石墨烯及石墨烯基铜/碳核壳结构材料的制备和场发射性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是由一个sp~2杂化碳原子层构成的二维蜂窝状晶格结构材料,由于其特殊的结构和优异的物理性能,如大的比表面积、高的电子迁移率、好的化学稳定性及良好的柔韧性等,使石墨烯及石墨烯基复合材料在电子及光电子器件、化学传感器和能量储存器件等领域具有广泛的应用前景。
     在众多的制备石墨烯的方法中,化学气相沉积(CVD)方法是制备大面积、高品质石墨烯的最有效方法之一,然而,这种方法需要极高的反应温度和较多的碳源。对于等离子体增强化学气相沉积(PECVD)方法来说,它是目前用于沉积各种碳材料、半导体材料的较为普遍使用的方法,这种沉积技术借助于辉光放电使碳源气体发生分解,最终含有薄膜组分的活性基团发生化学反应,从而实现薄膜材料的生长。可见,利用PECVD方法可以在反应温度相对较低、沉积时间较短、所需碳源较少的条件下制备石墨烯,大大地降低了石墨烯的制备成本。本论文采用射频等离子体增强化学气相沉积(RF-PECVD)设备,以多晶钴薄膜为生长基底,通过合理地控制钴薄膜的厚度、基底的温度和沉积的时间,制备了高品质的石墨烯,同时,结合第一性原理密度泛函理论计算探讨了石墨烯的生长机制。
     石墨烯具有极好的化学稳定性,可以作为金属颗粒(如:钴、镍和铜等)的保护壳层,因此,近些年越来越多的科研工作者致力于寻找一种简单而有效的方法来制备金属/碳的核壳结构材料。本论文使用RF-PECVD设备,通过合理的控制沉积时间成功地获得了一种新型的石墨烯基铜/碳核壳结构材料,并详细地探讨了其生长机制。
     石墨烯由于其具有优异的电子输运性质和良好的导热性能,有望应用于场发射器件的电极材料。本论文系统地研究了铜颗粒的尺寸及颗粒之间的距离对新型核壳结构材料的场发射性能的影响,并重点探讨了该核壳结构材料的场发射增强机制,为石墨烯基材料作为场发射器件的电极材料奠定了研究基础。
Graphene is a two-dimensional honeycomb lattice material bonded with a singlelayer of sp~2-hybridized carbon atoms, exhibiting excellent physical properties,including extremely high electronic mobility, thermodynamic stability, great elasticity,etc. Since graphene was obtained by Geim and Novoselov using a mechanicalexfoliation method in2004, great interest has been attracted to synthesize and exploreits potential applications in the fields of field-effect transistors, vapor sensors,batteries, supercapacitors and biosensors. In recent years, although great process hasbeen made on graphene by theoretical and experimental studies, further investigationsneed to be done on both preparation and application of graphene, such as how toreduce the cost of the preparation of graphene, what is the growth mechanism ofgraphene, how to modulate the morphology and structure of graphene, whether theproperties of graphene-based composite materials could be developed or improved?Based on these issues, the main research contents and the important results of thisdissertation are summarized as follows:
     In Chapter2, one to five layer graphene have been successfully prepared on apolycrystalline Co film at a relatively low temperature (800℃) and a slow total gasflow rate (78sccm) for40s by RF-PECVD technique, which has efficiently reducedthe preparation cost of graphene. Furthermore, the graphene exhibits a high opticaltransmittance of more than70%in the wavelength range500–1200nm and has asheet resistivity of2.661kΩ/sq. thickness of Co film, substrate temperature and deposition time on the growth ofgraphene. When the thickness of Co film is increased from300nm to600nm, the Cofilm becomes more continuous at800℃, which is favor to form graphene with highquality. When the substrate temperature is changed from800℃to700℃, the activityof polycrystalline Co surface decreases and the diffusion rate of carbon atoms on Cosurface becomes slower, which will cause a decline of growth rate of graphene. Thus,the quality of graphene decreases greatly. When the deposition time is increased, thequality of graphene changes greatly. Finally, we conclude that the graphenesynthesized by40s are most uniform and has the largest in-plane crystallite sizeaccording to the I2D/IGand FWHM2Dvalue. Based on the first-principles densityfunctional theorical (DFT) results, the barriers for carbon atoms penetrating from thesubsurface octahedral sites of Co (111) to the surface is extremely higher than thatdiffusing on the surface, suggesting that the graphene is more easily formed by asurface direct growth process.
     In Chapter4, a novel hedgehog-like core/shell structure, consisting of a highdensity of vertically aligned graphene sheets and a thin graphene shell/a copper core(VGs-GS/CC), has been synthesized using RF-PECVD. A Cu film with a thickness ofabout120nm deposited on Si (100) wafer by direct current magnetron sputtering wasused as Cu source. The growth mechanism of VGs-GS/CC is discussed. It is knownthat Cu has a relative low carbon solubility (0.04at%at1085℃) and the carbondissolved in the Cu particles will become supersaturated under a relative longdeposition time. Then, graphene sheets begin to nucleate and grow up on Cu surface.At an initial state, nucleation sites are enlarged along two-dimensional direction onCu surface. When two growing graphene sheets meet each other, graphene sheets areforced to rise upwards, causing the formation of vertically aligned graphene sheets(VGs). In the process of cooling, carbon atoms segregate from the interior of Cuparticles to form graphene layers at the interlayer between Cu and VGs. Consequently,VGs-GS/CC material is obtained. In addition, we find that VGs-GS/CC materialexhibits an improved field emission property, compared to VGs grown on Si substrate. This can be attributed to the geometrical factors such as a high density of emitters(more sharp edges) on Cu particles and the randomly distribution of VGs-GS/CC onSi substrate. Hence,‘field shielding’ effect among VGs is weakened and VGs-GS/CCmaterial exhibits an improved FE property.
     In Chapter5, Cu films with a thickness of6,12,36,60and120nm are depositedon Si (100) wafers by using direct current magnetron sputtering. They are used as Cusource to synthesize VGs-GS/CC_6, VGs-GS/CC_12, VGs-GS/CC_36, VGs-GS/CC_60andVGs-GS/CC120via RF-PECVD. Field emission measurements show that theVGs-GS/CC_6hybrid material has the lowest turn-on field (2.4V/μm) at a currentdensity of1μA/cm2and exhibits the largest field enhancement factor (~6450), whichis about4.9times higher than that of VGs on Si. The enhanced field emissionproperties of VGs-GS/CC are attributed to not only the high conduction of Cu, butalso the geometrical factors of Cu particles such as particle size and inter-particledistance:
     (1) In the high-field region where E>5.6V/μm, the current density is directlyproportional to the percentage of Cu particles within a size range of75–125nm forthe VGs-GS/CC samples. VGs on Cu particles within a small diameter of75–125nm like convex films, causing the area density of VGs on Cu particles decreased.Under a less screening from neighboring VGs, the emitting efficiency becomesgreatly enhanced.
