AIN和In_2O_3纳米材料的生长控制及光电性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料可控性的研究是未来高速化、高频化、微型化纳米光电子器件的基础,只有掌握了半导体纳米材料的可控制备技术,开发出它们潜在的性能,才能最大限度的发挥这些材料的特性。
     作为一种Ⅲ-Ⅴ族半导体化合物,AlN具有6.2eV的禁带宽度,高的热稳定性以及负的电子亲和势等优良性质,因而在冷阴极场发射领域有着很好的应用前景,然而目前的AlN一维纳米材料因为各种结构缺陷未能具有很好的场发射性能,因此从结构上去突破就成了弥补其缺陷的有效途径。In2O3是一种间接带隙半导体材料,优秀的光电性能使其在导带薄膜、气敏传感等领域有着广泛的应用。而在光催化领域,由于传统结构的表面光催化活性较弱,目前对其光催化分解水的研究主要都集中在掺杂,形成异质结构等方面,材料本身的潜能并未发掘出来。而对材料本身的认识才能从根本上弥补其性能缺陷,因此这就需要我们对In2O3材料本身进行深入的研究。
     本论文采用化学气相沉积设备,通过对材料生长过程的观察以及一定实验条件的控制,分别实现了对AlN和In2O3纳米材料的可控生长,并最终达到提升场发射性能及光催化性能的目的。本文的主要研究内容及创新点如下:
     1.在VLS生长机制下,通过对实验原理的分析,我们首次尝试在传统CVD设备的出气端加装质量流量计,以达到对反应过程实现“监控”的目的,并首次成功生长出顶端为纳米线,底端为纳米柱的一维多级AlN纳米材料,纳米线与纳米柱的直径比可达1/10。通过对这种一维多级纳米材料生长过程的观察以及生长机制的研究,我们发现并提出了基于催化剂液滴的吸收与蒸发的“动态平衡”原理,利用此原理,我们最终实现了AlN一维多级纳米材料的可控性生长。紧接着,我们对所合成的AlN一维多级材料进行了场发射性能测试,测试结果显示,这种多级纳米结构的开启场和屏蔽场分别为2.7和7.1V/μm,远低于其他一维结构的AlN纳米材料,因而具有更优良的场发射性能。
     2.目前,In2O3光催化方面的理论研究较少,而且主要集中在体材料以及纳米结构的掺杂等方面。在本论文中,我们从理论上对In2O3体心立方结构晶体的各个晶面进行了分析。通过态密度计算,我们发现,与常规的{111}面和体材料相比,{100}晶面的出现会在Fermi能级下面产生一个新的次级价带,这个价带非常接近Fermi能级,在光照作用下,次级价带上的空穴能够聚集到{100}晶面上,同时电子扩散到{111}面及整个晶体内部,而{111}晶面上的电子和空穴却分布在整个材料中,因而{100}晶面具有更好的光催化分解水制氧性能。接着,我们对在有无水分子吸收的情况下的各个晶面进行了结构优化及能带结构计算,结果表明,水分子的有无并没有影响这个次级价带的稳定性,这说明水分子的存在下,{100}晶面仍然具有光催化活性。
     3.通过在不同温度下对氧化铟八面体颗粒成核及生长情况的观察,我们提出了In2O3八面体颗粒的生长机制。由于{100}面的表面能要高于{111}面,因此{100}面先于{111}面生长。通过改变气流和温度,我们实现了对In2O3纳米颗粒的“晶体切割”,并首次大面积生长出尺寸均一的,具有{100}晶面的氧化铟截角八面体颗粒。进一步的光电化学测量结果显示,氧化铟八面体几乎没有光电流产生,而氧化铟截角八面体的有效光电流密度可达1.4mA/cm2,这充分说明氧化铟截角八面体可以作为一种有效的光催化材料。同时,我们的结果也充分说明“晶体切割”在光电功能材料的应用方面起着关键作用。
Controllable growth of semiconductor nanomaterials is the basis of high-speed, high-frequency, micromation nano-optoelectronic device. Mastering the techniques of controllable growth of semiconductor nanomaterials will help us seek high performance of these nanomaterials and show wider applications in many aspects.
