牛角膜内皮细胞玻璃化冷冻保护剂及组织低温断裂消除方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深低温保存是实现角膜长期保存的最有效方法。角膜的慢速冻存法和冷冻干燥法本身存在着很多问题,这使得玻璃化法保存角膜成为一种重要的途径。
     在玻璃化法保存中,冷冻保护剂能够促进冷冻体系向玻璃态的转变,减少对细胞或组织的低温损伤。由保护剂和载体溶液构成的玻璃化溶液是组织玻璃化法保存的研究热点之一。然而,对于不同的细胞或组织,同一种保护剂会显示出不同程度的毒性及渗透能力,使得最终的保护效果也有所不同。到目前为止,保护剂对细胞或组织的作用机理还不清楚。在为一种既定的细胞类型选择保护剂时,很大程度上依赖于实验的方法。
     内皮细胞是角膜组织中最重要的细胞类型。本论文首先以牛角膜内皮细胞为保存对象,筛选合适的保护剂和玻璃化溶液。首先,系统地研究了渗透性保护剂,在考察其玻璃化能力和毒性的基础上,以冷冻保存的效果为判断标准,获得了一种较好的渗透性保护剂组分。然后,分别研究了糖类非渗透性保护剂和大分子非渗透性保护剂。同样以冷冻保存的效果为判断标准,在确定保存效果较好的糖和大分子的种类后,确定各自的最优浓度。本论文中,渗透性保护剂的筛选范围包括二甲基亚砜、乙二醇(EG)、1,2-丙二醇、2,3-丁二醇、乙酰胺和乙二醇单甲醚;糖类非渗透性保护剂包括木糖、果糖、甘露糖、葡萄糖、麦芽糖、蔗糖和海藻糖;大分子则包括聚蔗糖(MW 7,000)、葡聚糖(MW7,000)、硫酸软骨素(CS,MW 18,000~30,000)、牛血清白蛋白(MW 68,000)和聚乙二醇(MW6,000、10,000和20,000)。细胞活性评估的主要方法为台盼兰拒染法。通过实验测定和分析,结果发现:乙二醇、葡萄糖和硫酸软骨素的保护效果最好。由此获得的玻璃化溶液的组成是:载体溶液-乙二醇-葡萄糖-硫酸软骨素,其中,乙二醇、葡萄糖和硫酸软骨素的质量百分比浓度分别为52%、8%和3%。冷冻保存后角膜内皮细胞的活率高达89.4±2.1%,并且继续培养后细胞的活力能够得到恢复。
     在组织的玻璃化法保存中,通常采用一步降温的方式,即将冻存对象直接投入液氮。这种降温方式的降温速率较快,会在组织内引起较大的热应力。当热应力超越组织的承受极限,组织就会发生低温断裂。断裂会影响组织的保存效果,而且有断裂存在的组织是绝不允许用于临床的。
     本论文提出了两步降温即首先在冷氮气中降温然后再转移至液氮的冷冻方法。两步降温方法的降温速率较一步法降温要低,有利于削弱冻存组织内的热应力进而消除组织的断裂。本章首先研究了两步降温及复温过程中玻璃化溶液的断裂情况,并且确定了两步降温法的操作参数;然后分别以肉眼、光学显微镜及扫描电子显微镜考察了复苏后组织的断裂情况。结果表明,在两步降温的过程中,仅在纯玻璃化溶液的表面区域有宏观断裂,在溶液的主体部分没有断裂发生。也就是说,两步降温法能够消除玻璃化溶液主体部分的宏观断裂。在执行两步降温时,首先在降温的第一步,应将冻存对象置于氮气中-196~-135℃的温度区间内,在-80℃以上温度的降温速率应大于10℃/min:当其温度降到-100℃以下,即可将冻存对象浸入液氮,降温速率应小于165℃/min。在经历两步降温冷冻后的牛角膜、牛血管和猪的软骨组织上找不到任何宏观和微观的裂纹。本方法不需要大型设备,操作简便,适合于大规模推广使用。
     组织的玻璃化法保存中,玻璃化溶液的导入和导出方案极大地影响着保存的效果。合适的方案有利于减弱对细胞的毒性损伤和渗透损伤。对于分步法导入和导出保护剂,保护剂与细胞的平衡时间是导入和导出方案中的重要因素。本论文以正交实验的方法确定分步导入和导出保护剂过程的平衡时间。结果表明:导入过程中,与10%EG、25%EG、50%EG和52%EG-8%Glucose-3%CS的最佳平衡时间分别为4 min、5 min、6 min和3 min:导出过程中,与50%EG-5%glucose、25%EG-5%glucose、10%EG-5%glucose和5%glucose的最佳平衡时间分别为4 min、6 min、6 min和6 min。
     最后,论文应用筛选获得的玻璃化溶液和最佳的平衡时间以及两步降温方法保存牛角膜,发现角膜内皮细胞的活率为41.0±5.9%,显著高于目前文献报道的玻璃化法角膜保存的最好结果10%。
Cryopreservation is an effective method for the long-term storage of corneas.Lots of unsolved problems exist for corneal preservation by conventional slow freezing method and freeze-drying method.Therefore,it is necessary to explore the appropriate technique for the corneal vitrification.