     (2) In the low-field region where2.1     In conclusion, high-quality, few-layer graphene has been successfully preparedvia RF-PECVD on a polycrystalline Co film. The thickness of Co film, the substratetemperature and the deposition time play important roles in the graphene growth.Based on the first-principles density functional theorical (DFT) results, we find that graphene is more easily formed by a surface direct growth process. Theseinvestigations will give a helpful guidance in synthesis and practical application ofgraphene. In addition, we have successfully synthesized a novel hedgehog-likecore/shell structure (VGs-GS/CC) using RF-PECVD. And field emissionmeasurement shows that the VGs-GS/CC exhibits better field emission performancethan VGs/Si, which suggests that the VGs-GS/CC materials are good candidates forfield emitters.
引文
[1] Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60:BuckminsterFullerene [J]. Nature,1985,318:162.
    [2] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films [J]. Science,2004,306:666-669.
    [4] Shenderova O A, Zhirnov V V, Brenner D W. Carbon nanostructures [J]. Crit.Rev. Solid State Mater. Sci.,2002,27:227-356.
    [5] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced grapheneoxide as a transparent and flexible electronic material [J]. Nature Nanotechnol.,2008,3:270-274.
    [6] Becerril H A, Man J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation ofsolution-processed reduced graphene oxide films as transparent conductors [J]. ACSNano,2008,2:463-470.
    [7] Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, etal. Electronic transport properties of individual chemically reduced graphene oxidesheets [J]. Nano Lett.,2007,7:3499-3503.
    [8] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphiteoxide in the presence of poly(sodium4-styrenesulfonate)[J]. J. Mater. Chem.,2006,16:155-158.
    [9] Bourlinos A B, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide:Chemical reduction to graphite and surface modification with primary aliphaticamines and amino acids [J]. Langmuir,2003,19:6050-6055.
    [10] Forbeaux I, Themlin J M, Debever J M. Heteroepitaxial graphite on6H–SiC(0001): interface formation through conductionband electronic structure [J].Phys. Rev. B,1998,58:396-406.
    [11] Hass J, Heer WAd, Conrad EH. The growth and morphology of epitaxialmultilayer graphene [J]. J. Phys.: Condens. Matter.2008,20:323202.
    [12] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, et al. Epitaxialgraphene [J]. Solid State Commun.,2007,143:92-100.
    [13] Sutter P W, Flege J, Sutter E A. Epitaxial graphene on ruthenium [J]. Nat. Mater.,2008,7:406-411.
    [14] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, et al. Large-scale patterngrowth of graphene films for stretchable transparent electrodes [J]. Nature,2009,457:706-710.
    [15] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A,Jung I, Tutuc E et al. Large-Area Synthesis of High-Quality and Uniform GrapheneFilms on Copper Foils [J]. Science,2009,324:1312-1314.
    [16] Chae S J, Gunes F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M,Choi J Y, Park M H et al. Synthesis of Large-Area Graphene Layers on Poly-NickelSubstrate by Chemical Vapor Deposition: Wrinkle Formation [J]. Adv. Mater.,2009,21:2328-+.
    [17] Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, et al. Large area, few-layergraphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Lett.,2009,9:30-35.
    [18] Li X S, Cai W W, Colombo L, Ruoff R S. Evolution of graphene growth on Niand Cu by carbon isotope labeling [J]. Nano Lett.,2009,9:4268-4272.
    [19] Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, etal. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapourdeposition [J]. Nanotechnolgy,2008,19:305604.
    [20] Terasawa T, Saiki K. Growth of graphene on Cu by plasma enhanced chemicalvapor deposition [J]. Carbon,2012,50:869-874.
    [21] Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, et al.Initial stages of few-layer graphene growth by microwave plasma-enhanced chemicalvapour deposition [J]. Nanotechnolgy,2010,21:095602.
    [22] Yao Y G, Li Z, Lin Z Y, Moon K S, Agar J, Wong C P. Controlled Growth ofMultilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates [J]. J. Phys.Chem. C,2011,115:5232-5238.
    [23] Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of high-quality monolayerand bilayer graphene on copper using chemical vapor deposition [J]. Carbon,2011,49:4122-4130.
    [24] Li X L, Wang X R, Zhang L, Lee S W, Dai H J. Chemically derived, ultrasmoothgraphene nanoribbon semiconductors [J]. Science,2008,319:1229-1232.
    [25] Liao L, Bai J W, Lin Y C, Qu Y Q, Huang Y, Duan X F. High-PerformanceTop-Gated Graphene-Nanoribbon Transistors Using Zirconium Oxide Nanowires asHigh-Dielectric-Constant Gate Dielectrics [J]. Adv. Mater.,2010,22:1941-+.
    [26] Barone V, Hod O, Scuseria G E. Electronic structure and stability ofsemiconducting graphene nanoribbons [J]. Nano Lett,2006,6:2748-2754.
    [27] Lee C G, Park S, Ruoff R S, Dodabalapur A. Integration of reduced grapheneoxide into organic field-effect transistors as conducting electrodes and as a metalmodification layer [J]. Appl. Phys. Lett.,2009,95:023304.
    [28] Wang Z J, Zhou X Z, Zhang J, Boey F, Zhang H. Direct ElectrochemicalReduction of Single-Layer Graphene Oxide and Subsequent Functionalization withGlucose Oxidase [J]. J. Phys. Chem. C,2009,113:14071-14075.
    [29] Alwarappan S, Liu C, Kumar A, Li C Z. Enzyme-Doped Graphene Nanosheetsfor Enhanced Glucose Biosensing [J]. J. Phys. Chem. C,2010,114:12920-12924.
    [30] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I,Novoselov K S. Detection of individual gas molecules adsorbed on graphene [J]. Nat.Mater.,2007,6:652-655.
    [31] Wen Y Q, Xing F F, He S J, Song S P, Wang L H, Long Y T, Li D, Fan C H. Agraphene-based fluorescent nanoprobe for silver(I) ions detection by using grapheneoxide and a silver-specific oligonucleotide [J]. Chem. Commun.,2010,46:2596-2598.
    [32] Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C, Cheng HM. Field Emission of Single-Layer Graphene Films Prepared by ElectrophoreticDeposition [J]. Adv. Mater.,2009,21:1756-+.
    [33] Hwang J O, Lee D H, Kim J Y, Han T H, Kim B H, Park M, No K, Kim S O.Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission[J]. J Mater Chem,2011,21:3432-3437.