     As a III-V semiconductor material, AIN possesses many attractive features, for example, high energy gap of6.2eV, high thermal stability and negative electron affinity, which have the broad applications such as in cold cathode field emission. Revently, the structure defects of AIN one dimmensional (ID) nanomaterials have led to the disappointing field emission property. Thus, further improvement in structal defects is an important research subject. As an indirect-band gap semiconductor material, In2O3possesses many attractive optoelectronic features which lead to important applications in the field of conductive thin film and gas sensor. However, due to weak photocatalytic activity of the surfaces on traditional structures, the researches in water splitting property mainly focused on the composite materials of doping or heterostructure, whereas its potentiality remained latent. Deep exploration on intrinsic material will overcome these shortcomings so that in-depth study will be imperative.
     In this study, we use the CVD equipment to conduct the growth of AIN and In2O3 nanostructural materials. By observing the growth process and controlling the experimental conditions, we achieve the controllable growth of AIN and In2O3respectively, and enhanced field emission and photocatalytic properties were reached finally. The main contents and innovations in the dissertation are listed as fellows:
     1. Under VLS mechanism, by analyzing the experimental principle, we made an first attempt to add a mass flowmeter at the end of the traditional CVD equipment to "monitor" the reaction process and thus fabricated ID hierarchical AIN nanostructure which has a thin nanowire on top and a nanocolumn at the bottom. The diameter ratio of the nanowire and nanocolumn is as high as1/10. By observing the growth process and analyzing the growth mechanism, we reveal that the ID structural growth is based on the "dynamic equilibrium" principle between absorbing and evaporation of the catalytic drop. We reach the controllable growth of this hierarchical AIN nanostructure under guidance of the principle. The turn-on field of2.7V/μm and the threshold field of about7.1V/μm for the multi-level AIN nanostructure are much lower than those from many other AIN nanostructures and our experiments clearly show that this hierarchical AIN nanostructure will be an excellent field emission material.
     2. So far, theoretical studies on the photocatalytic property of In2O3are very little and little work only focused on the bulk material and doping. In this study, we firstly performed the theoretic calculation on different crystal face of In2O3bcc structure. By calculating densities of states (DOSs) of the bulk and slabs along the{100} and{111} directions of In2O3and comparing the results from both the bulk materials and{111} surface, we found that the cleaving of the{100} surface creates a new valence sub-band which is just below but very close to the Fermi level. During light irradiation, the excited holes from valence sub-band are concentrated on the{100} facets and the excited electrons are in bulk, whereas the excited holes and excited electrons on the{111} are in bulk. This leads to the excellent photocatalytic water splitting property of{100} surface on In2O3. Afterwards, we performed geometry optimization on the{111} and{100} slabs with adsorbed H2O molecules, the results show that the subband is still stable even the H2O molecules exist.
     3. By observing the growth of In2O3octahedron under different temperature, we proposed a growth mechanism of In2O3truncated octahedrons. Because of the different surface energy of the{111} and{100} facets, they have different growth rates. By changing the flow and temperature, we "cut" the crystal facets of In2O3successfully and fabricated uniform truncated In2O3nanocrystals on a large-scale on a silicon substrate for the first time. The high photocurrent of1.4mA/cm2and long-time oxygen evolution without attenuation indicate that the In2O3truncated octahedrons are promising for photocatalytic oxygen evolution, and our results provide evidence that crystal cutting plays an important role in photofunctionization of materials.
引文
[1]张立德,解思深,纳米材料和纳米结构,化学工业出版社,2004.
    [2]周瑞发,牟季美,纳米材料技术,国防工业出版社,2003
    [3]R. P. Feynman, Engineering and Science 1960,23,22.
    [4]张志馄,崔作林,纳米技术与纳米材料.共国防工业出版社,2000.
    [5]朱静,纳米材料和器件.清华大学出版社,2003.
    [6]张立德,牟季美,纳米材料和纳米结构.科学出版社,2001.
    [7]王世敏,许祖勋,傅晶.纳米材料制备技术.化学工业出版社,2001.
    [8]A. Henglein, Chem. Rev.1989,89,1861.
    [9]W. P. Halperin, Rev. Mod. Phys.1986,58,533.
    [10]P. Ball, L. Garwin, Natur 1992,355,761.
    [11]A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys.1987,59,1.
    [12]Z. Cai, S. Garzon, M. Chandrashekhar, R. Webb, G. Koley, J. Elec. Mater.2008, 37,585.
    [13]S. C. Shi, C. F. Chen, G. M. Hsu, J. S. Hwang, S. Chattopadhyay, Z. H. Lan, K. H. Chen, L. C. Chen, Appl. Phys. Lett.2005,87,203103.
