组织工程化骨的构建与玻璃化冻存的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     组织工程化骨(TEB)是目前骨缺损修复理想的骨移植材料之一,但常规的体外构建过程需要一段时间,无法满足临床上即刻骨缺损修复的要求。本研究针对这一问题进行了两种解决方案的体外实验研究。
     1有实验报道用骨髓单个核细胞(BMNCs)复合材料即刻构建的组织工程化骨进行体内骨缺损的即刻修复有一定的效果。但无体外实验对此方案的成骨效果进行论证,为此本实验通过在成骨诱导环境的体外检测来对此方案进一步加以验证。
     2常规构建的组织工程化骨若能获得理想的深低温保存效果则可作为实现即刻骨缺损修复的另一方案。玻璃化冻存是目前最有发展前景的冻存方法,因此本实验进行体外检测来验证玻璃化冻存TEB的可行性。
     方法
     1用1.063g/mL Percoll液分离Beagle犬骨髓单个核细胞(cBMNCs)。将猪股骨头制备成直径5毫米(mm)、厚度1mm的部分脱钙骨(pDBM)支架材料。通过cBMNCs在pDBM上粘附率的检测,获得理想的细胞接种密度。用此密度的cBMNCs分别经过诱导培养或常规培养的第二(P2)代成骨诱导或未诱导犬骨髓基质干细胞(cBMSCs)复合pDBM常规构建的TEB与该密度cBMNCs复合pDBM即刻构建的TEB共同进行成骨诱导培养,体外分析比较各自的细胞活性和成骨能力。
     2通过用不同组成和浓度的玻璃化液在不同的预处理条件下对P2代成骨诱导cBMSCs复合pDBM常规构建的TEB进行玻璃化冻存,选出适宜的玻璃化液和预处理条件。以VS55作对照,用新研制的玻璃化液分别玻璃化冻存TEB 7天或3个月,观察TEB经玻璃化冻存后的细胞活性和成骨能力。
     结果
     1采用Percoll密度梯度离心法可获得纯度较高的cBMNCs。在pDBM上接种cBMNCs适宜的密度是30×10~6/mL。通过P2代成骨诱导和未诱导cBMSCs复合pDBM常规构建TEB与cBMNCs复合pDBM即刻构建TEB的体外成骨培养检测中发现尽管即刻构建的TEB在相同的检测时间内细胞活性和成骨能力较低,但随着培养时间的延长可具有很大的提升空间。
     2用玻璃化液VS442在0℃/15分钟的预处理条件下玻璃化冻存由P2代成骨诱导cBMSCs复合pDBM常规构建的TEB可获得较好的冻存效果。在与VS55的比较中,用VS442进行TEB玻璃化冻存后的细胞活性和成骨能力明显强于VS55,将玻璃化冻存时间从7天延长至3个月时并未对细胞活性和成骨能力造成影响。
     结论
     1 1.063g/mL Percoll液能够较好的分离获取Beagle犬BMNCs。30×10~6/mL是cBMNCs复合pDBM即刻构建TEB适宜的细胞接种密度。通过在成骨诱导环境的体外检测证实了即刻构建的TEB是可以直接回植来满足体内即刻骨缺损修复的要求。
     2 VS442是玻璃化冻存常规构建TEB适宜的玻璃化液。在同VS55比较中可见VS442对保持TEB玻璃化冻存后的细胞活性和成骨能力方面效果显著,因此用VS442玻璃化冻存的TEB是可以满足临床上骨缺损的即刻修复需求。
Objective
     Tissue-engineered bone(TEB) is one of ideal bone graft material for repairing bone defects.It will take some time to construct TEB by traditional method,which is unable to meet the instantly clinical requirements of repairing bone defects.This research has conducted two projects of in vitro experimental study in view of this question.