     In vitrification process,the selection of suitable cryoprotective agents(CPAs) is important, as the cryoprotectants facilitate the transition to a vitreous state and reduce cryo-damage to cells and extracellular matrix in tissue.The components of vitrification solution consisting of various CPAs and the carrier solution is currenetly one of key research topics.However,for different cells or tissues,the same CPAs may show toxicity and permeability to different extents,and thus the preservative efficacies are also different for different cells or tissues.So far,the protecting mechanisms of CPAs are not clear yet.It is not possible to predict how different CPAs and their combinations affect a given cell type,and hence the selection of cryoprotectants for a given type of cells is still largely dependent on experimental approach.
     The corneal endothelial cell(CEC) is the most important cell type in the cornea tissue.The objective of the first part of this thesis was to select and test systematically possible CPAs and to obtain a suitable formula for vitrification of CECs.Fresh bovine CECs were isolated and tested with an optimized vitrification protocol with multi-step CPA loading and removal. Three types of CPAs components,i.e.the penetrating CPAs,sugars and macromolecular compounds,were experimentally evaluated using the viability assayed by trypan blue. Dimethyl sulfoxide,ethylene glycol(EG),1,2-propanediol,2,3-butanediol,acetamide and ethylene glycol mono-methyl ether were chosen as the penetrating CPA components.Sugars including xylose,fructose,mannose,glucose,maltose,sucrose and trehalose were tested. Ficoll(MW 7 KD),dextran(MW 7 KD),chondroitin sulfate(CS,MW 18-30 KD),bovine serum albumin(MW 68 KD),and polyethylene glycol(MW 6 KD,10 KD and 20 KD) were chosen as the macromolecular compounds.The results showed that EG was the most suitable penetrating CPA component and glucose the most suitable sugar,and CS the most suitable macromolecule.The optimized concentrations for each component in the vitrification solution were 52%(w/w) EG,8%(w/w) glucose and 3%(w/w) CS.The CEC survival rate of 89.4±2.1%(mean±S.D.) was obtained using this formula and established vitrification protocol. Also,cell viability can recover after one passage post-culture.
     For tissue vitrification,the commonly-used cooling method is to directly plunge the object into liquid nitrogen,i.e.one-step cooling.The cooling rate resulted from the method itself is high so that large thermal stress can be formed and accumulated within the tissues.The stress can potentially exceed the strength of the material,leading to its fracturing,which is a significant barrier to the cryopreservation of three-dimensional multicellular tissues.
     In this thesis,a two-step cooling protocol was presented to eliminate the low temperature fracture of tissue,in which the object were placed in nitrogen vapor to be cooled first and then plunged into liquid nitrogen.Macroscopic phenomena about fracture during cooling and thawing were observed for vitrification solution alone.Then three tissue segments of bovine cornea,bovine blood vessel and pig cartilage were observed after preservation respectively by naked eyes,light microscopy and scanning electronic microscopy.In addition,operatingl parameters for this protocol were determined experimentally.The results showed that,using the two-step cooling protocol,fracture only occurred near the free-stream surface of solution. No fracture,whether macro- or micro-,can be found within the tissues.The operating procedure of this protocol is as follows,the object should be placed in vapor phase of above the liquid nitrogen with the temperature between -196~-135℃and the cooling rates higher than 10℃/min above -80℃.The object is immersed into liquid nitrogen when its temperature was decreased below -100℃and the initial cooling rate should be lower than 165℃/min.
     For tissue preservation by vitrification,the protocols of CPA addition and removal can greatly influence the outcome of preservation.Suitable protocols help to weaken toxic and osmotic injuries.For CPA addition and removal by stepwise method,the equilibration time of CPA is an important factor.In this thesis,orthogonal tests were conducted in order to obtain the optimal equilibration time of CPA in each step.The results showed that,during CPA addition,the equilibration time was 4 min、5 min、6 min and 3 min respectively for 10%EG, 25%EG,50%EG and 52%EG - 8%Glucose - 3%CS,and4 min、6 min、6 min and 6 min for 50%EG-5%glucose,25%EG-5%glucose,10%EG-5%glucose and 5%glucose during CPA removal.
