铁离子注入磷化铟基稀磁半导体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子注入作为一种独特的材料改性技术手段被广泛应用于当今的工业生产和科学研究领域,根据各种不同目的所进行的元素掺杂和注入处理,对离子注入的源头——离子源也就有着不同的要求。我们在武汉大学加速器实验室已有的溅射型冷阴极潘宁源的基础上进行了改进设计;并以911型离子源为原型,重新设计并制造了新型的中空阴极离子源,并进行了离子束流引出的实验,成功的获得了金属离子束。
     稀磁半导体作为磁性原子和半导体材料性质完美结合而形成的新型材料体系,近年来吸引了诸多科研工作者的注意力,我在已有研究的基础之上,将铁元素作为杂质引入半导体材料,以获得磁性半导体,对其结构与性能进行系统的物理性质,并对磁性机理做出了物理解释。
     本工作主要结果如下:(1)离子源的改进和离子束引出实验:以200kV离子注入机为依托,对潘宁离子源进行了改进设计,使之可用于产生气体和固体两种类别的离子。其中气体离子束达到Ar束流为19μ A,Fe束流为250nA。(2)在InP晶体中注入Fe离子,获得了稀磁半导体,用PL测量得到Fe杂质能级位于磷化铟禁带内部,导带以下0.4eV的位置,用SQUID测量得到样品的最大剩余磁化强度是3.5x10-6emu、最大矫顽场是2000e。
Ion implantation as a new type of material modification method is widely used in today's industrial production and scientific research. According to different purposes, as the key point of ion implantation, different kinds of ion source have been made to satisfied the requirements of the experiments. Author have re-designed and improved Penning ion source and hallow cathode ion course to reach my purpose of metal ion implantation.
     Dilute magnetic semiconductor as a kind of new material which combine the magnetic and semiconductor properties together have attracted many researchers' attention in recent years, on the basis of existing research, the writer choose iron as the doping element into the semiconductor substrate, intention to obtain magnetic semiconductors, and comprehensive study on the aspects of the physical properties, try to make a reasonable explanation of magnetic mechanism.
     This paper mainly divided into the following two parts:
     (1)Which is based on ion implanter machine and the accelerator of ion implantation technology, focuses on the working principle of various ion source and presents new design of two kinds of ion source.
     (2) Used the new kind of ion source, achieve iron ion implantation into indium phosphide and get InP based dilute magnetic semiconductors, comprehensive research of its optical, electronic, magnetic and structure properties.
引文
[1]C. Kittel. Introduction to Solid State Physics (6th ed.). P.299-302.1986. John Wiley&Sons
    [2]C. L. Nave. Magnetic Properties of Solids.2008. Hyper Physics [3]R. M. Bozorth. Ferromagnetism.1993. IEEE Press
    [4]Aharoni and Amikam. Introduction to the Theory of Ferromagnetism.1996. Clarendon Press
    [5]C.Klein and B. Dutrow. Mineral Science (23rd ed.). P.243. Wiley Press
    [6]N. A. Spaldin. Magnetic materials:fundamentals and applications (2nd ed.). P.113-129.2010. Cambridge University Press
    [7]Birch. Schairer and Spicer. Handbook of Physical Constants. 1942. Geological Society of America Special Paper
    [8]F. Matsukura. H. Ohno and T. Dietl. Handbook of Magnetic Materials. P.1-87.2002. Elsevier Press
    [9]F. Matsukura. H. Yasuda. Y. Ohno and H. Ohno. Molecular beam epitaxy of III-V diluted magnetic semiconductor (Ga. Mn)Sb. Physica E 7. P.981.2000
    [10]H. Ohno. F. Matsukura. H. Munekata. Y. lye and J. Nakahara. Proceedings of the 22nd International Conference on Physics of Semiconductors. P.2605-2608
    [11]H. Ohno. Mn-Based Ⅲ-Ⅴ Diluted Magnetic (Semimagnetic) Semiconductors. Mater. Sci. Forum 182-184. P.443.1995
    [12]T. Adhikari and S. Basu. Electrical Properties of Gallium Manganese Antimonide:a New Diluted Magnetic Semiconductor. Jpn. J.Appl.Phys.33. P.4581.1994
    [13]J. D. Boeck. R. Oesterholt. H. Bender. A. V. Esch. C. Bruynseraede. C. V. Hoof and G. Borghs. the 2nd International Symposium on Metallic Multilayers.1995
    [14]M. Tanaka. J.P.Harbison and G. M. Rothberg. Heteroepitaxy of ferromagnetic MnAs thin films on (001) GaAs:Template effects and epitaxial orientations. J. Cryst. Growth.150. P.1132.1995
    [15]S. Datta and B. Das. Electronic analog of the electrooptic modulator. Appl. Phys. Lett.56. P.665.1990
    [16]J. K. Furdyna and J. Kossut. Semiconductor and Semimetals Vol.25.1988
    [17]H. Munekata. H. Ohno. S. V. Molnar. A. Segmuller. L.L.Chang and L. Esaki, Diluted magnetic III-V semiconductors. Phys. Rev. Lett.63. P.1849.1989.