    [14]S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, L. C. Chen, Adv. Funct. Mater.2005,15,781.
    [15]J. Liu, X. Zhang, Y. J. Zhang, R. R. He, J. Zhu, J. Mater. Res.2001,16,3133.
    [16]Q. Wu, Z. Hu, X. Z. Wang, Y. M. Hu, Y. J. Tian, Y. Chen, Relat. Mat.2004,13, 38.
    [17]Y. B. Tang, H. T. Cong, Z. G. Zhao, H. M. Cheng, Appl. Phys. Lett.2005,86, 153104.
    [18]Q. Zhao, J. Xu, X. Y. Xu, Z. Wang, D. P. Yu, Appl. Phys. Lett.2004,85,5331.
    [19]Y. B. Tang, H. T. Cong, H. M. Cheng, Appl. Phys. Lett.2006,89,093113.
    [20]Y. B. Tang, H. T. Cong, Z. G. Chen, H. M. Cheng, Appl. Phys. Lett.2005,86, 233104.
    [21]J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, ACS Nano 2008,2,134.
    [22]W. Lei, D. Liu, P. Zhu, X. Chen, Q. Zhao, G. Wen, Q. Cui, G. Zou, Appl. Phys. Lett.2009,95,162501.
    [23]L. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, Adv. Mater.2005,17, 110.
    [24]Q. Wu, F. Zhang, X. Wang, C. Liu. Z. Hu, Y. Lu, J. Phys. Chem. C 2007,111, 12639.
    [25]Y. Tang, H. Cong, F. Li, H. M. Cheng, Diamond and Related Mater.2007,16, 537.
    [26]J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, J. Tang, R. Zhang, Y. Du,J. Cryst. Growth 2005,283,291.
    [27]陈治明,王建农.半导体器件的材料物理学基础.科学出版社,1999,5
    [28]王引书,李晋敏,林兰英.半导体SiC材料的外延生长.高技术通讯,1998,7:59.
    [29]杨邦朝,王文生.薄膜物理与技术.高等学校教材,1995,244.
    [30]A. Fissel, J. Cryst. Growth 2001,227,805.
    [31]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.1964,4,89.
    [32]A. M. Morales, C. M. Lieber, Science 1998,279,208.
    [33]X. F. Duan, C. M. Lieber, Adv. Mater.2000,12,198.
    [34]T. L. Kamins, X. Li, R. S. Williams, Nano Lett.2004,4,503.
    [35]Y. Ding, P. X. Gao, Z. L. Wang, J. Am. Chem. Soc.2004,126,2066.
    [36]C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc.2001,123,2791.
    [37]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan. Adv. Mater.2003,15,353.
    [38]Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc.2001,123,3165.
    [39]E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. R. He, P. D. Yang, Nano Lett.2003,3,867.
    [40]M. S. Gudiksen, C. M. Lieber,J.Am. Chem. Soc.2000,122,8801.
    [41]J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, Nature 2006,440,69.
    [42]S. Kodambaka, J. Tersoff, M. C. Reuter, F. M. Ross, Phys. Rev. Lett.2006,96, 096105.
    [43]S. Holfmann, R. Sharma, C. T. Wirth, F. Cerwantes-Sodi, C. Ducati, T. Kasama, R. E. Dunin-Borkowski, J. Drucker, P. Bennett, J. Robertson, Nat. Mater.2008,7, 372.
    [44]B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, F. M. Ross, Science 2008,322,1070.
    [45]T. Castro, R. Reifenberger, E. Choi, et al. Surf. Sci.1990,234(1-2),43.
    [46]M. E. Lin, R. Reifenberger and R. P. Andres. Phys. Rev.1992,46,15490.
    [47]M. E. Lin, R. Reifenberger, A. Ramachandra et al. Phys. Rev.1992,46,15498.
    [48]W. Qian, M. R. Scheinfein. J. Appl. Phys.1993,73,7041.
    [49]S. E. Mcbride, G. C. Wetsel. Appl. Phys. Lett.1991,59,3056.
    [50]A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley. Science 1995,269,1550.
    [51]W. A. Deheer, A. Chatelain and D. Ugarte. Science.1995,270,1179.
    [52]S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, D. J. Wang, Q. Zhou and Q. F. Huang. Mater. Lett.2002,56,948.