    [34] Palnitkar U A, Kashid R V, More M A, Joag D S, Panchakarla L S, Rao C N R.Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-dopedgraphene [J]. Appl. Phys. Lett.,2010,97.
    [35] Santandrea S, Giubileo F, Grossi V, Santucci S, Passacantando M, Schroeder T,Lupina G, Di Bartolomeo A. Field emission from single and few-layer grapheneflakes [J]. Appl. Phys. Lett.,2011,98.
    [36] Varshney D, Rao C V, Guinel M J F, Ishikawa Y, Weiner B R, Morell G. Freestanding graphene-diamond hybrid films and their electron emission properties [J]. J.Appl. Phys.,2011,110.
    [37] Wang W L, Qin X Z, Xu N S, Li Z B. Field electron emission characteristic ofgraphene [J]. J. Appl. Phys.,2011,109.
    [38] Yan J, Wei T, Qiao W M, Shao B, Zhao Q K, Zhang L J, Fan Z J. Rapidmicrowave-assisted synthesis of graphene nanosheet/Co3O4composite forsupercapacitors [J]. Electrochim. Acta,2010,55:6973-6978.
    [39] Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. High-Energy MnO2Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors [J]. AcsNano,2010,4:5835-5842.
    [40] Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F,Cheng H M. Graphene Anchored with Co3O4Nanoparticles as Anode of Lithium IonBatteries with Enhanced Reversible Capacity and Cyclic Performance [J]. Acs Nano,2010,4:3187-3194.
    [41] Wang B, Park J, Wang C Y, Ahn H, Wang G X. Mn3O4nanoparticles embeddedinto graphene nanosheets: Preparation, characterization, and electrochemicalproperties for supercapacitors [J]. Electrochim. Acta,2010,55:6812-6817.
    [42] Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A,Wallace R M, Cychosz K A, Thommes M et al. Carbon-Based SupercapacitorsProduced by Activation of Graphene [J]. Science,2011,332:1537-1541.
    [43] Zhao X, Tian H, Zhu M Y, Tian K, Wang J J, Kang F Y, Outlaw R A. Carbonnanosheets as the electrode material in supercapacitors [J]. J Power Sources,2009,194:1208-1212.
    [44] Liu C G, Yu Z N, Neff D, Zhamu A, Jang B Z. Graphene-Based Supercapacitorwith an Ultrahigh Energy Density [J]. Nano Lett.,2010,10:4863-4868.
    [45] Yu D S, Dai L M. Self-Assembled Graphene/Carbon Nanotube Hybrid Films forSupercapacitors [J]. J. Phys. Chem. Lett.,2010,1:467-470.
    [46] Geim A K and Novoselov K S. The rise of graphene [J]. Nat. Mater.,2007,6:183-191.
    [47] Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of thequantum Hall effect and Berry’s phase in graphene [J]. Nature,2005,438:201-204.
    [48] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [49] Geim A K, et al. Graphene: Status and Prospects [J]. Science,2009,324:1530-1534.
    [50] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N.Superior thermal conductivity of single-layer graphene [J]. Nano Lett.,2008,8:902-907.
    [51] Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties andintrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [52] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Graphene basedmaterials: Past, present and future [J]. Prog. Mater. Sci.,2011,56:1178-1271.
    [53] Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F,Zhang H. Graphene-Based Materials: Synthesis, Characterization, Properties, andApplications [J]. Small,2011,7:1876-1902.
    [54] Hwang E H, Adam S, Das Sarma S. Carrier transport in two-dimensionalgraphene layers [J]. Phys. Rev. Lett.,2007,98:186806.
    [55] Nomura K, MacDonald A H. Quantum Hall ferromagnetism in graphene [J].Phys. Rev. Lett.,2006,96:256602.
    [56] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Intrinsic and extrinsicperformance limits of graphene devices on SiO2[J]. Nat. Nanotechnol.,2008,3:206-209.
    [57] Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. Thestructure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [58] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, StormerH L. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun.,2008,146:351-355.
    [59] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V,et al. Two-dimensional atomic crystals [J]. Proc. Natl. Acad. Sci. USA,2005,102:10451-10453.
    [60] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U,et al. Unconventional quantum Hall effect and Berry’s phase of2pi in bilayergraphene [J]. Nat. Phys.2006,2:177-180.
    [61] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, et al. Roll-to-roll production of30-inch graphene films for transparent electrodes [J]. Nat. Nanotechnol.,2010,5:574-578.
    [62] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, et al.Fine structure constant defines visual transparency of graphene [J]. Science,2008,320:1308-1308.
    [63] Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S,et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak inabsorption [J]. Phys. Rev. B,2010,81:155413.
    [64] Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari A C, Geim A K, et al.Subjecting a graphene monolayer to tension and compression [J]. Small,2009,5:2397-2402.
    [65] Lee C, Wei X D, Li Q Y, Carpick R, Kysar J W, Hone J. Elastic and frictionalproperties of graphene [J]. Phys. Status. Solidi. B,2009,246:2562-2567.
    [66] Kim P, Shi L, Majumdar A, McEuen P L. Thermal transport measurements ofindividual multiwalled nanotubes [J]. Phys. Rev. Lett.,2001,87:215502.
    [67] Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of anindividual single-wall carbon nanotube above room temperature [J]. Nano Lett.,2006,6:96-100.
    [68] Huang Y X, Chen P. Nanoelectronic Biosensing of Dynamic Cellular ActivitiesBased on Nanostructured Materials [J]. Adv. Mater.,2010,22:2818-2823.
    [69] Chen K I, Li B R, Chen Y T. Silicon nanowire field-effect transistor-basedbiosensors for biomedical diagnosis and cellular recording investigation [J]. NanoToday,2011,6:131-154.
    [70] Brahim S, Colbern S, Gump R, Moser A, Grigorian L. Carbon nanotube-basedethanol sensors [J]. Nanotechnology,2009,20.
    [71] Pui T S, Agarwal A, Ye F, Balasubramanian N, Chen P. CMOS-CompatibleNanowire Sensor Arrays for Detection of Cellular Bioelectricity [J]. Small,2009,5:208-212.
    [72] Pui T S, Agarwal A, Ye F, Ton Z Q, Huang Y X, Chen P. Ultra-sensitivedetection of adipocytokines with CMOS-compatible silicon nanowire arrays [J].Nanoscale,2009,1:159-163.
    [73] Huang Y X, Dong X C, Shi Y M, Li C M, Li L J, Chen P. Nanoelectronicbiosensors based on CVD grown graphene [J]. Nanoscale,2010,2:1485-1488.