     Finally,with the vitrification solution and the optimal equilibration time,and the two-step cooling protocol obtained in this thesis,bovine cornea segments were vitrified and the survival rate of CECs was 41.0±5.9%,significantly higher than those reported in literature.
引文
[1]华泽钊,任禾盛.低温生物医学技术.北京:科学出版社,1994.
    [2]李广武,郑从义,唐兵.低温生物学.长沙:湖南科学技术出版社,1998.
    [3]Mazur P,Leibo S P,Chu E H.A two-factor hypothesis of freezing injury.Evidence from Chinese hamster tissue-culture cells.Experimental Cell Research,1972,71(2):345-355.
    [4]Bank H.Visualization of freezing damage.Ⅱ.Structural alterations during warming.Cryobiology,1973,10(2):157-170.
    [5]Luyet B J.The vitrification of organic colloids and of protoplasm.Biodynamica,1937,1(1):1-14.
    [6]Rall W F,Fahy G M.Ice-free cryopreservation of mouse embryos at -196 ℃ by vitrification.Nature,1985,313(6003):573-575.
    [7]Orlowski T,Tatarkiewicz K,Sitarek E,et al.Experience with pancreas islets Separation,immunoisolation and cryopreservation.Annals of Transplantation,1996,1(1):54-58.
    [8]Langer S,Lau D,Eckhardt T et al.Viability and recovery of frozen-thawed human islets and in vivo quality control by xenotransplantation.Journal of Molecular Medicine,1999,77(1):172-174.
    [9]Bottomley M J,Baicu S,Boggs J M et al.Preservation of embryonic kidneys for transplantation.Transplantation Proceeding,2005,37(1):280-284.
    [10]Fahy G M,Wowk B,Wu J et al.Cryopreservation of organs by vitrification:Perspectives and recent advances.Cryobiology,2004,48(2):157-178.
    [11]De Graaf I A,Draaisma A L,Schoeman O et al.Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification.Cryobiology,2007,54(1):1-12.
    [12]Ekins S,Murray G I,Hawksworth G M.Ultrastructural and metabolic effects after vitrification of precision-cut rat liver slices with antifreeze proteins.Cryo-Letters,1996,17(3):157 -164.
    [13]Song Y C,Khirabadi B S,Lightfoot F et al.Vitreous cryopreservation maintains the function of vascular grafts.Nature Biotechnology,2000,18(3):296 -299.
    [14]Brockbank K G,Song Y C,Khirabadi B S et al.Storage of tissues by vitrification.Transplantation Proceeding.2000,32(1):3-4.
    [15]Vicente J S,Viudes-de-Castro M P.A sucrose-DMSO extender for freezing rabbit semen.Reproduction,Nutrition,Development,1996,36(5):485-492.
    [16]Mukaida T,Wada S,Takahashi K et al.Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos.Human Reproduction,1998,13:2874-2879.
    [17]Rall W F.Factors affecting the survival of mouse embryos cryopreserved by vitrification.Cryobiology,1987,24(5):387-402.
    [18]Tada N,Sato M,Amann E et al.A simple and rapid method for cryopreservation of mouse 2-cell embryos by vitrification:Beneficial effect of sucrose and raffinose on their cryosurvival rate.Theriogenology,1993,40(2):333-344.
    [19]Chen S U,Lien Y R,Chao K H et al.Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws.Fertility and Sterility,2000,74(4):804-808.
    [20]Kuleshova L L,Lopata A.Vitrification can be more favorable than slow cooling.Fertility and Sterility,2002,78(5):449-454.
    [21]Valdez C A,Mazni O A,Takahashi Y et al.Successful cryopreservation of mouse blastocysts using a new vitrification solution.Journal of Reproduction and Fertility,1992,96(2):793-802.
    [22]KuleshovaL,Gianoroli L,Magli C et al.Birth following vitrification of small number of human oocytes.Human Reproduction,1999,14(12):3077-3079.
    [23]Decherchi P,Laminari-Barreault N,Cochard P et al.CNS axonal regeneration with peripheral nerve grafts cryopreserved by vitrification:Cytological and functional aspects.Cryobiology,1997,34(3):214-239.
    [24]Song Y C,Hagen P O,Lightfoot F G et al.In vivo evaluation of the effects of a new ice-free cryopreservation process on autologous vascular grafts.Journal of Investigative Surgery,2000,13(5):279-288.