    [53]X. Y. Cui, B. Delley, A. J. Freeman, C. Stampfl, Phys. Rev. Lett.2006,91. 016402.
    [54]P. S. Branicio, R. K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett.2006,96. 065502.
    [55]Z. Chen, C. B. Cao, H. S. Zhu, J. Phys. Chem. C 2007,111,1895.
    [56]X. H. Ji, Q. Y. Zhang, S. P. Lau, H. X. Jiang, J. Y. Lin, Appl. Phys. Lett.2009,94, 173106.
    [57]F. Zhang, Q. Wu, X. B. Wang, N. Liu, J. Yang, Y. M. Hu, L. S. Yu, X. Z. Wang, Z. Hu, J. M. Zhu, J. Phys. Chem. C 2009,113,4053.
    [58]N. Hirosaki, R. J. Xie, K. Inoue, T. Sekiguchi, B. Dierre, K. Tamura, Appl. Phys. Lett.2007,91,061101.
    [59]W. J. Qian, Y. L. Zhang, Q. Wu, C. Y. He, Y. Zhao, X. Z. Wang, Z. Hu, J. Phys. Chem. C 2011,115,11461
    [60]N. Nadaud, N. Lequeux, M. Nanot, et al. J. Soli. Stat. Chem.1998,135,140.
    [61]J. C. C. Fan, J. B. Goodenough,J. Appl. Phys.1977,48,3524.
    [62]刘郎明,龚鸣明,魏文武.超细氧化铟粉的研制.有色冶炼,1999,28,32.
    [63]B. C. Kim, J. H. Lee, J. J. Kim, Mater. Lett.2002,52,114.
    [64]K. Y. Kim, S. B. Park, Mater. Chem. Phys.2004,86,210.
    [65]黄杏芳,沈晓东,崔升等,无机盐工业,2004,36,24.
    [66]S. C. Tang. J. S. Yao, J. Chen. et al. J. Mater. Pros. Tech.2003,137,82.
    [67]李风光,刘东平,邓培,稀有金属与硬质合金,1999,138,15.
    [68]N. C. Pramanik, S. Das, P. K. Biswas, Mater. Lett.2002,56,671.
    [69]陈世柱,尹志民,黄伯云,有色金属.2000,52,88.
    [70]P. Sujatha Devi, M. Chatterjee, D. Ganguli, Mater. Lett.2002,55,205.
    [71]全宝富,刘凤敏,李爱武,功能材料.2001,32,407.
    [72]宋伟明,周惠良,胡奇林,宁夏大学学报,2000,21,339.
    [73]M. Toki, M. Aizawa, J. Sol-gel Sci. Tech.1997,8,717.
    [74]D. M. Mattox, Thin Solid Film 1991,204,25.
    [75]Z. Y Chen, D. J. Zhang, Y T. Qian, Bull Chin. Sili. Soc.1998,6,54.
    [76]黄在银,柴春芳,谭学才,无机化学学报,2007,23,499.
    [77]Y K. Liu, W. G. Yang, D. D. Hou, Superlattices and Microstructures 2008,43, 93.
    [78]T. Gao, T. H. Wang, J. Cryst. Growth 2006,290,660.
    [79]Y. X. Liang, S. Q. Li, L. Nie, Appl. Phys. Lett.2006,88,193119.
    [80]董红星,杨合情,尹文艳,化学学报,2007,65,2611.
    [81]J. Q. Xu, X. H. Wang, J. N. Shen, Sensors and Actuators B 2006,115,642.
    [82]H. B. Jia, Y. Zhang, X. H. Chen, Appl. Phys. Lett.2003,82,4146.
    [83]P. Guha, S. Kar, S. Chaudhuri, Appl. Phys. Lett.2004,85,3851.
    [84]Y. F. Hao, G. M. Meng, C. H. Ye, Cryst. Growth Design 2005,5,1617.
    [85]董红星,杨合情,杨瑞丽,科学通报,2007,52,1630.
    [86]C. Li, D. H. Zhang, S. Han, X. L. Liu, T. Tang, C. W. Zhou, Adv. Mater.2003,15, 143.
    [87]C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Adv. Mater.2001,13,1330.
    [88]C. Li, D. H. Zhang, S. Han, X. L. Liu, T. Tang, C. Zhou, Adv. Mater.2003,15, 143.
    [89]S. Q. Li, Y. X. Liang, T. H. Wang, Appl. Phys. Lett.2005,87,143104.