    [18]H. Ohno. H. Munekata. T. Penney. S. V. Molnar and L. L. Chang. Magnetotransport properties of p-type (In. Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett.68. P.2664. 1992.
    [19]H. Ohno. H. Munekata. S. V. Molnar and L. L. Chang. New III-V diluted magnetic semiconductors. J. Appl. Phys.69. P.6103.1991
    [20]H. Munekata. A. Zaslavsky. P. Fumagalli and R. J. Gambio. Preparation of (In. Mn)As/(Ga. Al)Sb magnetic semiconductor heterostructures and their ferromagnetic characteristics. Appl.Phys. Lett.63. P.2929.1993
    [21]H. Ohno. Making Nonmagnetic Semiconductors Ferromagnetic. Science 281. P.951.1998
    [22]A. H. MacDonald. P. Schiffer and N. Samarth. Ferromagnetic semiconductors:moving beyond (Ga. Mn)As. nature materials VOL4. P.195.2005
    [23]H. Ohno. Diluted Magnetic Semiconductors.2011. International Conference and School on Spintronics and Quantum Information Technology
    [24]H. Ohno. A. Shen. F. Matsukura. A. Oiwa and A. Endo. (Ga. Mn)As:A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett.69. P.363.1996
    [25]A. M. Nazmul. S. Sugahara and M. Tanaka. Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn δ-doped GaAs and p-type selective doping. Phys. Rev. B 67. P.241308.2003
    [26]K. W. Edmonds. High-Curie-temperature Gal-xMnxAs obtained by resistance-monitored annealing. Appl. Phys. Lett.81. P.4991-4993.2002
    [27]K. C. Ku. Highly enhanced Curie temperature in low-temperature annealed [Ga. Mn]As epilayers. Appl.Phys. Lett.82. P.2302-2304.2003
    [28]D. Chiba. K. Takamura. F. Matsukura and H. Ohno. Effect of low-temperature annealing on (Ga. Mn)As trilayer structures. Appl. Phys. Lett.82. P.3020-3022.2003
    [29]H. Ohno. A new diluted magnetic semiconductor. Appl. Phys. Lett.69. P.363.1996
    [30]F. Matsukura. Growth and properties of (Ga. Mn) As:A new III-V diluted magnetic semiconductor. Appl. Surf. Sci.113/114. P.178.1997
    [31]A. Shen. Epitaxy of (Ga. Mn)As. a new diluted magnetic semiconductor based on GaAs. J. Cryst. Growth.175/176. P.1069. 1997
    [32]K. S. Burch. D. B. Shrekenhamer. E. J. Singley. J.Stephens. B. L. Sheu. R. K. Kawakami. P. Schiffer. N. Samarth. D. D. Awschalom. D. N. Basov. Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor. Phys. Rev. Lett.97. P.087208.2006
    [33]M. A. Ruderman and C. Kittel. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev.96. P.99.1954
    [34]T. Jungwirth. J. Sinova. J. Masek. J. Kucera. and A. H. MacDonald. Theory of ferromagnetic (III. Mn)V semiconductors. Rev. Mod. Phys.78. P.809.2006
    [35]R. Skomski. Simple Models of Magnetism.2008. Oxford New York
    [36]C. Zener. Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev.82. P.403-405.1951
    [37]D. C. Mattis. Theory of Magnetism.1965. Harper and Row. New York
    [38]H. Yang. H. Al-Birthen. E. Trifan. D. C. Ingram and A. Smith. Crystalline phase and orientation control of manganese nitride grown on MgO(001) by molecular beam epitaxy. J. Appl.Phys.91. P.1053.2002.