    [74] Mao S, Lu G H, Yu K H, Bo Z, Chen J H. Specific Protein Detection UsingThermally Reduced Graphene Oxide Sheet Decorated with GoldNanoparticle-Antibody Conjugates [J]. Adv. Mater.,2010,22:3521-+.
    [75] Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K. Electrolyte-Gated GrapheneField-Effect Transistors for Detecting pH Protein Adsorption [J]. Nano Lett.,2009,9:3318-3322.
    [76] Ohno Y, Maehashi K, Matsumoto K. Label-Free Biosensors Based onAptamer-Modified Graphene Field-Effect Transistors [J]. J. Am. Chem. Soc.,2010,132:18012-18013.
    [77] Yang M H, Gong S Q. Immunosensor for the detection of cancer biomarkerbased on percolated graphene thin film [J]. Chem. Commun.,2010,46:5796-5798.
    [78] Dong X C, Shi Y M, Huang W, Chen P, Li L J. Electrical Detection of DNAHybridization with Single-Base Specificity Using Transistors Based on CVD-GrownGraphene Sheets [J]. Adv Mater,2010,22:1649-+.
    [79] Ang PK, Chen W, Wee A T S, Loh K P. Solution-Gated Epitaxial Graphene aspH Sensor [J]. J. Am. Chem. Soc.,2008,130:14392-+.
    [80] Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park SJ, Hong B H et al. Large-scale patterned multi-layer graphene films as transparentconducting electrodes for GaN light-emitting diodes [J]. Nanotechnology,2010,21.
    [81] Wu J B, Agrawal M, Becerril H A, Bao Z N, Liu Z F, Chen Y S, Peumans P.Organic Light-Emitting Diodes on Solution-Processed Graphene TransparentElectrodes [J]. Acs Nano,2010,4:43-48.
    [82] Lee J M, Choung J W, Yi J, Lee D H, Samal M, Yi D K, Lee C H, Yi G C, PaikU, Rogers J A et al. Vertical Pillar-Superlattice Array and Graphene Hybrid LightEmitting Diodes [J], Nano Lett,2010,10:2783-2788.
    [83] Choe M, Lee B H, Jo G, Park J, Park W, Lee S, Hong W K, Seong M J, Kahng YH, Lee K et al. Efficient bulk-heterojunction photovoltaic cells with transparentmulti-layer graphene electrodes [J]. Org. Electron.,2010,11:1864-1869.
    [84] Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes fordye-sensitized solar cells [J]. Nano Lett.,2008,8:323-327.
    [85] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics andoptoelectronics [J], Nat. Photonics,2010,4:611-622.
    [86] Li S S, Tu K H, Lin C C, Chen C W, Chhowalla M. Solution-ProcessableGraphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells [J]. AcsNano,2010,4:3169-3174.
    [87] Yin Z Y, Wu S X, Zhou X Z, Huang X, Zhang Q C, Boey F, Zhang H.Electrochemical Deposition of ZnO Nanorods on Transparent Reduced GrapheneOxide Electrodes for Hybrid Solar Cells [J]. Small,2010,6:307-312.
    [88] S. Shivaraman, R.A. Barton, X. Yu, J. Alden, L. Herman, M.V.S.Chandrashekhar, J. Park, P.L. McEuen, J.M. Parpia, H.G. Craighead, M.G. Spencer.Free-Standing Epitaxial Graphene [J]. Nano Lett,2009,9:3100-3105.
    [89] Shivaraman S, Barton R A, Yu X, Alden J, Herman L, Chandrashekhar M V S,Park J, McEuen P L, Parpia J M, Craighead H G et al. Graphene Synthesis on CubicSiC/Si Wafers. Perspectives for Mass Production of Graphene-Based ElectronicDevices [J]. Nano Lett.,2009,9:3100-3105.
    [90] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L,Ohta T, Reshanov S A, Rohrl J et al. Towards wafer-size graphene layers byatmospheric pressure graphitization of silicon carbide [J]. Nat. Mater.,2009,8:203-207.
    [91] Deng D H, Pan X L, Zhang H, Fu Q A, Tan D L, Bao X H. FreestandingGraphene by Thermal Splitting of Silicon Carbide Granules [J]. Adv. Mater.,2010,22:2168-+.
    [92] Huang H, Chen W, Chen S, Wee A T S. Bottom-up Growth of EpitaxialGraphene on6H-SiC(0001)[J]. Acs Nano,2008,2:2513-2518.
    [93] Hupalo M, Conrad E H, Tringides M C. Growth mechanism for epitaxialgraphene on vicinal6H-SiC(0001) surfaces: A scanning tunneling microscopy study[J]. Phys Rev B,2009,80.
    [94] Strupinski W, Grodecki K, Wysmolek A, Stepniewski R, Szkopek T, Gaskell P E,Gruneis A, Haberer D, Bozek R, Krupka J et al. Graphene Epitaxy by ChemicalVapor Deposition on SiC [J]. Nano Lett,2011,11:1786-1791.
    [95] Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene: The NewTwo-Dimensional Nanomaterial [J]. Angew. Chem. Int. Edit.,2009,48:7752-7777.
    [96] Compton O C, Nguyen S T. Graphene Oxide, Highly Reduced Graphene Oxide,and Graphene: Versatile Building Blocks for Carbon-Based Materials [J]. Small,2010,6:711-723.
    [97] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueousdispersions of graphene nanosheets [J]. Nat. Nanotechnol.,2008,3:101-105.
    [98] Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J Y, Guo S W. Reduction ofgraphene oxide via L-ascorbic acid [J]. Chem. Commun.,2010,46:1112-1114.
    [99] Gao J, Liu F, Liu Y L, Ma N, Wang Z Q, Zhang X. Environment-FriendlyMethod To Produce Graphene That Employs Vitamin C and Amino Acid [J]. Chem.Mater.,2010,22:2213-2218.
    [100] Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, Zhang F B.Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A GreenRoute to Graphene Preparation [J]. Adv. Mater.,2008,20:4490-4493.
    [101]王欢.还原氧化石墨烯及氧化石墨烯/ZnO复合物的制备及其光、电性能研究[D].长春:吉林大学,2012.
    [102] Yan K, Peng H L, Zhou Y, Li H, Liu Z F. Formation of Bilayer BernalGraphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition [J]. Nano Lett.,2011,11:1106-1110.
    [103] Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Graphene CVD growthon copper and nickel: role of hydrogen in kinetics and structure [J]. Phys. Chem.Chem. Phys.,2011,13:20836-20843.
    [104] Zhang Y, Gomez L, Ishikawa F N, Madaria A, Ryu K, Wang C A, Badmaev A,Zhou C W. Comparison of Graphene Growth on Single-Crystalline andPolycrystalline Ni by Chemical Vapor Deposition [J]. J. Phys. Chem. Lett.,2010,1:3101-3107.