    [90]A. Fujishima and K. Honda, Nature 1972,238,37.
    [91]S. Khan, M. Al-Shahry, W. B. Ingler, Science 2002,297,2243
    [92]S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Laegsgaard, F. Besenbacher, B. Hammer, Phys. Rev. Lett.2006,96,066107.
    [93]A. Mills, S. L. Hunte, J. Photochemistry and Photobiology A,1997,108,1.
    [94]K. Sayama, H. Arakawa, Hyomen,1995,33,117.
    [95]A. Kudo, H. Kato and I. Tsuji, Chem. Lett.2004,33,1534.
    [96]H. Mettee, J. W. Otvos, M. Calvin, Solar Energy Mater.1981,4,443.
    [97]J. M. Lehn, J. P. Sauvage and R. Ziessel. Nouveau Journal De Chimie-New Journal of Chemistry 1980,4,623.
    [98]P. A. Brugger, M. Gratzel, Photo Redox Reactions in Functional Micellar Assemblies:Use of Amphiphilic Redox Relays To Achieve Light Energy Conversion and Charge Separation, Boulder, Colo, USA,1981,378.
    [99]M. Gratzel, Boulder,Photoinduced Water Splitting in Heterogeneous Solution. Boulder, Colo, USA,1981,131.
    [100]M. Gratzel, Photocatalysis with Colloidal Semiconductor Particles, San Francisco, Ca, USA,1983,83,1062.
    [101]C. K. Gratzel, M. Jirousek, M. Gratzel. J. Mol. Catal.1987,39,347.
    [102]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,293,269.
    [103]A. F. Heyduk, D. G. Nocera, Science 2001,293,1639.
    [104]Z. Z. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001,414,625.
    [105]S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr. Science 2002,297,2243.
    [106]Y Bessekhouad, M. Trari, J. P. Doumerc, International Journal of Hydrogen Energy 2003,28,43.
    [107]K. Maeda, T. Takata, M. Hara, et al.J. Am. Chem. Soc.2005,127,8286.
    [108]K. Maeda, K. Teramura, D. L. Lu, et al. Nature 2006,440,295.
    [109]盛裴轩,毛节泰,李建国,大气物理学.北京大学出版社,2003,62-99.
    [110]A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater.2011, 10,456
    [111]Q. Li, B. D. Guo, J. G. Yu, J. R. Ran. B. H. Zhang, H. J. Yan, J. R. Gong, J. Am. Chem. Soc.2011,133,10878.
    [112]K. R. Reyes-Gil, E. A. Reyes-Garcia, D. Raftery, J. Phys. Chem. C 2007,111, 14579.
    [113]K. R. Reyes-Gil, Y. P. Sun, E. Reyes-Garcia, D. Raftery. J. Phys. Chem. C 2009, 113,12258.
    [114]J. Lv, T. Kako, Z. S. Li, Z. G. Zou, J. H. Ye, J. Phys. Chem. C 2010,114,6157.
    [115]J. B. Mu, C. L. Shao, Z. C. Guo, M. Y. Zhang, P. Zhang, B. Chen, Y C. Liu, J. Mater. Chem.2012,22,1786.
    [116]J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. S. Zhang, Y C. Mao, S. C. L. Wang, Y Shen, Y. X. Tong, Scientific Report 2013,3,1012.
    [117]J. D. Aiken, R. G. Finke, J. Mol. Catal.1999,145,1.
    [118]R. Schlogl, S. B. Abd Hamid, Angew. Chem.2004,116,1656.
    [119]R. Schlogl, S. B. Abd Hamid, Angew. Chem.2004,43,1628.
    [120]M. Che, C. O. Bennett, Adv. Catal.1989,36,55.
    [121]G. C. Bond, D. T. Thompson, Catal. Rev. Sci. Eng.1999,41,319.
    [122]M. Valden, X. Lai, D. W. Goodman, Science 1998,281,1647.
    [123]K. B. Zhou, Y. D. Li, Angew. Chem. Int. Ed.2011,50,2.
    [124]Y J. Xiong, B. J. Wiley, Y. N. Xia, Angew. Chem. Int. Ed.2007,46,7157.
    [125]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, Y D. Li, J. Catal.2005,229,206.
    [126]H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, C. H. Yan,J. Phys. Chem. B 2005,109,24380.