    [39]L. M.Corliss. N.Elliot and J.M.Hastings. Antiferromagnetic Structure of CrN. Phys. Rev.117. P.929.1960.
    [40]S. J. Potashnik. Effects of annealing time on defect-controlled ferromagnetism in Ga1-xMnxAs. Appl.Phys. Lett.79. P.1495-1497.2001
    [41]R. W. Hamm and M. E. Hamm. Industrial Accelerators and Their Applications.2012. World Scientific
    [42]A. J. Armini. S. N. Bunker and M. B. Spitzer. Proc.16th IEEE Photovoltaic Specialists Conference.1982
    [43]G. Landis. Proc.15th IEEE Photovoltaic Specialists Conference.1981
    [44]J. H.Yang. J. H. Oh. W. J. Cho. S. J. Lee. K. J. Im and K. W. Park. Defect-Free Ultra-Shallow Source/Drain Extension Using Spin-on-Dopants for Deep Submicron SOI MOSFET Applications. J. Korean. Phys. Soc.44. P.423.2004
    [45]S. K. Baek. T.S.Jang and H.S.Hwang. Effect of low-temperature preannealing on laser-annealed p+/n ultrashallow junctions. Appl. Phys. Lett.80. P.2272.2002
    [46]D. Lenoble. F. Arnaud. A. Grouillet. R. Liebert. S.Walther. S.B. Felch. Z. Fang and M. Haond. Tech. Dig. VLSI. Symp.. P.110. 2000
    [47]A. Anders. Handbook of Plasma Immersion Ion Implantation and Deposition. P.2.2000. Wiley
    [48]G. S.May and S. M. Sze. Fundamental of Semiconductor Fabrication. P.105.2004. Wiley
    [49]J. H. Chen. C.Jang. S.Xiao. M. Ishigami and M. S. Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech.3. P.206.2008
    [50]A. K. Geim and P. Kim. Carbon wonderland. Scientific American. P.298.2008.
    [51]K. S. Novoselov. A. K. Geim. S. V. Morozov. D.Jiang. Y.Zhang. S. V. Dubonos. I. V. Grigorieva and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science 306. P.666. 2004
    [52]M. I. Katsnelson. Graphene:carbon in two dimensions. Materials Today 10. P.20.2007
    [53]A. B. Kuzmenko. E. V. Heumen. F. Carbone and D. V. D. Marel. Universal Optical Conductance of Graphite. Phys. Rev. Lett.100. P.117401.2008
    [54]A. K. Geim and K. S. Novoselov. The rise of grapheme. Nature Mater.6. P.183.2007
    [55]H. Shioyama. H. Sakakihara. N. I wash it a. K. Tatsumi and Y. Sawada. On the generation of fine metallic particles in graphite matrix. J. Mater. Sci. Lett.13. P.1056.1994
    [56]N. Tang and P. Tornatore. Current developments in SELDI affinity technology. Mass spectrometry reviews 23. P.34-44. 2004
    [57]C. Prakash. C.L.Shaffer. A. Nedderman. Analytical strategies for identifying drug metabolites. Mass spectrometry reviews 26. P.340-369.2007
    [58]V. G. Zaikin and J. M. Halket. Review:Derivatization in mass spectrometry—8. Soft ionization mass spectrometry of small molecules. European Journal of Mass Spectrometry 12. P.79-115.2006
    [59]J. B. Fenn. M.Mann. C. K. Meng. S. F. Wong and C. M. Whitehouse. Electrospray ionization-principles and practice. Mass Spectrometry Reviews 9. P.37-70.1990
    [60]K. Hiraoka. K. Nishidate. K.Mori. D. Asakawa. S.Suzuki. Development of probe electrospray using a solid needle. Rapid Communications in Mass Spectrometry 21. P.3139-3144.2001
    [61]Z. Z. Song. Several mini ion sources. Vacuum 36. P.897. 1986