    [25]Pegg D E,Wang L,Vaughan D.Cryopreservation of articular cartilage.Part 3:the liquidus-tracking Method.Cryobiology,2006,52(3):360-368.
    [26]Wang L,Pegg D E,Lorrison J et al.Further Work on the Cryopreservation of articular cartilage with particular reference to the liquidus tracking(LT) method.Cryobiology,2007,55(2):138-147.
    [27]Dahl S L,Chen Z,Solan A K et al.Feasibility of vitrification as a storage method for tissue-engineered blood vessels.Tissue Engineering,2006,12(2):291-300.
    [28]Mukherjee N,Chen Z Z,Sambanis A et al.Effects of cryopreservation on cell viability and insulin secretion in a model tissue-engineered pancreatic substitute(TEPS).Cell Transplantation,2005,14(7):449-456.
    [29]Mtango N R,Varisanga M D,Dong Y J et al.The effect of prefreezing the diluent portion of the straw in a step-wise vitrification process using ethylene glycol and polyvinylpyrrolidone to preserve bovine blastocysts.Cryobiology,2001,42(2):135-138.
    [30]Bourne W M,Shearer D R,Nelson L R.Human corneal endothelial tolerance to glycerol,dimethyl sulphoxide,1,2-propanediol,and 2,3-butanediol.Cryobiology,1994,31(1):1-9.
    [31]Isachenko V,Soler C,Isachenko E et al.Vitrification of immature porcine oocytes: effects of lipid droplets,temperature,cytoskeleton,and addition and removal of cryoprotectant.Cryobiology,1998,36(3):250-253.
    [32]Kuleshova L L,Shaw J M,Trounson A O.Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation.Cryobiology,2001,43(1):21-31.
    [33]Saha S,Otoi T,Takagi M et al.Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol,trehalose,and polyvinylpyrrolidone.Cryobiology,1996,33(3):291-299.
    [34]Chian R C,Kuwayama M,Tan L et al.High survival rate of bovine oocytes matured in vitro following vitrification.The Journal of Reproduction and Development.2004,50(6):685-696.
    [35]Murakami M,Otoi T,Karja N W et al.Blastocysts derived from in vitro-fertilized cat oocytes after vitrification and dilution with sucrose.Cryobiology,2004,48(3):341-348.
    [36]Kuleshova L L,Wang X W,Wu Y N et al.Vitrification of encapsulated hepatocytes with reduced cooling and warming rates.Cryo-Letters,2004,25(4):241-254.
    [37]O'Neil L,Paynter S J,Fuller B J et al.Vitrification of mature mouse oocytes in a 6 M Me2S0 solution supplemented with antifreeze glycoproteins:the effect of temperature.Cryobiology,1998,37(1):59-66.
    [38]Dattena M,Accardo C,Pilichi S,et al.Comparison of different vitrification protocols on viability after transfer of ovine blastocysts in vitro produced and in vivo derived.Theriogenology,2004,62(3-4):481-493.
    [39]Cetin Y,Bastan A.Cryopreservation of immature bovine oocytes by vitrification in straws.Animal Reproduction Science,2006,92(1-2):29-36.
    [40]应华波.微波复温在胚脑细胞玻璃化冻存过程中的作用研究:(硕士学位论文).杭州:浙江大学,2004.
    [41]Wusteman M,Robinson M,Pegg D.Vitrification of large tissues with dielectric warming:biological problems and some approaches to their solution.Cryobiology.2004,48(2):179-189.
    [42]Zhang Q,Jackson T H,Ungan A.A continuous hybrid microwave heating process for producing rapid and uniform rewarming of cryopreserved tissues.Annals of the New York Academy of Sciences,1998,11(5):253-61.
    [43]Ruggera P S,Fahy G M.Rapid and uniform electromagnetic heating of aqueous cryoprotectant solutions from cryogenic temperatures.Cryobiology,1990,27:465-478.
    [44]Yang Q E,Hou Y P,Zhou G B et al.Stepwise in-straw dilution and direct transfer using open pulled straws(OPS) in the mouse:a potential model for field manipulation of vitrified embryos.The Journal of Reproduction and Development,2007,53(2): 211-218.
    [45]Park S P,Kim E Y,Oh J Het al.Ultra-rapid freezing of human multipronuclear zygotes using electron microscope grids.Human Reproduction,2000,15(8):1787-1790.
    [46]Makarevich A V,Chrenek P,Olexikova Let al.Post-thaw survival,cell death and actin cytoskeleton in gene-microinjected rabbit embryos after vitrification.Theriogenology,2008,70(4):675-681.