    [127]J. G. Lv, Y. Shen, L. M. Peng, X. F. Guo, W. P. Ding, Chem. Commun.2010,46, 5909.
    [128]M. Huang, S. Fabris, J. Phys. Chem. C 2008,112,8643.
    [129]A. Mclaren, T. Valdes-Solis, G. Q. Li, S. C. Tsang, J. Am. Chem. Soc.2009,131, 12540.
    [130]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, Chem. Commun.2009,4381.
    [131]R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011,334,1256.
    [132]W. C. Huang, L. M. Lyu, Y. C. Yang, M. H. Huang, J, Am. Chem. Soc.2012,134, 1261.
    [133]P. D. Yang, Nature 2012,482,41.
    [1]T. Bryllert, L. E. Wernersson, T. Lowgren and L. Samuelson, Nanotechnology 2006,17, s227.
    [2]S. Gradecak, F. Qian, Y. Li, H. G. Park and C. M. Lieber, Appl. Phys. Lett.2005, 87,173111.
    [3]O. Hayden, G. F. Zheng and P. Agarwal and C. M. Lieber, Small 2007,3,2048.
    [4]G. C. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber and M. Lundstrom, Nano Lett.2007,7,642.
    [5]P. J. Pauzauskie and P. Yang, Mater. Today 2006,9,36.
    [6]P. D. Yang, R. X. Yan and M. Fardy, Nano Lett.2010,10,1529.
    [7]C. M. Lieber and Z. L. Wang, MRS Bull, 2007,32,99.
    [8]J. Zheng, Y. Yang, B. Yu, X. B. Song and X. G. Li, ACS Nano 2000,35,3523.
    [9]W. Lu and C. M. Lieber, Nat. Mater.2007,6,841.
    [10]R. S. Wagner and W. C. Ellis, Appl. Phys.Lett.1964,4,89.
    [11]C. Cheze, L. Geelhaar, A. Trampert, O. Brandt and H. Riechert, Nano Lett.2010, 10,3426.
    [12]C. Y. He, X. Z. Wang, Q. Wu, Z. Hu, Y. W. Ma, J. J. Fu and Y. Chen, J. Am. Chem. Soc.2010,132,4843.
    [13]S. N. Mohammad, Nano Lett.2008,8,1532.
    [14]S. H. Sun, G. W. Meng, M. G. Zhang, Y. F. Hao, X. R. Zhang and L. D. Zhang. J. Phys. Chem. B 2003,107,13029.
    [15]K. W. Chang and J. J. Wu.J. Phys. Chem. B 2004,108,1838.
    [16]P. X. Gao and Z. L. Wang, J. Phys. Chem. B 2004,108,7534.
    [17]J. S. Jie, G. Z. Wang, X. H. Han, J. P. Fang, Q. X. Yu, Y. Liao, B. Xu, Q. T. Wang and J. G. Hou, J. Phys. Chem. B 2004,108,8249.
    [18]C X. Wang, B. Wang, Y. H. Yang and G. W. Yang,J. Phys. Chem. B 2005,109, 9966.
    [19]Y. L. Chueh, L. J. Chou, C. M. Hsu and S. C. Kung. J. Phys. Chem. B 2005,109, 21831.
    [20]M. O. Orlandi and E. R. Leite, J. Phys. Chem. B 2006,110,6621.
    [21]R. Venugopal, P. I. Lin and Y. T. Chen, J. Phys. Chem. B 2006,110,11691.
    [22]Z. D. Xiao, L. D. Zhang, G. W. Meng, X. D. Tian, H. B. Zeng and M. Fang, J. Phys. Chem. B 2006,110,15724.
    [23]X. S. Fang, U. K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi and D. Golberg, J. Phys. Chem. C 2008,112,4735.
    [24]Q. Wu, F. Zhang, X. Z. Wang, C. Liu and Z. Hu, J. Phys. Chem. C 2007,111, 12639.
    [25]V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand and P. Werner, Nano Lett.2011,11,1247.
    [26]W. W. Lei, D. Liu, P. W. Zhu, X. H. Chen, Q. Zhao, G. H. Wen, Q. L. Cui and G. T. Zou, Appl. Phys. Lett.2009,95,162501.
    [27]B. W. Jacobs, R. J. T. Houk, M. R. Anstey, S. D. House, I. Robertson, A. A. Talin and M. D. Allendorf, Chem. Sci.2011,2,411.
    [28]C. Ohm, M. Brehmer and R. Zentel, Adv. Mater.2010,22,3366.