    [62]J. X. Yu. J. F. Yan. Z. Z. Song. A cold-cathode PIG ion source for the production of intense 0-ion beam. Z. Y. Wang and W. J. Zhao Nuclear Instruments and Methods in Physics Research A 531. P.341-345.2004
    [63]J. X. Yu. Z. Z. Song. X. T. Ren and R. X. Li. The investigation of a negative hydrogen ion source. Rev.Sci.Instrum.65.1994 [64] J. X. Yu and J.E.Chen. Theoretical and Experimental Investigation on Simultaneous Acceleration of Negative and Positive Ions With Equal q/M in a RFQ Accelerator. Atomic Energy Science and Technology 35. P.34.2001
    [65]J. X. Yu. X. T. Ren and Z. Z. Song. A universal pocket PIG ion source with a permanent magnet. Rev. Sci. Instrum.67. P.1375. 1996
    [66]于金祥.闫继锋.宋执中.任晓堂和王忠义。氧负离子潘宁源的实验研究。 原子能科学技术第39卷第3期.2005
    [67]王志刚.方渡飞.施伟和吴松茂。911A型中空阴极离子源的改进。核技术第20卷第4期.1997
    [68]M. Turek. A. Drozdziel. K. Pyszniak. J. Sielanko. Extraction of the ion beam from hollow cathode ion source. Experiment and computer simulation. Vacuum 78. P.649-654.2005
    [69]R. A. Jameson and G.P.Lawrence. Nuclear Instruments and Methods. P.474.1992
    [70]J. X. Yu and J. E. Chen. Trends in Nuclear Physics. P.34.1996
    [71]R. C. Jaklevic. J. Lambe. A. H. Silver and J. E. Mercereau Quantum Interference Effects in Josephson Tunneling. Phys. Rev. Lett.12. P.159-160.1964
    [72]P. Anderson and J. Rowell. Probable Observation of the Josephson Superconducting Tunneling Effect. Phys. Rev. Lett.10. P.230.1963
    [73]E. Hall. On a New Action of the Magnet on Electric Currents. American Journal of Mathematics. Vol.2. P.287-292.1879
    [74]S. Kasap. Hall Effect in Semiconductors.2008
    [75]H. J. Kimble. M. Dagenais. L. Mandel. Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett.39. P.691-695.1977 [76]M. Kira. S. W. Koch. Semiconductor Quantum Optics.2011. Cambridge University Press
    [77]C. F. Klingshirn. Semiconductor Optics.2012. Springer
    [78]K.M.Lang. D. A. Hite. R. W. Simmonds. R. McDermott. D. P. Pappas and J.M.Martinis. Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Review of Scientific Instruments 75. P.2726-2731.2004
    [79]G. Binnig and C. F. Quate. Atomic Force Microscope. Phys. Rev. Lett.56. P.930-933.1986
    [80]P. J. Bryant. R. G. Miller and R.Yang. Scanning tunneling and atomic force microscopy combined. Appl. phys. Lett.52. P.2233-2235.1988
    [81]Electron Spectroscopy for Atoms. Molecules and Condensed Matter.1981. Nobel Lecture
    [82]S. Ray and A. G. Shard. Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry 83. P.8659-8666.2011
    [83]W. H. Bragg. The Investigation of the Properties of Thin Films by Means of X-rays. Nature 115. P.266.1925
    [84]W. H. Bragg. Transactions of the Royal Society of Science of Australia.1907
    [85]D. J. Gardiner. Practical Raman spectroscopy.1989. Springer Verlag
    [86]R. S. Chao. R. K. Khanna. Lippincott ER.1974
    [87]International Board on the Applications of the Mossbauer Effect and Mossbauer Effect Data Center.2010
    [88]J. M. Gtltlich. The Principle of the Mossbauer Effect and Basic Concepts of Mossbauer Spectrometry
    [89]Royal Society of Chemistry website. Introduction to Mossbauer Spectroscopy.2010
    [90]Y. L.Chen and D.P.Yang. Mossbauer Effect in Lattice Dynamics.2007. John Wiley&Sons.