    [105] Su C Y, Lu A Y, Wu C Y, Li Y T, Liu K K, Zhang W J, Lin S Y, Juang Z Y,Zhong Y L, Chen F R et al. Direct Formation of Wafer Scale Graphene Thin Layerson Insulating Substrates by Chemical Vapor Deposition [J]. Nano Lett.,2011,11:3612-3616.
    [106] Liu N, Fu L, Dai B Y, Yan K, Liu X, Zhao R Q, Zhang Y F, Liu Z F. UniversalSegregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals [J].Nano Lett,2011,11:297-303.
    [107] Ho Y M, Yang G M, Zheng W T, Wang X, Tian H W, Xu Q, Li H B, Liu J W,Qi J L, Jiang Q. Synthesis and field electron emission properties of hybrid carbonnanotubes and nanoparticles [J]. Nanotechnology,2008,19:065710.
    [108] Yang G M, Zheng W T, Tian H W, Wang X, Xu Q, Cheng J, Ho Y M, Jiang Q.Investigation on nanodiamond and carbon nanotube-diamond nanocompositesynthesized using RF-PECVD [J]. Chem. Vapor Depos.,2008,14:236-240.
    [109] Yang G M, Xu Q, Tian H W, Wang X, Zheng W T. Amorphous hollow carbonspheres synthesized using radio frequency plasma-enhanced chemical vapourdeposition [J]. J. Phys. D. Appl. Phys.,2008,41.
    [110] Qi J L, Wang X, Tian H W, Peng Y S, Liu C, Zheng W T. Syntheses of carbonnanomaterials by radio frequency plasma enhanced chemical vapor deposition [J]. J.Alloy Compd.,2009,486:265-272.
    [112] Qi J L, Wang X, Tian H W, Liu C, Lu Y L, Zheng W T. Synthesis of acomposite consisting of carbon nanotubes and graphite shell-encapsulated cobaltnanoparticles using plasma-enhanced chemical vapor deposition [J]. Appl. Surf. Sci.,2009,256:1486-1491.
    [113] Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A. Field Emission froma Composite of Graphene Sheets and ZnO Nanowires [J]. J. Phys. Chem. C.,2009,113:9164-9168.
    [114]许英敏.等离子体增强化学气相沉积制备碳素/氧化锌复合材料及其特性的研究[D].长春:吉林大学,2009.
    [115]亓钧雷.碳纳米管、碳纳米片、石墨烯及其复合物的制备和场发射性能的研究[D].长春:吉林大学,2010.
    [116]杨光敏.碳纳米管、纳米金刚石、空心碳球及其复合物的PECVD制备和特性研究[D].长春:吉林大学,2010.
    [117] Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of Nanosized Gold-SilicaCore-Shell Particles [J]. Langmuir,1996,12:4329-4335.
    [118] Su L W, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale,2011,3:3967-3983.
    [119] Liu S H, Han M Y. Silica-Coated Metal Nanoparticles [J]. Chem-Asian J.,2010,5:36-45.
    [120] Lou X W, Yuan C L, Rhoades E, Zhang Q, Archer L A. Encapsulation andOstwald ripening of Au and Au-Cl complex nanostructures in silica shells [J]. Adv.Funct. Mater.,2006,16:1679-1684.
    [121] Zhang F, Braun G B, Shi Y F, Zhang Y C, Sun X H, Reich N O, Zhao D Y,Stucky G. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuningof the Upconversion Fluorescence with Silver Nanoparticles [J]. J. Am. Chem. Soc.,2010,132:2850-+.
    [122] Caruso F. Nanoengineering of particle surfaces [J]. Adv. Mater.,2001,13:11-22.
    [123] Wang Y, Angelatos A S, Caruso F. Template synthesis of nanostructuredmaterials via layer-by-layer assembly [J]. Chem. Mater.,2008,20:848-858.
    [124] Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals [J]. Small,2009,5:154-168.
    [125] Zeng H, Li J, Wang Z L, Liu J P, Sun S H. Bimagnetic core/shell FePt/Fe3O4nanoparticles [J]. Nano Lett.,2004,4:187-190.
    [126] Xiao X C, Chu L Y, Chen W M, Wang S, Li Y. Positively thermo-sensitivemonodisperse core-shell microspheres [J]. Adv. Funct. Mater.,2003,13:847-852.
    [127] Li G R, Wang Z L, Zheng F L, Ou Y N, Tong Y X. ZnO@MoO3core/shellnanocables: facile electrochemical synthesis and enhanced supercapacitorperformances [J]. J. Mater. Chem.,2011,21:4217-4221.
    [128] Sun Y Q, Wu Q O, Shi G Q. Graphene based new energy materials [J]. Energ.Environ. Sci.,2011,4:1113-1132.
    [129] Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si@CarbonCore-Shell Nanowires for Lithium Battery Anode Material [J]. Nano Lett.,2008,8:3688-3691.
    [130] Subramoney, S. Novel NanocarbonsDStructure, Properties, and PotentialApplications [J]. Adv. Mater.1998,10:1157-1171.
    [131] Fernandez-Garcia M P, Gorria P, Sevilla M, Proenca M P, Boada R, Chaboy J,Fuertes A B, Blanco J A. Enhanced Protection of Carbon-Encapsulated MagneticNickel Nanoparticles through a Sucrose-Based Synthetic Strategy [J]. J. Phys. Chem.C,2011,115:5294-5300.
    [132] Baby T T, Ramaprabhu S. Effect of metal nanoparticles decoration on electronfield emission property of graphene sheets [J]. Nanoscale,2011,3:4170-4173.
    [133] Groning P, Ruffieux P, Schlapbach L, Groning O. Carbon nanotubes for coldelectron sources [J]. Adv. Eng. Mater.,2003,5:541-550.
    [134] Wood R W. A new form of cathode discharge and the production of X-ray,together with some notes of diffraction [J]. Phys. Rev.,1897,5:1-10.
    [135] Fowler H, Nordheim L W. Electron emission in intense electric fields [J]. Proc.Roy. Soc. A,1928,119:173-181.
    [136] Cheng Y, Zhou O. Electron field emission from carbon nanotubes [J]. Cr. Phys.,2003,4:1021-1033
    [137] Connolly T, Smith R C, Hernandez Y, Gun'ko Y, Coleman J N, Carey J D.Carbon-Nanotube-Polymer Nanocomposites for Field-Emission Cathodes [J]. Small,2009,5:826-831.
    [138] Wu C X, Li F S, Zhang Y A, Guo T L, Qu B, Chen Z J. Field emission arraysfabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybridnanocomposite [J]. Appl. Surf. Sci.,2011,257:4539-4542.