    [29]J. G. Son, A. F. Hannon, K. W. Gotrik, A. Alexander-Katz and C. A. Ross, Adv. Mater.2011,23,634.
    [30]S. Kaciulis, L. Pandolfi, S. Viticoli, M. Peroni, A. Passaseo, Appl. Surf. Sci.2006, 253,1055.
    [31]P. F. Gonzalez, J. A. Bardwell, S. Moisa, S. Haffouz, H. Tang, A. F. Brana, E. Munoz, Appl. Surf. Sci.2007,253,6185.
    [32]L. S. Yu, N. Liu, C. Y. He, Q. Wu and Z. Hu, J. Phys. Chem. C 2009,113,14245.
    [33]J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang and N. S. Xu, ACS Nano 2008,2,2015.
    [34]T. Y Zhai, Z. J. Gu, H. B. Fu, Y. Ma and J. N. Yao, Cryst. Growth Des.2007,7, 1388.
    [35]N. S. Xu and S. E. Huq, Mater. Sci. Eng. R 2005,48,47.
    [36]X. S. Fang, Y. Bando. U. K. Gautam, C. Ye, and D. Golberg, J. Mater. Chem. 2008,18,509.
    [37]W. J. Qian, Y. L. Zhang, Q. Wu, C. Y. He, Y Zhao, X. Z. Wang and Z. Hu, J. Phys. Chem. C 2011,115,11461.
    [38]N. Liu, Q. Wu, C. Y. He, H. S. Tao, X. Z. Wang, W. Lei and Z. Hu, ACS Appl Mater. Inter.2009,1,1927.
    [39]C. Y. He, Q. Wu, X. Z. Wang, Y. L. Zhang, L. J. Yang, N. Liu, Y. Zhao, Y. N. Lu and Z.Hu,ACS Nano 2011,5,1291.
    [40]F. Zhang, Q. Wu, X. B. Wang, N. Liu, J. Yang, Y. M. Hu, L. S. Yu, X. Z. Wang, Z. Hu and J. M. Zhu, J. Phys. Chem. C 2009,113,4053.
    [1]N. S.Lewis, D. GNocera, Proc. Natl. Acad. Sci. U.S.A.2006,103,15729.
    [2]M.Armand, J. M.Tarascon, Nature 2008,451,652.
    [3]Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem.Soc.2010,132,12170.
    [4]M.Winter, R. J.Brodd, Chem. Rev.2004,104,4245.
    [5]J.Suntivich, K. J.May, H. A.Gasteiger, J. B.Goodenough, S. H.Yang, Science 2011, 334,1383.
    [6]Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nature Mater.2011,10,780.
    [7]D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. J. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G C. Dismukes, J. Am. Chem. Soc.2013,135, 3494.
    [8]A. J.Bard, M. A.Fox, Acc. Chem. Res.1995,28,141.
    [9]M. W. Kanan, D. G.Nocera, Science 2008,321,1072.
    [10]R.Eisenberg, Science 2009,324,44.
    [11]P. D.Yang, Nature 2011,482,41.
    [12]K. B.Zhou, Y. D.Li, Angew. Chem. Int. Ed.2011,50,2.
    [13]W. C.Huang, L. M. Lyu, Y. C. Yang, M. H.Huang, J. Am. Chem. Soc.2011,134, 1261.
    [14]Y. Zhang, B. Deng, T. R. Zhang, D. M. Gao, A. W. Xu, J. Phys. Chem. C.2010, 114,5073.
    [15]A.Paracchino, V.Laporte, K.Siuvla, M.Gratzel, E.Thimsen, Nature Mater.2011, 10,456.
    [16]R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011,334,1256.
    [17]A. Walsh, J. L. F. Da Silva, S. H. Wei, C. Korber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, R. G. Egdell, Phys. Rev. Lett.2008,100,167402.
    [18]J. B. Mu, C. L. Shao, Z. C. Guo, M. Y. Zhang, Z. Y. Zhang, P. Zhang, B. Chen, Y. C. Liu, J. Mater. Chem.2012,22,1786.
    [19]P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, M. Meyyappan, Nano Lett.2004,4,651.
    [20]李世涛,乔学亮,陈建国.透明导带薄膜的研究现状及应用.激光与光电子学进展,2003,40,53.
    [21]D. Kim, S. J. Kim, Surf. Coatings Tech.2003,176,23.