    [91]L. Walker. G. Wertheim and V. Jaccarino. Interpretation of the Fe57 Isomer Shift. Phys. Rev. Lett.6. P.98.1961
    [92]L. C. Feldman. J.W.Mayer. S. T. Picraux. Materials Analysis by Ion Channeling.1982. Academic Press.
    [93]L. C. Feldman. J.W.Mayer. Fundamentals of Surface and Thin Film Analysis.1986. Prentice-Hall.
    [94]RBS Theory Tutorial.2007. Evans Analytical Group: Training
    [95]RBS Instrumentation Tutorial.2007. Evans Analytical Group: Training
    [96]J. Okabayashi. A. Kimura.0. Rader. T. Mizokawa. A.Fujimori. T. Hayashi and M. Tanaka. Core-level photoemission study of Ga1-xMnxAs. Phys. Rev. B 58. P.4211.1998
    [97]J. Szczytko. W. Bardyszewski and A. Twardowski. Optical absorption in random media:Application to Gal-xMnxAs epilayers. Phys. Rev. B 64. P.075306.2001
    [98]J. Schliemann. J. Konig and A. H. MacDonald. Monte Carlo study of ferromagnetism in (III. Mn) V semiconductors. Phys. Rev. B 64. P.165201.2001
    [99]S. J. Potashnik. K. C. Ku. R. Mahendiran. S.H.Chun. R.H.Wang. N. Samarth and P. Schiffer. Saturated ferromagnetism and magnetization deficit in optimally annealed Ga1-xMnxAs epilayers. Phys. Rev. B 66. P.012408.2002
    [100]K.M.Yu. W. Walukiewicz. T. Wojtowicz. I. Kuryliszyn. X.Liu. Y.Sasaki and J. K. Furdyna. Effect of the location of Mn sites in ferromagnetic Ga1-xMnxAs on its Curie temperature. Phys. Rev. B 65. P.201303.2002
    [101]T. Hayashi. Y.Hashimoto. S. Katsumoto and Y. Iye. Effect of low-temperature annealing on transport and magnetism of diluted magnetic semiconductor (Ga. Mn)As. Appl. Phys. Lett.78. P.1691.2001
    [102]S.J. Potashnik. K. C. Ku. S.H.Chun. J. J. Berry. N. Samarth and P. Schiffer. Effects of annealing time on defect-controlled ferromagnetism in Ga1-xMnxAs. Appl. Phys. Lett.79. P.1495.2001
    [103]K. Y.Wang. M. Sawicki. K.W.Edmonds. R. P. Campion. S. Maat. C. T. Foxon. B.L.Gallagher and T. Dietl. Spin Reorientation Transition in Single-Domain (Ga. Mn)As. Phys. Rev. Lett.95. P.217204.2005
    [104]K. Takamura. F. Matsukura. D. Chiba and H. Ohno. Magnetic properties of (Al. Ga. Mn) As. Appl. Phys. Lett.81. P.2590.2002
    [105]W. Platow. A.N. Anisimov. G. L. Dunifer. M. Farle and K.Baberschke. Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys. Rev. B 58. P.5611.1998
    [106]I. G. Bucsa. R. W. Cochrane and S. Roorda. Structural morphology and Mn distribution in annealed InP coimplanted with P and Mn. JOUR. APPL. PHYS 107. P.073912.2010
    [107]M. J. Seong.0.1. Micic. A. J. Nozik and A. Mascarenhas. Size-dependent Raman study of InP quantum dots. APPL. PHYS. LETT.82. P.185.2003
    [108]H. W. Dong. Y. W. Zhao and J. M. Li. Annealing and activation of silicon implanted in semi-insulating InP substrates. Materials Science in Semiconductor Processing 6. P.215-218. 2003
    [109]K. Kuriyama. S. Satoh. K. Sakai and K. Yokoyama. Effect on the excess P element in P-ion-implanted semi-insulating Fe-doped InP. Nuclear Instruments and Methods in Physics Research B. P.456-458.1997
    [110]M. Ernan. G. Gillardin. J. LeBris. M. Renaud. Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices. P.78.1989. SPIE