     1 Experiments have reported that the instantly constructed TEB with bone marrow mononuclear cells(BMNCs) and materials of scaffold had the certain effect of immediately repairing bone defects in vivo.However,there was not in vitro experiment to prove the osteogenic effect of this project,which was further verified by in vitro tests under the osteogenically inducted environment in our study.
     2 If the ideal cryopreservation effects of TEB constructed by traditional method can be obtained,it is possible to be used as another method to meet the immediately clinical requirements of repairing bone defects.At present,vitrification preservation is the most promising methods of cryopreservation.In this study,we examined the feasibility of cryopreservation of TEB by vitrification in vitro.
     Methods
     1 BMNCs of Beagle were separated by 1.063g/mL Percoll gradient solution. Prepared from porcine femoral head,Partially demineralized bone matrix (pDBM) scaffolds were molded into discs(5 mm in diameter and 1 mm in thickness).The ideal seeding density was obtained by detecting the seeding efficacy of canine bone marrow mononuclear cells(cBMNCs) on pDBM.After the cBMNCs of this density were cultured in osteogenic culture medium(OCM)or basic culture medium(BCM) respectively,conventionally constructed TEB with osteo-induced or non-induced cBMSCs at P2 and pDBM was compared with immediately constructed TEB composed of cBMNCs and pDBM under OCM together for analyzing respectively the cell activity and osteogenic capacity in vitro.
     2 Using the different composition and concentration of vitrification fluid,the freezing experiments on traditionally constructed TEB with osteo-induced cBMSCs at P2 and pDBM were performed under the different preconditioning so that the proper vitrification media and optimal pretreatments were chosen.Afterwards,TEB in VS442 was subjected to vitrification preservation for 7 days and 3 months,respectively.Cell viability,proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons made with those cryopreserved in VS55 vitreous cryoprotectant.
     Results
     1 With the density gradient centrifugation method,cBMNCs were successfully isolated,and 1.063g/mL Percoll medium could obtain more purified monocytes.The optimal seeding density of cBMNCs on pDBM was 30×10~6/mL.After analyzing the cell activity and osteogenic capacity of conventionally constructed TEB,which were composed of osteo-induced and non-induced cBMSCs at P2 and pDBM,and immediately constructed TEB with cBMNCs and pDBM under the same culture of osteogenic induction in vitro, it was found that despite that of immediately constructed TEB were the lowest, the potentiality of enhancement would be bigger following the culture time.
     2 In the experiments of vitrification preservation for TEB conventionally constructed with osteo-induced cBMSCs at P2 and pDBM,the effect of vitreous cryopreservation with VS442 under 0℃/15min of preconditioning was better.After cell viability,proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons made with those cryopreserved in VS55 vitreous cryoprotectant,post-rewarm cell viability and osteogenic capability of TEB in VS442 were significantly higher.Furthermore,we observed that extending the cryopreservation of TEB from 7 days to 3 months did not have a significant impact on its survival and osteogenic potential.
     Conclusions
     1 cBMNCs of Beagle were isolated through the 1.063g/mL Percoll density gradient centrifugation.The optimal seeding density of cBMNCs was 30×10~6/mL.In vitro examination under the osteogenically inducted environment confirmed that the directly replantation of instantly constructed TEB might satisfy the immediately clinical requirements of repairing bone defects.
     2 VS442 was an optimal vitreous cryoprotectant for vitrification preservation of TEB.As compared with VS55,VS442 was demonstrated to be more efficient in maintaining cellular viability and osteogenic function for vitreous cryopreservation of TEB.Consequently,TEB cryopreserved in VS442 by vitrification could satisfy the instantly clinical requirements of repairing bone defects.
引文
[1]Mulliken JB,Glowacki J.Induced osteogenesis for repair and construction in the craniofacial region[J].Plast Reconstr Surg,1980,65(5):553-560.
    [2]Vacanti CA,Kim W,Upton J,et al.Tissue-engineered growth of bone and cartilage[J].Transplant Proc,1993,25(1):1019-1021.