    [139] Smith R C, Carey J D, Murphy R J, Blau W J, Coleman J N, Silva S R P.Charge transport effects in field emission from carbon nanotube-polymer composites[J]. Appl. Phys. Lett.,2005,87.
    [140] Yan X B, Tay B K, Miele P. Field emission from ordered carbon nanotube-ZnOheterojunction arrays [J]. Carbon,2008,46:753-758.
    [141] Rakhi R B, Reddy A L M, Shaijumon M M, Sethupathi K, Ramaprabhu S.Electron field emitters based on multiwalled carbon nanotubes decorated withnanoscale metal clusters [J]. J. Nanopart. Res.,2008,10:179-189.
    [142] Purcell S T, Vincent P, Journet C, Binh V T. Hot nanotubes: Stable heating ofindividual multiwall carbon nanotubes to2000K induced by the field-emissioncurrent [J]. Phys. Rev. Lett.,2002,88.
    [143] Lee J H, Lee S H, Kim W S, Lee H J, Heo J N, Jeong T W, Baik C W, Park S H,Yu S G, Park J B et al. Current degradation mechanism of single wall carbonnanotube emitters during field emission [J]. Appl. Phys. Lett.,2006,89.
    [144] Qi J L, Wang X, Zheng W T, Tian H W, Hu C Q, Peng Y S. Ar plasmatreatment on few layer graphene sheets for enhancing their field emission properties[J]. J. Phys. D: Appl. Phys.,2010,43.
    [145] Teii K, Nakashima M. Synthesis and field emission properties ofnanocrystalline diamond/carbon nanowall composite films [J]. Appl. Phys. Lett.,2010,96.
    [146] Liao L, Bai J W, Qu Y Q, Huang Y and Duan X F. Single-layer graphene onAl2O3/Si substrate: better contrast and higher performance of graphene transistors [J].Nanotechnology,2010,21:015705.
    [147] Ryzhii V and Ryzhii M. Graphene bilayer field-effect phototransistor forterahertz and infrared detection [J]. Phys. Rev. B,2009,79:245311.
    [148] Dan Y P, Lu Y, Kybert N J, Luo Z T and Johnson A T C. Intrinsic Response ofGraphene Vapor Sensors [J]. Nano Lett.,2009,9:1472-1475.
    [149] Arco L G D, Zhang Y, Schlenker C W, Ryu K, Thompson M E and Zhou C W.Continuous, Highly Flexible, and Transparent Graphene Films by Chemical VaporDeposition for Organic Photovoltaics [J]. ACS Nano,2010,4:2865-2873.
    [150] Stoller M D, Park S J, Zhu Y W, An J H and Ruoff R S. Graphene-BasedUltracapacitors [J]. Nano Lett.,2008,8:3498-3502.
    [151] Kumar S, McEvoy N, Lutz T, Keeley G P, Nicolosi V, Murray C P, Blauac W Jand Duesberg G S. Gas phase controlled deposition of high quality large-areagraphene films [J]. Chem. Commun.,2010,46:1422–1424.
    [152] Park H J, Meyer J, Roth S and Skakalova V. Growth and properties of few-layergraphene prepared by chemical vapor deposition [J]. Carbon,2010,48:1088–1094.
    [153] Liang Y Y, Wu D Q, Feng X L and Mullen K. Dispersion of Graphene Sheets inOrganic Solvent Supported by Ionic Interactions[J]. Adv. Mater.,2009,21:1679–1683.
    [154] Verma V P, Das S, Lahiri I and Choi W. Large-area graphene on polymer filmfor flexible and transparent anode in field emission device [J]. Appl. Phys. Lett.,2010,96:203108.
    [155] Nandamuri G, Roumimov S and Solanki R. Chemical vapor deposition ofgraphene films [J]. Nanotechnology,2010,21:145604.
    [156] Thiele S, Reina A, Healey P, Kedzierski J, Wyatt P, Hsu P L, Keast C, SchaeferJ and Kong J. Engineering polycrystalline Ni films to improve thickness uniformity ofthe chemical-vapor-deposition-grown graphene films [J]. Nanotechnology,2010,21:015601.
    [157] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S. Graphenesegregated on Ni surfaces and transferred to insulators [J]. Appl. Phys. Lett.,2008,93:113103.
    [158] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J. HighlyOrdered, Millimeter-Scale, Continuous, Single-Crystalline Graphene MonolayerFormed on Ru (0001)[J]. Adv. Mater.,2008,20:1–4.
    [159] Kwon S Y, Ciobanu C V, Petrova V, Shenoy V B, Bareno J, Gambin V, Petrov Iand Kodambaka S. Growth of Semiconducting Graphene on Palladium [J]. Nano Lett.,2009,9:3985-3990.
    [160] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, BokorJ and Zhang Y G. Direct Chemical Vapor Deposition of Graphene on DielectricSurfaces [J]. Nano Lett.,2010,10:1542–1548.
    [161] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and SaitoR. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Phys.Chem. Chem. Phys.,2007,9:1276–1291.
    [162] Wang Y Y, Ni Z H, Shen Z X, Wang H M and Wu Y H. Interferenceenhancement of Raman signal of graphene [J]. Appl. Phys. Lett.,2008,92:043121.
    [163] Yoon D, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D andCheong H. Interference effect on Raman spectrum of graphene on SiO2/Si [J]. Phys.Rev. B,2009,80:125422.
    [164] Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W and Wee A TS. Raman Studies of Monolayer Graphene: The Substrate Effect [J]. J. Phys. Chem.C,2008,112:10637–10640.
    [165] Campos-Delgado J et al. Bulk Production of a New Form of sp2Carbon:Crystalline Graphene Nanoribbons [J].2008, Nano Lett.,8:2773–2778.
    [166] Ago H, Kugler T, Cacialli F, Salaneck W R, Shaffer M S P, Windle A H andFriend R H. Work Functions and Surface Functional Groups of Multiwall CarbonNanotubes [J]. J. Phys. Chem. B,1999,103:8116-8121.
    [167] Okpalugo T I T, Papakonstantinou P, Murphy H, Mclaughlin J and Brown N MD. High resolution XPS characterization of chemical functionalized MWCNTs andSWCNTs [J]. Carbon,2005,43:153–161.
    [168] Ho Y M, Liu J W, Qi J L and Zheng W T. Spectroscopic investigation on carbonnanotubes coated with ZnO nanoparticles [J]. J. Phys. D: Appl. Phys.,2008,41:065308.
    [169] Jacobs G, Chaney J A, Patterson P M, Das T K and Davis B H. Fischer–Tropschsynthesis: study of the promotion of Re on the reduction property of Co/Al2O3catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS [J]. AppliedCatalysis A: General,2004,264:203–212.