    [111]M. Wakahara. M. Uchida. M. Warashina.0. Oda and M. Taj ima. Microscopic photoluminescence evaluation of bright spots in Fe-doped InP wafers. Journal of Crystal Growth 210. P.226-229. 2000
    [112]Y. W.Zhao. H.W.Dong. Y.H.Chen. Y. H. Zhang and J. H. Jiao. Creation and suppression of point defects through a kick-out substitution process of Fe in InP. Appl. Phys. Lett.80. P.2878. 2002
    [113]T. Cesca. A. Verna. G. Mattei. A. Gasparotto. B. Fraboni. G. Impellizzeri and F. Priolo. Ion beam analyses and electrical characterization of substitutional Fe properties in Fe implanted InP. Nuclear Instruments and Methods in Physics Research B 249. P.894-896.2006
    [114]T. Cesca. A. Gasparotto. G. Mattei and V. Rampazzo. Atomic environment of Fe following high-temperature implantation in InP. PHYS. REV. B 68. P.224113.2003
    [115]D. Burger. S.Q.Zhou. J. Grenzer. H. Reuther and W. Anwand. The influence of annealing on manganese implanted GaAs films. Nuclear Instruments and Methods in Physics Research B 267. P.1626-1629.2009
    [116]C. D. Damsgaard. H. P. Gunnlaugsson. G. Weyer and J. B. Hansen. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mossbauer spectroscopy. Solid State Communications 133. P.579-581.2005
    [117]K. Bharuth-Ram. W. B. Dlamini. H. Masenda. D. Naidoo. H. P. Gunnlaugsson and G. Weyer. 57Fe Mossbauer studies on 57Mn implanted InP and InAs. Nuclear Instruments and Methods in Physics Research B 272. P.414-417.2012
    [118]P. Kringhoj and G. Weyer. Lattice location and electrical activity of ion implanted Sn in InP. Appl. Phys. Lett.62. P.1973. 1993
    [119]M. K. Sharma. A. Kanjilal. M. Voelskow. D. Kanjilal and R. Chatterjee. Enhancement of ferromagnetism in Ni-implanted Hf02 dielectric thin films. Nuclear Instruments and Methods in Physics Research B 268. P.1631-1636.2010
    [120]B. Zhang. C.C.Chen. C.Yang. J.Z.Wang. L.Q.Shi. H.S.Cheng. D. G. Zhao. Ferromagnetic modification of GaN film by Cu+ions implantation. Nuclear Instruments and Methods in Physics Research B 268. P.123-126.2010
    [121]B. Zhang. Q.H.Li. L.Q.Shi. H. S. Cheng and J. Z. Wang. Ferromagnetic modification of ZnO film by Fe+ions implantation. Nuclear Instruments and Methods in Physics Research B 266. P.4891-4895.2008
    [122]A. Bonanni. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths. Semicond. Sci. Technol.22. P. R41-R56.2007
    [123]S. J. Pearton. Y. D. Park. C. R. Abernathy. M. E. Overberg. G. T. Thaler. J.Kim and F.Ren. Ferromagnetism in GaN and SiC doped with transition metals. Thin Solid Films 447-448. P.493-501.2004
    [124]N. Brihi. Z. Takkouk and A. Bouaine. Laser annealing effects on the structural, optical and magnetic properties of sputtered Zn0.95Co0.050 thin film. Materials Science and Engineering B 145. P.6-10.2007
    [125]S. Chattopadhyay. T. K. Nath. A. J. Behan. J. R. Neal. D. Score. Q. Feng. A. M. Fox and G. A. Gehring. Temperature dependent carrier induced ferromagnetism in Zn(Fe)0 and Zn(FeAl)0 thin films. Applied Surface Science 257. P.381-387.2010
    [126]A. Kalboussi. G. Marrakchi. G. Guillot. K. Kainosho and 0. Oda. Characterization of deep level defects in thermally annealed Fedoped semi insulating InP by photoinduced current transient spectroscopy. Appl.Phys. Lett.61. P.2583.1992