    [47]Zhao X M,Quan G B,Zhou G B et al.Conventional freezing,straw,and open-pulled straw vitrification of mouse two pronuclear(2-PN) stage embryos.Animal Biotechnology,2007,18(3):203-212.
    [48]Ishimori H,Saeki K,Inai M et al.Vitrification of bovine embryos in a mixture of ethylene glycol and dimethyl sulfoxide.Theriogenology,1993,40(2):427-433.
    [49]Morat(?) R,Izquierdo D,Paramio M T et al.Embryo development and structural analysis of in vitro matured bovine oocytes vitrified in flexipet denuding pipettes.Theriogenology,2008,70(9):1536-143.
    [50]Isachenko E,Isachenko V,Weiss J M et al.Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose.Reproduction,2008,136(2):167-173.
    [51]柏巍.骨组织超低温保存中CPA导入和洗脱过程的传递现象:(硕士学位论文).辽宁:大连理工大学,2004.
    [52]Steif P S,Palastro M,Wan C R et al.Cryomacroscopy of vitrification,Part Ⅱ:Experimental observations and analysis of fracture formation in vitrified VS55 and DP6.Cell Preservation Technology,2005,3(3):184-200.
    [53]garlsson J O.A theoretical model of intracellular devitrification.Cryobiology,2001,42(3):154-169.
    [54]Fuller B J.Cryoprotectants:the essential antifreezes to protect life in the frozen state.Cryo-letters,25(6):375-388.
    [55]郑军华,闵志廉,朱有华.器官保存学.上海:第二军医大学出版社,2000.
    [56]Polge C,Smith A U,Parkes A S.Revival of spermatozoa after vitrification and dehydration at low temperature.Nature,1949,164(4172):666-667.
    [57]Anchordoguy T J,Cecchini C A,Crowe J H et al.Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers.Cryobiology,1991,28(5):467-473.
    [58]Karow A M.Cryoprotectants--a new class of drugs.The Journal of Pharmacy and Pharmacology,1969,21(4):209-223.
    [59]Fahy G M,Levy D I,Ali S E.Some emerging principles underlying the physical properties,biological actions,and utility of vitrification solutions.Cryobiology,1987,24(3):196-213.
    [60]胡桐记,高才,周国燕等.保护剂溶液水合和玻璃化性质的DSC研究.上海理工大学学报,27(5):381-384.
    [61]Brian W,Michael D.Effects of solute methoxylation on glass forming ability and stability of vitrification solutions.Cryobiology,1999,39(3):215-231.
    [62]周国燕,胡桐记,高才等.醇类低温保护剂对NaCl水溶液共晶的影响.物理化学学报,2006,22(5):638-643.
    [63]高才,周国燕,胥义等.乙二醇和丙三醇水溶液冻结特性的差示扫描量热实验研究.中国工程热物理学会传热传质学学术会议,北京,2003.
    [64]Boutron P.Cryoprotection of red blood cells by a 2,3-butanediol containing mainly the levo and dextro isomers.Cryobiology,1992,29(3):347-358.
    [65]Kuleshova L L,MacFarlane D R,Trounson A O et al.Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes.Cryobiology,1999,38(2):119-130.
    [66]Huang J,Li Q,Zhao R et al.Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes.Animation Reproduction Science,2008,106(1-2):25-35.
    [67]Liebermann J,Tucker M J.Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification.Reproduction,2002,124(4):483-489.
    [68]Yoshimasa Y,Setsuko S,Mikako Y et al.Birth of a healthy baby followingbitrification of human blastocysts.Fertility and Sterility,2001,75(5):1027-1028.
    [69]Ali J.Vitrification of embryos and oocytes with 5.5 mol/l ethylene glycol and 1.0mol/l sucrose.Human Reproduction,2001,16(8):1777-1779.
    [70]Kasai M.A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution without appreciable loss of viability.Reproduction and Fertility.1990,89(1):92-97.
    [71]Hong Q H,Tian S J,Zhu S E et al.Vitrification of boer goat morulae and early blastocysts by straw and open-pulled straw method.Reproduction in Domestic AnimaIs,2007,42(1):34-38.
    [72]Baicu S,Taylor M J,Chen Z et al.Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions:correlation of freezing visualization with functional recovery.Cryobiology,2008,57(1):1-8.
    [73]Baicu S,Taylor M J,Chen Z et al.Vitrification of carotid artery segments:an integrated study of thermophysical events and functional recovery toward scale-up for clinical applications.Cell Preservation Technology,2006,4(4):236-244.
    [74]Kasai M.Cryopreservation of mammalian embryos.Molecular Biotechnology,1997,7(2):173-179.