    [3]Cobourne MT,Hardcastle Z,Sharpe PT.Sonic hedgehog regulates epithelial proliferation and cells urvival in the developing tooth germ[J].Dent Res,2001,80(11):1974-1979.
    [4]Buttery LD,Bourne S,Xynos JD,et al.Differentiation of osteoblasts and in Vitro Bone formation from Murine embryonic stem cells[J].Tissue Eng,2001,7(1):89-99.
    [5]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-228.
    [6]Darwin JP.Marrow stromal cells as stem cells for nonhematopoietic tissues[J].Science,1997,276(5309):71-74.
    [7]0hgushi H,Kitamura S,Kotobuki N,et al.Clinical application of marrow mesenchymal stem cells for hard tissue repair[J].Yonsei Med J,2004,45:61-67.
    [8]Pittenger MF,Mzckay AM,Beck SC,et al.Multilinieage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
    [9]Bruder SP,Kraus KH,Goldberg VM,et al.The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects[J].J Bone Joint Surg(Am),1998,80(7):985-996.
    [10]Kon E,Muraglia A,Corsi A,et al.Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones[J].J Biomed Mater Res,2000,49(3):328-337.
    [11]Friedenstein AJ,Gorskaja JF,Kulagina NN,et al.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Exp Hematol,1976,4(5):267-274.
    [12]Souyris F,PellequerC,Payrot C,et al.Coral,a new biomedical material. Experimental and first clinical investigations on Madreporaria[J].J Maxillofac Surg,1985,13(2):64-69.
    [13]Ripamonti U.Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models[J].Biomaterials,1996,17(1):31-35.
    [14]王敏,翁雨来,胡晓洁等.组织工程技术修复犬牙槽骨缺损的实验研究[J].中华医学杂志,2003,83(15):1339-1344.
    [15]Gendler E.Perforated demineralized bone matrix:a new form of osteoinductive biomaterial[J].J Biomed Mater Res,1986,20(6):687-697.
    [16]柴岗,张艳,刘伟等.组织工程骨在颅颌面部骨缺损临床修复中的应用[J].中华医学杂志,2003,83(19):1676-1681.
    [17]Liu W,Cui L,Cao Y.A closer view of tissue engineering in China:the experience of tissue construction in immunocompetent animals[J].Tissue Eng,2003,9 Suppl 1:S17-S30.
    [18]Perka C,Sittinger M,Schultz O,et al.Tissue engineered cartilage repair using cryopreserved and noncryopreserved chondrocytes[J].Clin Orthop Relat Res,2000,(378):245-254.
    [19]Kofron MD,Opsitnick NC,Attawia MA,et al.Cryopreservation of tissue engineered constructs for bone[J].J Ortho Res,2003,21(6):1005-1010.
    [20]Kuleshovaa LL,Gouka SS,Hutmacher DW.Vitrification as a prospect for cryopreservation of tissue-engineered constructs[J].Biomaterials,2007,28(9):1585-1596.
    [21]Hisatome T,Yasunaga Y,Yanada S,et al.Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells[J].Biomaterials,2005,26(22):4550-4556.
    [22]Yamasaki T,Yasunaga Y,Terayama H,et al.Transplantation of bone marrow mononuclear cells enables simultaneous treatment with osteotomy for osteonecrosis of the bilateral femoral head[J].Med Sci Monit,2008,14(4):CS23-CS30.
    [23]Dong 5,Uemura T,Shirasakie Y,et al.Promotion of bone formation using highly pure porous β-TCP combined with bone marrow-derived osteoprogenitor cells[J].Biomaterials,2002,23(23):4493-4502.
    [24]Ito Y,Tanaka N,' Fujimoto Y,et al.Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from Green rat[J].J Biomed Mater Res,2004,69A(3):454-461.
    [25]WuY,Yu H,Chang S,et al.Vitreous cryopreservation of cell-biomaterial constructs involving encapsulated hepatocytes[J].Tissue Eng,2007,13(3):649-658.