    [170] Kumar A and Zhou C W. The Race To Replace Tin-Doped Indium Oxide:Which Material Will Win?[J]. ACS Nano,2010,4:11–14.
    [171] Van der Pauw L J. A method of measuring specific resistivity and hall effect ofdiscs of arbitrary shape [J]. Philips Res. Rep.,1958,13:1–9.
    [172] Demircana O, Xu C C, Zondlob J and Finklea H O. In situ Van der Pauwmeasurements of the Ni/YSZ anode during exposure to syngas with phosphinecontaminant [J]. Journal of Power Sources,2009,194:214–219.
    [173] Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, et al. Preparation ofNovel3D Graphene Networks for Supercapacitor Applications [J]. Small.2011,7:3163-3168.
    [174] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, et al.3DGraphene-Cobalt Oxide Electrode for High-Performance Supercapacitor andEnzymeless Glucose Detection [J]. Acs Nano,2012,6:3206-3213.
    [175] Dai B Y, Fu L, Zou Z Y, Wang M, Xu H T, Wang S, et al. Rational design of abinary metal alloy for chemical vapour deposition growth of uniform single-layergraphene [J]. Nat Commun.2011,2.
    [176] Liu X, Fu L, Liu N, Gao T, Zhang Y F, Liao L, et al. Segregation Growth ofGraphene on Cu-Ni Alloy for Precise Layer Control [J]. J Phys Chem C,2011,115:11976-11982.
    [177] Tan K F, Xu J, Chang J, Borgna A, Saeys M. Carbon deposition on Co catalystsduring Fischer-Tropsch synthesis: A computational and experimental study [J]. JCatal.,2010,274:121-129.
    [178] Kim E S, Shin H J, Yoon S M, Han G H, Chae S J, Bae J J, et al.Low-temperature graphene growth using epochal catalyst of PdCo alloy [J]. ApplPhys Lett.,2011,99.
    [179] Ago H, Ogawa Y, Tsuji M, Mizuno S, Hibino H. Catalytic Growth of Graphene:Toward Large-Area Single-Crystalline Graphene [J]. J Phys Chem Lett.,2012,3:2228-2236.
    [180] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder,electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun.,2007,143:47-57.
    [181] Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S. Ramanspectroscopy in graphene [J]. Phys Rep.,2009,473:51-87.
    [182] Salehi-Khojin A, Estrada D, Lin K Y, Bae M H, Xiong F, Pop E, et al.Polycrystalline Graphene Ribbons as Chemiresistors [J]. Adv Mater.,2012,24:53-+.
    [183] Tuinstra F, Koenig J L. Raman Spectrum of Graphite [J]. The Journal ofChemical Physics,1970,53:1126-1130.
    [184] Knight D S, White W B. Characterization of diamond films by Ramanspectroscopy [J]. Journal materials research,1989,4:385-393.
    [185] Cancado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, et al. Generalequation for the determination of the crystallite size L-a of nanographite by Ramanspectroscopy [J]. Appl Phys Lett.,2006,88.
    [186] Ichinokawa T, Itoh H, Sakai Y. Behaviors of small molten metal islands onseveral substrates [J]. J Anal Atom Spectrom,1999,14:405-408.
    [187] Eustathopoulos N, Protsenko P, Garandet J P, Voytovych R. Thermodynamicsand kinetics of dissolutive wetting of Si by liquid Cu. Acta Mater,2010,58:6565-6574.
    [188] Zhan D, Ni Z H, Chen W, Sun L, Luo Z Q, Lai L F, et al. Electronic structure ofgraphite oxide and thermally reduced graphite oxide [J]. Carbon,2011,49:1362-1366.
    [189] Kaplas T, Sharma D, Suirko Y. Few-layer graphene synthesis on a dielectricsubstrate [J]. Carbon,2012,50:1503-1509.
    [190] Song H J, Son M, Park C, Lim H, Levendorf M P, Tsen A W, et al. Large scalemetal-free synthesis of graphene on sapphire and transfer-free device fabrication [J].Nanoscale,2012,4:3050-3054.
    [191] Xu J, Saeys M. First principles study of the stability and the formation kineticsof subsurface and bulk carbon on a Ni catalyst [J]. J Phys Chem C,2008,112:9679-9685.
    [192] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, et al.First-principles simulation: ideas, illustrations and the CASTEP code [J]. JPhys-Condens Mat.,2002,14:2717-2744.
    [193] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism [J]. Phys Rev B,1990,41:7892-7895.
    [194] Perdew J P, Burke K, Ernzerhof J. Generalized gradient approximation madesimple [J]. Phys Rev Lett.,1996,77:3865-3868.
    [195] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J].Phys Rev B.,1976,13:5188-5192.
    [196] Jia L C, Wang X, Hua B, Li W L, Chi B, Pu J, et al. Computational analysis ofatomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces [J]. Int JHydrogen Energ.,2012,37:11941-11945.
    [197] Swart J C W, van Steen E, Ciobica I M, van Santenc R A. Interaction ofgraphene with FCC-Co(111)[J]. Phys Chem Chem Phys.,2009,11:803-807.
    [198] Zhao W, Kozlov S M, Hofert O, Gotterbarm K, Lorenz M P A, Vines F, et al.Graphene on Ni(111): Coexistence of Different Surface Structures [J]. J Phys ChemLett.,2011,2:759-764.
    [199] Meng L J, Sun Q, Wang J L, Ding F. Molecular Dynamics Simulation ofChemical Vapor Deposition Graphene Growth on Ni (111) Surface [J]. J Phys ChemC,2012,116:6097-6102.
    [200] Cinquini F, Delbecq F, Sautet P. A DFT comparative study of carbonadsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy [J].Phys Chem Chem Phys.,2009,11:11546-11556.
    [201] Guo Y G, Wang B, Wu X L, Shu C Y and Wang C R. Synthesis ofCuO/graphene nanocomposite as a high-performance anode material for lithium-ionbatteries [J]. J Mater Chem,2010,20:10661-10664.
    [202] Li J H, Wang Y, Shao Y Y, Matson D W and Lin Y H. Nitrogen-DopedGraphene and Its Application in Electrochemical Biosensing [J]. Acs Nano,2010,4:1790-1798.
    [203] Yoon C S, Kim J H, Kim C K and Kim Y H. Synthesis of carbon-encapsulatedgold nanoparticles in polyimide matrix [J]. Colloid Surface A,2008,321:297-300.
    [204] Jeong S H, Park J B, Jeong M S, Kim J Y and Cho B K. Synthesis ofcarbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution [J].Carbon,2008,46:1369-1377.
    [205] Gedanken A, Jacob D S, Genish I and Klein L. Carbon-coated core shellstructured copper and nickel nanoparticles synthesized in an ionic liquid [J]. J PhysChem B,2006,110:17711-17714.