    [75]Cabrita E,Robles V,Chereguini O,et al.Effect of different cryoprotectants and vitrificant solutions on the hatching rate of turbot embryos(Scophthalmus maximus).Cryobiology,2003,47(3):204-213.
    [76]Ding F H,Xiao Z Z,Li J.Preliminary studies on the vitrification of red sea bream (Pagrus major) embryos.Theriogenology,2007,68(5):702-708.
    [77]Baudot A,Odageseu V.Thermal properties of ethylene glycol aqueous solutions.Cryobiology,2004,48(3):283-294.
    [78]Shaw J M,Kuleshova L L,MacFarlane D R et al.Vitrification properties of solutions of ethylene glycol in saline containing PVP,Ficoll,or Dextran.Cryobiology,1997,35(3):219-229.
    [79]Wusteman M,Boylan S,Pegg D E.The effect of cooling rate and temperature on the toxicity of ethylene glycol in the rabbit internal carotid artery.Cryobiology,1996,33(4):423-429.
    [80]Hawkins H E,Clark P,Karow A M.The influence of cooling rate and warming rate on the response of renal cortical slices frozen to -40 ℃ in presence of 2,1M cryoprotectant(ethylene glycol,glycerol,dimethyl sulfoxide).Cryobiology,1985,22(4):378-384.
    [81]Kasai M,Zhu S E,Pedro P B et al.Fracture damage of embryos and its prevention during vitrification and warming.Cryobiology,1999,33(4):459-464.
    [82]Hunt C J,Song Y C,Batenson A J et al.Fracture in cryopreserved arteries.Cryobiology,1994,31(5):506-515.
    [83]Wassenaar C,Wijsmuller E G,Van Herwerden L Aet al.Cracked in cryopreserved aortic allografts and rapid thawing.The Annals of Thoracic Surgery,1995,60(2 Suppl):S165-167.
    [84]Pegg D E,Wusteman M C,Boylan S et al.Fractures in cryopreserved elastic arteries.Cryobiology,1997,34(2):183-192.
    [85]Buj(?)n J,Pascual G,L(?)pez R et al.Gradual thawing improves the preservation of cryopreserved arteries.Cryobiology,2001,42(4),256-265.
    [86]华泽钊,徐红艳,周国燕等.血管冷冻过程中热应力和断裂的分析方法.中国科学(E辑),2001,31(2):123-127.
    [87]周国燕,华泽钊等.大小血管冻结过程中的热应力分析与裂纹观察.工程热物理学报,2001,22(增刊):181-184.
    [88]Adam M,Hu J F,Lange P et al.The effect of liquid nitrogen submersion of cryopreserved heart valves.Cryobiology,1990,27(6):605-614.
    [89]Wusteman M,Robinson M,Pegg D.Vitrification of large tissues with dielectric warming:biological problems and some approaches to their solution.Cryobiology,2004,48(2):179-189.
    [90]Spieles G,Kresin M,Loges K et al.The effect of storage temperature on the stability of frozen erythrocytes.Cryobiology,1995,32(4):366-378.
    [91]Gao D Y,Lin S,Watson P F et al.Fracture phenomena in an isotonic salt solution during freezing and their elimination using glycerol.Cryobiology,1995,32(3):270-284.
    [92]周国燕.动脉低温特性和胚胎玻璃化保存的实验研究:(博士学位论文).上海:上海理工大学,2004.
    [93]Kroener C,Luyet B.Fracture of cracks during the vitrification of glycerol solutions and disappearance of the cracks during rewarming.Biodynamica,1966,10(198):47-52.
    [94]Rail W F,Meyer T K.Zona fracture damage and its avoidance during the cryopreservation of mammalian embryos.Theriogenology,1989,31(3):683-692.
    [95]Fahy G M,Saur J,Williams R J.Physical problems with the vitrification of large biological systems.Cryobiology,1990,27(5):492-510.
    [96]Rubinsky B E,Cravalho G,Mikic B.Thermal stress in frozen organs.Cryobiology,1980,17(1):66-73.
    [97]Rabin Y,Steif P S,Hess K C et al.Fracture formation in vitrified thin films of cryoprotectants.Cryobiology,2006,53(1):75-95.
    [98]Jorge L,Jimenez R,Rabin Y.Thermal expansion of blood vessels in low cryogenic temperatures,Part Ⅱ:Vitrification with VS55,DP6,and 7.05 M DMSO.Cryobiology,2006, 52(2):284-294.
    [99]Steif P S,Palastro M C,Rabin Y.The effect of temperature gradients on stress development during cryopreservation via vitrification.Cell Preservation Technology,2007, 5(2):104-115.