    [26]Fahy GM,Wowk B,Wu J.Cryopreservation of complex·systems:the missing link in the regenerative medicine supply chain.Rejuvenation Res,2006,9(2):279-291.
    [27]Lane M,Schoolcraft WB,Gardner DK.Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique[J].Fertil Steril,1999,72(6):1073-1078.
    [28]Dahl SL,Chen Z,Solan AK,et al.Feasibility of vitrification as a storage method for tissue-engineered blood vessels[J].Tissue Eng,2006,12(2):291-300.
    [29]Kuleshova LL,Shaw JM,Trounson AO.Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation[J].Cryobiology,2001,43(1):21-31.
    [30]Liebermann J,Nawroth F,Isachenko V,et al.Potential importance of vitrification in reproductive medicine[J].Biol Reprod,2002,67(6):1671-1680.
    [31]Song YC,Khirabadi BS,Lightfoot F,et al.Vitreous cryopreservation maintains the function of vascular grafts[J].Nat Biotechnol,2000,18(3):296-299.
    [32]Rios JL,Rabin Y.Thermal expansion of blood vessels in low cryogenic temperatures,Part Ⅱ:Vitrification with VS55,DP6,and 7.05 M DMS0[J].Cryobiology,2006,52(2):284-294.
    [33]Mukaida T,Wada S,Takahashi K,et al.Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos[J].Hum Reprod,1998,13(10):2874-2879.
    [34]Rabin Y,Plitz J.Thermal expansion of blood vessels and muscle specimens permeated with DMS0,DP6,and VS55 at cryogenic temperatures[J].Ann Biomed Eng,2005,33(9):1213-1228.
    [35]Karlsson JO,Toner M.Long-term storage of tissues by cryopreservation: critical issues[J].Biomaterials,1996,17(3):243-256.
    [36]Loutradi KE,Kolibianakis EM,Venetis CA,et al.Cryopreservation of human embryos by vitrification or slow freezing:a systematic review and meta-analysis[J].Fertil Steril,2008,90(1):186-193.
    [37]Meryman HT.Cryopreservation of living cells:principles and practice Transfusion[J].Transfusion,2007,47(5):935-945.
    [38]Kuleshova LL,MacFarlane DR,Trounson AO,et al.Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes[J].Cryobiology,1999,38(2):119-130.
    [39]Elder E,Chen Z,Ensley A,et al.Enhanced tissue strength in cryopreserved,collagen-based blood vessel constructs[J].Transplant Proc,2005,37(10):4625-4629
    [40]Song YC,Chen ZZ,Mukherjee N,et al.Vitrification of tissue engineered pancreatic substitute[J].Transplant Proc,2005,37(1):253-255.
    [41]Mehl PM.Nucleation and crystal growth in a vitrification solution tested for organ cryopreservation by vitrification[J].Cryobiology,1993,30(5):509-518.
    [42]Liu BL,McGrath J.Vitrification solutions for the cryopreservation of tissue-engineered Bone[J].Cell Preservation Technol,2004,2(2):133-143.
    [43]Pancrazio JJ,Wang F,Kelley CA.Enabling tools for tissue engineering[J].Biosens Bioelectron,2007,22(12):2803-2811.
    [44]Rabin Y,Bell E.Thermal expansion measurements of cryoprotective agents.Part Ⅱ:measurements of DP6 and VS55,and comparison with DMS0[J].Cryobiology,2003,46(3):264-270.
    [45]Pascual G,Rodr(?)guez M,Corrales C,et al.New approach to improving endothelial preservation in cryopreserved arterial substitutes[J].Cryobiology,2004,48(1):62-71.
    [46]Keros V,Rosenlund B,Hultenby K,et al.Optimizing cryopreservation of human testicular tissue:comparison of protocols with glycerol,propanediol and dimethylsulphoxide as cryoprotectants[J].Hum Reprod,2005,20(6):1676-1687.