    [127]A. Gasparotto. A. Carnera. A. Paccagnella. B. Fraboni and F. Priolo. High-resistance buried layers by MeV Fe implantation in n-type InP. Appl. Phys. Lett.75. P.668.1999
    [128]R. Fornari. E. Gilioli. A. Sentiri. G. Mignoni. M. Avella. J.Jimenez. Homogeneity of thermally annealed Fe-doped InP wafers. Materials Science and Engineering B 44. P.233-231.1997
    [129]B. Fraboni. A. Gasparotto. T. Cesca. F. Priolo. G. Scamarcion and A. Mazzone. High Fe solubility in InP by high temperature ion implantation. Nuclear Instruments and Methods in Physics Research B 178. P.275-278.2001
    [130]S. Hahn. K. Dornich. T. Hahn. A. Kohler and J. R. Niklas. Contact-free defect investigation of wafer-annealed Fe-doped SI-InP. Materials Science in Semiconductor Processing 9. P.355-358.2006
    [131]A. Gasparotto. A. Carnera. A. Paccagnella. B. Fraboni. F. Priolo and E. Gombia. Semi-insulating behaviour in Fe MeV implanted n-type InP. Nuclear Instruments and Methods in Physics Research B 148. P.411-415.1999
    [132]S. Takenoiri. Y. Sakai. K. Enomoto. S. Watanabe and H.Uwazumi. Magnetic Properties. Magnetic Cluster Size. and Read-Write Performance of CoPtCr-Si02 Perpendicular Recording Media. IEEE TRANSACTIONS ON MAGNETICS.39. P.2279. 2003
    [133]M. Godec. D. Mandrino. B. Sustarsic. D. Nolan and M. Jenko. Characterisation of rapidly solidified nanocrystalline softmagnetic ribbons based on Fe-Si-B with P and Ga additions. Surf. Interface. Anal.40. P.498-502.2008
    [134]C. Delerue and M. Lannoo. Transition-metal impurities in semiconductors and hetero junction band lineups. PHYS. REV. B.38. P.7723.1988
    [135]J. M. Langer and H. Heinrich. Deep-Level Impurities:A Possible Guide to Prediction of Band-Edge Discontinuities in Semiconductor Hetero junctions. PHYS. REV. LETT.55. P.1414.1985
    [136]E. Malguth. A. Hoffmannl and M. R. Phillips. Fe in III-V and II-VI semiconductors. phys. stat. sol. (b) 245. P.455-480.2008
    [137]T. Cesca. A. Verna. G. Mattei and A. Gasparotto. Mechanisms for the activation of ion-implanted Fe in InP. JOURNAL OF APPLIED PHYSICS 100. P.023539.2006
    [138]T. Cesca and A. Gasparotto. Deep level thermal evolution in Fe implanted InP. JOURNAL OF APPLIED PHYSICS 102. P.093711. 2007
    [139]G. Impellizzeri and F. Priolo. Electrical activation of the Fe2+/3+ trap in Fe-implanted InP. APPLIED PHYSICS LETTERS 87. P.252113.2005
    [140]J. F.Xu. S.W.Liu. M.Xiao. P. M. Thibado. Electrical and optical studies of GaMnAs/GaAs(001) thin films grown by molecular beam epitaxy. Journal of Crystal Growth 301/302. P.101-104.2007
    [141]T. Dietl. Ferromagnetic semiconductors. Semicond. Sci. Technol.17. P.377-392.2002
    [142]K.Sato. L. Bergqvist. J. Kudrnovsky. P. H. Dederichs and O.Eriksson. First-principles theory of dilute magnetic semiconductors. REVIEWS OF MODERN PHYSICS 82. P.1633.2010
    [143]T. G. Sebastian. T. B. Goennenwein and M. S. Brandt. Prospects for carrier-mediated ferromagnetism in GaN. phys. stat. sol. (b) 239. P.277-290.2003
    [144]X. Y.Liu and J. K. Furdyna. Ferromagnetic resonance in Ga1-xMnxAs dilute magnetic semiconductors. J. Phys. Condens. Matter 18. P. R245-R279.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700