    [206] Lu Y, Zhu Z P and Liu Z Y. Carbon-encapsulated Fe nanoparticles fromdetonation-induced pyrolysis of ferrocene [J]. Carbon,2005,43:369-374.
    [207] Dong X L, Zhang Z D, Jin S R and Kim B K. Carbon-coated Fe-Co(C)nanocapsules prepared by arc discharge in methane [J]. J Appl Phys,1999,86:6701-6706.
    [208] Liu X G, Ou Z Q, Geng D Y, Han Z, Jiang J J, Liu W and Zhang Z D. Influenceof a graphite shell on the thermal and electromagnetic characteristics of FeNinanoparticles [J]. Carbon,2010,48:891-897.
    [209] Dong X L, Zhang X F, Huang H, Wang D K and Lei J P. High permittivityfrom defective carbon-coated Cu nanocapsules [J]. Nanotechnology,2007,18:275701.
    [210] Lin Y H, Du D, Zou Z X, Shin Y S, Wang J, Wu H, Engelhard M H, Liu J andAksay I A. Sensitive Immunosensor for Cancer Biomarker Based on Dual SignalAmplification Strategy of Graphene Sheets and Multienzyme Functionalized CarbonNanospheres [J].2010, Anal Chem,82:2989-2995.
    [211] Athanassiou E K, Grass R N and Stark W J. Large-scale production ofcarbon-coated copper nanoparticles for sensor applications [J]. Nanotechnology,2006,17:1668-1673.
    [212] Bonard J M, Seraphin S, Wegrowe J E, Jiao J and Chatelain A. Varying the sizeand magnetic properties of carbon-encapsulated cobalt particles [J].2001, Chem PhysLett,343:251-257.
    [224] Zheng W T, Yang G M, Wang X, Xu Q, Wang S M and Tian H W. Two types ofcarbon nanocomposites: Graphite encapsulated iron nanoparticles and thin carbonnanotubes supported on thick carbon nanotubes, synthesized using PECVD [J]. JSolid State Chem,2009,182:966-972.
    [225] Sun C Q, Sun Y, Nie Y G, Wang Y, Pan J S, Ouyang G, Pan L K, Sun Z.Coordination-Resolved C-C Bond Length and the C1s Binding Energy of CarbonAllotropes and the Effective Atomic Coordination of the Few-Layer Graphene [J]. JPhys Chem C,2009,113:16464-16467.
    [226] Kang C G, Kang J W, Lee S K, Lee S Y, Cho C H, Hwang H J, Lee Y G, Heo J,Chung H J, Yang H, Seo S, Park S J, Ko K Y, Ahn J, Lee B H. Characteristics ofCVD graphene nanoribbon formed by a ZnO nanowire hardmask [J]. Nanotechnology,2011,22.
    [227] Wang X M, Xu J B, Wang C L, Du J, Xie W G. High-Performance GrapheneDevices on SiO2/Si Substrate Modified by Highly Ordered Self-AssembledMonolayers [J]. Adv Mater,2011,23:2464-+.
    [228] Yoon H J, Jun D H, Yang J H, Zhou Z X, Yang S S, Cheng M M C. Carbondioxide gas sensor using a graphene sheet [J]. Sensor Actuat B-Chem,2011,157:310-313.
    [229] Li X Y, Huang X L, Liu D P, Wang X, Song S Y, Zhou L, Zhang H J. Synthesisof3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacityand for Controlled Drug Delivery [J]. J Phys Chem C,2011,115:21567-21573.
    [230] Wu Q, Sun Y Q, Bai H, Shi G Q. High-performance supercapacitor electrodesbased on graphene hydrogels modified with2-aminoanthraquinone moieties [J]. PhysChem Chem Phys,2011,13:11193-11198.
    [231] Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L,Zheng W T, Liu Y C. Synthesis of graphene on a polycrystalline Co film byradio-frequency plasma-enhanced chemical vapour deposition. J Phys D Appl Phys,2010,43.
    [232] Du F, Yu D S, Dai L M, Ganguli S, Varshney V, Roy A K. Preparation ofTunable3D Pillared Carbon Nanotube-Graphene Networks for High-PerformanceCapacitance [J]. Chem Mater,2011,23:4810-4816.
    [233] Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared Graphene: A New3-DNetwork Nanostructure for Enhanced Hydrogen Storage [J]. Nano Lett,2008,8:3166-3170.
    [234] Ding R M, Jiang J, Wu F, Gong M, Zhu J H, Huang X T. Cu@C compositenanotube array and its application as an enzyme-free glucose sensor [J].Nanotechnology,2011,22.
    [235] Rickerby J, Steinke J H G. Current trends in patterning with copper [J]. ChemRev,2002,102:1525-1549.
    [236] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, PiscanecS, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene andgraphene layers [J]. Phys Rev Lett,2006,97.
    [237] May P W, Kuo M T, Ashfold M N R. Field emission conduction mechanisms inchemical-vapour-deposited diamond and diamond-like carbon films [J]. Diam RelatMater,1999,8:1490-1495.
    [238] Shakerzadeh M, Xu N, Bosman M, Tay B K, Wang X, Teo E H T, Zheng H, YuH. Field emission enhancement and microstructural changes of carbon films by singlepulse laser irradiation [J]. Carbon,2011,49:1018-1024.
    [239] Mukherjee N, Ahmed S F, Maji S K, Mondal A. Experimental study on electronfield emission, Raman scattering, and low temperature electrical properties ofnanocrystalline lead selenide thin films [J]. J Appl Phys,2011,109.
    [240] Liao M, Zhang Z, Wang W, Liao K J. Field-emission current from diamondfilm deposited on molybdenum [J]. J Appl Phys,1998,84:1081-1084.
    [241] Ho Y M, Zheng W T, Li Y A, Liu J W, Qi J L. Field Emission Properties ofHybrid Carbon Nanotube-ZnO Nanoparticles [j]. J Phys Chem C,2008,112:17702-17708.
    [242] Nilsson L, Groening O, Emmenegger C, Kuettel O, Schaller E, Schlapbach L,Kind H, Bonard J M, Kern K. Scanning field emission from patterned carbonnanotube films [J]. Appl Phys Lett,2000,76:2071-2073.
    [243] Suh J S, Jeong K S, Lee J S, Han I T. Study of the field-screening effect ofhighly ordered carbon nanotube arrays [J]. Appl Phys Lett,2002,80:2392-2394.
    [244] Wang X Q, Wang M, Ge H L, Chen Q, Xu Y B. Modeling and simulation forthe field emission of carbon nanotubes array [J]. Physica E,2005,30:101-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700