    [47]Fahy GM,Wowk B,Wu J,et al.Improved vitrification solutions based on the predictability of vitrification solution toxicity[J].Cryobiology, 2004,48(1):22-35.
    [48]Haverich A,Wahlers T,Schafers HJ,et al.Distant organ procurement in clinical lung-and heart-lung transplantation.Cooling by extracorporeal circulation or hypothermic flush[J].Eur J Cardiothorac Surg,1990,4(5):245-249.
    [49]Hausen B,Beuke M,Schroeder F,et al.In vivo measurement of lung preservation solution efficacy:comparison of LPD,UW,EC and low K+-EC following short and extended ischemia[J].Eur J Cardiothorac Surg,1997,12(5):771-780.
    [50]Jassem W,Armeni T,Quiles JL,et al.Protection of mitochondria during cold storage of liver and following transplantation:comparison of the two solutions,University of Wisconsin and Eurocollins[J].J Bioenerg Biomembr,2006,38(1):49-55.
    [51]Shim H,GutierrezAdan A,Chen LR,et al.Isolation of pluripotent stem cells from cultured porcine primordial germ cells[J].Biol Reprod,1997,57(5):1089-1095.
    [52]Wusteman MC,Pegg DE.Differences in the requirements for cryopreserve-ation of porcine aortic smooth muscle and endothelial cells[J].Tissue Eng,2001,7(5):507-518.
    [53]Shaw JM,Kuleshova LL,MacFarlane DR,et al.Vitrification Properties of Solutions of Ethylene Glycol in Saline Containing PVP,Ficoll,or Dextran[J].Cryobiology,1997,35(3):219-229.
    [54]Arinzeh TL,Peter SJ,Archambault MP,et al.Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect[J].J Bone Joint Surg Am,2003,85-A(10):1927-1935.
    [55]Le Branc K,Tammik G,Rosendhl K,et al.HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J].Exp Hematol,2003,31(10):890-896.
    [56]Horwitz EM,Gordon PL,Koo WK,et al.Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta:implications for cell therapy of bone[J].Proc Natl Acad Sci,2002,99(13):8932-8937.
    [57]Han DW,Park HK,Park YH,et al.Beneficial effects of freezing rate determined by indirect thermophysical calculation on cell viability in cryopreserved tissues[J].Artif Cells Blood Substit Biotechnol,2006,34(2):205-221.
    [58]Lane M,Schoolcraft WB,Gardner DK.Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique[J].Fertil Steril,1999,72(6):1073-1078.
    [59]Oreffo RO,Triffitt JT.Future potentials for using osteogenic stem cells and biomaterials in orthopedics[J].Bone,1999,25(2 Suppl):S5-S9.
    [60]Bruder SP,Fox BS.Tissuue engineering of bone.Cell based strategies[J].Clin Orthop Relat Res,1999,367 Suppl:S68-S83.
    [61]尹宏宇,刘广鹏,崔磊等.Percoll法分离犬骨髓单个核细胞与体外成骨诱导培养的实验研究[J].组织工程与重建外科杂志,2007,3(5):277-279.
    [62]Kadiyala S,Young RG,Thiede MA,et al.Culture expanded canine mesenchymal stem cells possess steochondrogenic potential in vivo and in vitro[J].Cell Transplantation,1997,6(2):125-134.
    [63]Reuther T,Rohmann D,Scheer M,et al.Osteoblast viability and differentiation with Me_2SO as cryoprotectant compared to osteoblasts from fresh human iliac cancellous bone[J].Cryobiology,2005,51(3):311-321.
    [64]Papaccio G,Graziano A,d' Aquino F,et al.Long-term cryopreservation of dental pulp stem cells(SBP-DPSCs) and their differentiated osteoblasts:a cell source for tissue repair[J].J Cell Physiol,2006,208(2):319-325.