    [100]Steif PS,Palastro M C,Rabin Y.Analysis of the effect of partial vitrification on stress development in cryopreserved blood vessels.Medical Engineering & Physics,2007,29(6):661-670.
    [101]Steif P S,Palastro M,Wan C R et al.Cryomacroscopy of vitrification,Part Ⅱ:Experimental observations and analysis of fracture formation in vitrified VS55 and DP6.Cell Preservation Technology,2005,3(3):184-200.
    [102]Hodson S.The endothelial pump of the cornea.Investive Ophthalmology & Visual Science,1977,16(7):589-591.
    [103]Eastcott H H,Cross A G,Leigh A G et al.Preservation of corneal grafts by freezing.Lancet,1954,266(6805):237-239.
    [104]Capella J A,Kaufman H E,Robbins J E.Preservation of viable corneal tissue.Archives of ophthalmology,1965,74(5):669-673.
    [105]O'Neil P,Muller F O,Trevor R.On the preservation of cornea at-196 ℃ for full,thickness homografts in human and dog.British Journal of Ophthalmology,1967,51(1):13-30.
    [106]Armitage W J,Juss B K.The influence of cooling rate on survival of frozen cells differs in monolayers and in suspensions.Cryoletters,1996,17:213-218.
    [107]Halberstadt M,Athmann S,Hagenah M.Corneal cryopreservation with dextran.Cryobiology,2001,43(1):71-80.
    [108]Routledge C,Armitage W J.Cryopreservation of cornea:a low cooling rate improves functional survival of endothelium after freezing and thawing.Cryobiology,2003,46(3):277-283.
    [109]Suh L H,Zhang C,Chuck R S et al.Cryopreservation and lentiviral-mediated genetic modification of human primary cultured corneal endothelial cells.Investigative Ophthalmology & Visual Science,2007,48(7):3056-3061.
    [110]Rich S J,Armitage W J.Propane-1,2-diol as a potential component of a vitrification solution for corneas.Cryobiology,1990,27(1):42-54.
    [111]Rich S J,Armitage W J.The potential of an equimolar combination of propane-1,2-diol and glycerol as a vitrification solution for corneas.Cryobiology,1991,28(4):314-326.
    [112]Brunette I,Nelson L R,Bourne W M.Tolerance of human corneal endothelium to glycerol.Cryobiology,1989,26(6):513-523.
    [113]Armitage W J,Samantha C H,Caroline R.Recovery of endothelial function after vitrification of cornea at -110° C.Investigative Ophthalmology & Visual Science,2002,43(7):2160-2164.
    [114]Christian M,Dirk K H,Friedrich H.Vitrification of posterior corneal lamellae.Cryobiology,2002,44(2):170-178.
    [115]Hagenah M,B(o|¨)hnk M.Corneal cryopreservation with chondroitin sulfate.Cryobiology,1993,30(4):396-406.
    [116]邹惠芬,徐成海.眼角膜真空冷冻干燥保护剂.真空与低温,2000,6(4):213-216.
    [117]邹惠芬,徐成海,张世伟等.角膜在冷冻过程中的传热分析.东北大学学报(自然科学版),2002,23(2):178-181.
    [118]王德喜,徐成海,张世伟等.循环压力法冻干兔角膜的实验研究.真空科学与技术,2002,22(6):450-453.
    [119]王德喜,徐成海,张世伟等.兔角膜真空冷冻干燥工艺及冻干角膜活性检测.东北大学学报(自然科学版),2002,23(11):1066-1069.
    [120]孙冰冰.生物组织冷冻保存若干关键问题的研究:(硕士学位论文).辽宁:大连理工大学,2005.
    [121]Nishida K,Yamato M,Hayashida Y et al.Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface.Transplantation,2004,77(3):379-385.
    [122]Nishida K.Tissue engineering of the cornea.Cornea,2003,22(7 Suppl):S28 - S34.
    [123]Sha' Afi R I,Gary-Bobo,Solomon A K.Permeability of red rell membranes to small hydrophilic and lipophilic solutes.The Journal of General Physiology,1971,58(3):238-258.
    [124]Naccache P,Sha' Afi R I.Patterns of nonelectrolyte permeability in human red blood cell membrane.The Journal of General Physiology,1973,62(6):714-736.
    [125]Jeyendran R S,Acosta V C,Land S et al.Cryopreservation of human sperm in a lecithin-supplemented freezing medium.Fertility and Sterility,2008,90(4): 1263-1265.
    [126]Madden P W,Pegg D E.Calculation of corneal endothelial cell volume during addition and removal of cryoprotective compounds.Cryo-letters,1992,13 O:43-50.
