity of Newcastle disease virus: relation between virulence, polykaryocytosis and plaque size[J]. J Gen Virol, 1971,11(1):17-24.
    [115]马雷钧,徐闻青,徐帆洪,等.沪_(191)麻疹病毒疫苗株的核蛋白基因分析[J].中国计划免疫, 2005,11(3):175-180.
    [116]戚明利,吴文鹃,陈志慧.不同代次S191株麻疹病毒HA基因的序列分析[J].中国生物制品学杂志, 2000,13(3):129-132.
    [117] Papania MJ, Orenstein WA. Defining and assessing measles elimination goals[J]. J Infect Dis, 2004,189 Suppl 1:S23-26.
    [118] Gay NJ. The theory of measles elimination: implications for the design of elimination strategies[J]. J Infect Dis, 2004,189 Suppl 1:S27-35.
    [119] Orenstein WA, Strebel PM, Papania M, et al. Measles eradication: is it in our future?[J]. Am J Public Health, 2000,90(10):1521-1525.
    [120] Muscat M, Vinner L, Christiansen AH, et al. The benefit of molecular characterization during a measles upsurge in Denmark[J]. Vaccine, 2007,25(33):6232-6236.
    [121] Global measles mortality, 2000-2008[J]. MMWR Morb Mortal Wkly Rep, 2009,58(47):1321-1326.
    [122] WHO-UNICEF joint statement on strategies to reduce measles mortality worldwide[J]. Wkly Epidemiol Rec, 2002,77(27):224-228.
    [123]中华人民共和国在世界卫生组织西太平洋区第12次计划免疫技术咨询组会议上的报告.菲律宾,马尼拉, 2001-08-07[J] .
    [124] van BRS, Hahne S, Timen A, et al. Air travel as a risk factor for introduction of measles in a highly vaccinated population[J]. Vaccine, 2008,26(46):5775-5777.
    [125]聂莉,许秀梅.一起麻疹暴发疫情的流行病学调查[J].疾病监测与控制, 2010,4(1):23.
    [126]张淑兰,姚占伏.青铜峡市2004年麻疹暴发疫情流行病学分析[J].现代预防医学, 2008,35(4):623-624.
    [127]余要勇,张绍丽,郭万申,等.一起农村儿童麻疹暴发的调查分析[J].医药论坛杂志, 2008,29(2):31-32.
    [128]荣珍,张东.我国建国以来麻疹疫情动态与流行特征分析[J].中华流行病学杂志, 1989,10(1):34-36.
    [129]吴霆.中国防制麻疹的历史和现状[J].中华流行病学杂志, 2000,21(2):143-146.
    [130] Langmuir AD. Medical importance of measles[J]. Am J Dis Child, 1962,103:224-226.
    [131]张永华,徐芹.麻疹发病年龄变迁与免疫策略[J].微生物学免疫学进展, 1997,25(2):69-70.
    [132]陶柏春.成人麻疹155例分析[J].中华流行病学杂志, 2008,8(7):1647.
    [133] Zhang Y, Ji Y, Jiang X, et al. Genetic characterization of measles viruses in China, 2004[J]. Virol J, 2008,5:120.
    [134] Zhang Y, Zhu Z, Rota PA, et al. Molecular epidemiology of measles viruses in China, 1995-2003[J]. Virol J, 2007,4:14.
    [135]吴霆,徐特璋.若干麻疹流行病学特征的探讨[J].中华流行病学杂志, 1989,10(1):4-6.
    [136] Watson JC, Hadler SC, Dykewicz CA, et al. Measles, mumps, and rubella--vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP)[J]. MMWR Recomm Rep, 1998,47(RR-8):1-57.
    [137]程周祥,倪进东,汪思银.麻疹疫苗高覆盖率背景下麻疹流行特征的变化与免疫策略调整必要性的探讨[J].疾病控制杂志, 2007,11(1):10-14.
    [138] Kuhne M, Brown DW, Jin L. Genetic variability of measles virus in acute and persistent infections[J]. Infect Genet Evol, 2006,6(4):269-276.
    [139] Bankamp B, Lopareva EN, Kremer JR, et al. Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses[J]. Virus Res, 2008,135(2):298-306.
    [140] Alan RH.中国麻疹控制策略的建议[J].中国计划免疫, 2002,8(2):111-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700