    [22]W. F. Wu, B. S. Chiou, Thin Solid Films,1997,298,221.
    [23]T. Y. Chen, S. X. Huang, C. L. Chien, M. D. Stiles, Phys. Rev. Lett.2006,96, 207203.
    [24]B. J. Hattink, M. Carcia del Muro, Z. Konstantinovic, X. Batlle, A. Labarta, M. Varela,Phys. Rev. B.2006,73,045418.
    [25]I. D. Borcia, P. Beauvillain, B. Bartenlian, et al. J. Magn. Magn. Mater.2006,301, 258.
    [26]M. Hedia, S. Moncef, B. Srahim, Mater.Sci. Engineering C.2006,26,500.
    [27]M. Ivanovskaya, A. Gurlo, P. Bogdanov, Sensors and Actuators B,2001,77,264.
    [28]H. Xu, R. Q. Zhang, A. M. C. Ng, A. B. Djurisic, H. T. Chan, W. K. Chan, S. T. Tong, J. Phys. Chem. C2011,115,19710.
    [29]G. Z. Shen, B. Liang, X. F. Wang, H.T. Huang, D. Chen, Z. L. Wang, ACS Nano 2011,5,6148.
    [30]N. Nadaud, N. Lequeux, M. Nanot, J. Solid State Chem.1998,135,140.
    [31]Z. K. Zheng, B. B. Huang, Z. Y. Wang, M. Guo, X. Y. Qin, X. Y. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C 2009,113,14448.
    [32]J. Y. Ho, M. H. Huang, J. Phys. Chem. C 2009,113,14159.
    [33]H. Z. Bao, W. H. Zhang, D. L. Shang, Q. Hua, Y. S. Ma, Z. Q. Jiang, J. L. Yang, W. X. Huang,J. Phys. Chem. C.2010,114,6676.
    [34]M.Epifani, P.Siciliano, A.Gurlo, N.Barsan, U. Weimar, J. Am. Chem. Soc.2004, 126,4078.
    [35]C. H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J. W. Lee, S. Y. Choi, K. Kim, J. B. Park, K. Lee, J. Am. Chem. Soc.2006,128,9326.
    [36]J. Y.Lao, J. Y.Huang, D. Z.Wang, D. Z. Ren, Adv. Mater.2004,16,65.
    [37]S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, M.C.Payne, Zeitschrift fuer Kristallographie 2005,220,567.
    [38]J. P.Perdew, K.Burke, M. Ernzerhof, Phys. Rev. Lett.1996,77,3865.
    [39]D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett.1979,43,1494.
    [40]B. GPfrommer, M.Cote, S. G. Louie, M. L.Cohen, J. Comput.Phys.1997,131, 233.
    [41]P. Erhart, A. Klein, R. G Egdell, K. Albe, Phys. Rev. B 2007,75,153205.
    [42]Y. F. Li, Z. P. Liu, J. Am. Chem. Soc.2011,133,15743.
    [43]Y. H. Fang, Z. P. Liu, J. Am. Chem. Soc.2010,132,18214.
    [44]G. Cicero, A. Catellani, G. Galli, Phys. Rev. Lett.2004,93,016102.
    [45]Y. F. Li, Z. P. Liu, L. L. Liu, W. G. Gao, J. Am. Chem. Soc.2010,132,13008.
    [46]K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, J. Am. Chem. Soc.2010,132, 5858.
    [47]B. S. Yeo, A. T. Bell, J. Am. Chem. Soc.2011,133,5587.
    [48]Y. D. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov, I. Chorkendorff, Nature Mater.2011,10,434.
    [49]S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijoers, D. G. Nocera, Science 2011,334,645.
    [50]D. K. Zhong, J. W. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc.2009,131, 6606.
    [51]J. A. Seabold, K. S. Choi, J. Am. Chem. Soc.2012,134,2186.
    [52]P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, P. Schmuki, J. Am. Chem. Soc. 2011,133,5629.
    [53]Y. C. Ling, G. M. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett.2011,11, 2119.
    [54]G. M. Wang, H. Y. Wang, Y. C. Ling, Y. C. Tang, X. Y. Yang, R. C. Fitzmorris, C. C. Wang, J. J. Zhang, Y. Li, Nano Lett.2011,11,3026.
    [55]G. M. Wang, Y. C. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, Y. Li, Nano Lett.2011,11,3503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700