    [127]Proulx S,Bourget J M,Gagnon N et al.Optimization of culture conditions for porcine corneal endothelial cells.Molecular Vision,2007,13:524-533.
    [128]袁进,周文天,周辉等.兔角膜内皮细胞体外原代培养及形态学观察.美中国际眼科杂志,2001,1(3):17-19。
    [129]胡维琨.氮离子通道-3在内皮素-1对牛角膜内皮细胞影响中的作用:(博士学位论文).湖北:华中科技大学同济医学院,2004.
    [130]薛庆善.体外培养的原理与技术.北京:科学出版社,2001.
    [131]傅瑶,范先群,曹谊林.兔角膜内皮、上皮及基质细胞体外培养扩增的研究.眼科研究,2003,21(1):35-38.
    [132]Rapatz G,Luyet B.Microscopic observations on the development of the ice phase in the freezing of blood.Biodynamica,1960,8:195-239.
    [133]Rapatz G,Luyet B.Electron microscope study of erythrocytes in rapidly frozen frog's blood.Biodynamica,1961,8:295-315.
    [134]Nagano M,Atabay E P,Atabay E C.Effects of isolation method and pre-treatment with ethylene glycol or raffinose before vitrification on in vitro viability of mouse preantral follicles.Biomedical Research,2007,28(3):153-160.
    [135]Tian S J,Yah C L,Yang H X et al.Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration.Animal Reproduction Science,2007,101(3-4):365-371.
    [136]Checura C M,Seidel G E Jr.Effect of macromolecules in solutions for vitrification of mature bovine oocytes.Theriogenology,2007,67(5):919-930.
    [137]Monica W,Albert B,Serena B et al.Ethylene glycol permeation and toxicity in the rabbit common carotid artery.Cryobiology,1995,32(5):428-435.
    [138]Kopeika J,Kopeika E,Zhang T et al.Studies on the toxicity of dimethyl sulfoxide,ethylene glycol,methanol and glycerol to loach(Misgurnus fossilis) sperm and the effect on subsequent embryo development.Cryo Letters,2003,24(6):365-374.
    [139]Kuleshova L L,MacFarlane D R,Trounson A O.Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes.Cryobiology,1999,38(2):119-130.
    [140]Yrldtz C,Kaya A,Aksoya M.Tekeli Influence of sugar supplementation of the extender on motility,viability and acrosomalintegrity of dog spermatozoa during freezing.Theriogenology,2000,54(4):579-585.
    [141]Buchanan S S,Gross S A,Acker J P et al.Cryopreservation of stem cells using trehalose:evaluation of the method using a human hematopoietic cell line.Stem Cells and Development,2004,13(3):295-305.
    [142]McWilliams R B,Gibbons W E,Leibo S P.Osmotic and physiological responses of mouse zygotes and human oocytes to mono- and disaccharides.Human Reproduction,1995,10(5):1163-1171.
    [143]Sutton R L.Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides.Cryobiology,1992,29(5):585-598.
    [144]Steif P S,Palastro M,Wan C R et al.Cryomacroscopy of vitrification,Part Ⅱ:Experimental observations and analysis of fracture formation in vitrified VS55 and DP6.Cell Preservation Technology,2005,3(3):184-200.
    [145]Plitz J,Rabin Y,Walsh J.The effect of thermal expansion of ingredients on the cocktails VS55 and DP6.Cell Preservation Technology,2004,2(3):215-226.
    [146]Rabin Y,Taylor M J,Wolmark N.Thermal expansion measurements of frozen biological tissues at cryogenic temperatures.ASME Journal of Biomechanical Engineering,1998,120(2):259-266.
    [147]Rabin Y,Steif P S,Taylor M J et al.An experimental study of the mechanical response of frozen biological tissues at cryogenic temperatures.Cryobiology,1996,33(4):472-482.
    [148]Pasch J,Schiefer A,Heschel I et al.Cryopreservation of keratinocytes in a monolayer.Cryobiology,1999,39(2):158-168.
    [149]Ebertz S L,McGann L E.Cryoinjury in endothelial cell monolayers.Cryobiology,2004,49(1):37-44.
    [150]Armitage W J,Juss B K.Freezing monolayers of cells without gap junctions.Cryobiology,2003,46(2):194- 196.
    [151]Pegg D E.The current status of tissue cryopreservation.Cryo-letters.2001,22(2):105-112.
    [152]贾晓明,纪晓峰,杨洪宇等.细胞连接对组织冷冻损伤的作用.中华外科杂志,2001,39(12):954-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700