    [65]Burg KJ,Porter S,Kellam JF.Biomaterial developments for bone tissue engineering[J].Biomaterials,2000,21(23):2347-2359.
    [66]Kim BS,Mooney DJ.Development of biocompatible synthetic extracellular matrices for tissue engineering[J].Trends Biotechnol,1998,16(5):224-230.
    [67]Hutmacher DW.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529-2543.
    [68]Petite H,Viateau V,Bensaid W,et al.Tissue-engineered bone regeneration[J].Nat Biotechnol,2000,18(9):959-963.
    [69]van Furth R.Current view on the mononuclear phagocyte system[J].Immunobiology,1982,161(3-4):178-185.
    [70]Lasser A.The mononuclear phagocytic system:a review[J].Hum Pathol, 1983,14(2):108-126.
    [71]Johnson E,Urist MR,Finerman GAM.Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein:A preliminary report[J].Clin Orthop,1988,(236):249-257.
    [72]曹谊林,刘伟,崔磊等.组织工程学理论与实践[M].上海科学技术出版社,2004,163.
    [73]Owen M,Friedenstein AJ.Stromal stem cells:marrow-derived osteogenic precursors[J].Ciba Found Symp,1988,136:42-60.
    [74]Paul H,Kresbach MH,Satomura MK,et al.Repair of craniotomy Defects Using Bone Marrow Stromal Cells[J].Transplant,1998,66(10):1272-1278.
    [75]Predrag L,Jaro S,Christopher M,et al.Osteopontin and bone sialoprotein expression in regenerating rat periodontal ligament and alveolar bone[J].Anat Rec,1996,244(1):50-58.
    [76]Cui L,Li D,Liu X,et al.Experimental study of partially demineralized bone matrix as bone tissue engineering scaffold[J].KeyEngMater,2005,288-289:63-66.
    [77]Mauney JR,Blumberg J,Pirun M,et al.Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffold in vitro[J].Tissue Eng,2004,10(1-2):81-92.
    [78]Mauney JR,Jaqui(?)ry C,Volloch V,et al.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering[J].Biomaterials,2005,26(16):3173-3185.
    [79]Kasten P,Luginbuhl R,van Griensven M,et al.Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,beta-tricalcium phosphate and demineralized bone matrix[J].Biomaterials,2003,24(15):2593-2603.
    [80]Cui L,Liu B,Liu G,et al.Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J].Biomaterials,2007,28(36):5477-5486.
    [81]Qiu QQ,Mendenhall HV,Garlick DS,et al.Evaluation of Bone Regeneration at Critical-Sized Calvarial Defect by DBM/AM Composite[J].J Biomed Mater Res B Appl Biomater,2007,81(2):516-523.
    [82]Mardas N,Kostopoulos L,Karring T.Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth:an experimental study in the rat[J].J Craniofac Surg,2002,13(3):453-462.
    [83]Turnbull RS,Freeman E.Use of wounds in the parietal bone of the rat for evaluating bone marrow for grafting into periodontal defects[J].J Periodontal Res,1974,9(1):39-43.
    [84]Dennis JE,Haynesworth SE,Young RG,et al.Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously:effect of fibronectin and laminin on cell retention and rate of osteogenic expression[J].Cell Transplant,1992,1(1):23-32.
    [85]Daculsi G,Passuti N.Effect of the macroporosity for osseous substitution of calcium phosphate ceramics[J].Biomaterials,1990,11:86-87.
    [86]Lane JM,Bostrom MP.Bone grafting and new composite biosynthetic graft materials[J].Instr Course Lect,1998,47:525-534.
    [87]Yoshikawa T,Ohgushi H,Uemura T,et al.Human marrow cells-derived cultured bone in porous ceramics[J].Biomed Mater Eng,1998,8(5-6):311-320.
    [88]陈力,Klaes W,Assenmacher S.五种骨骼移植替代材料成骨性能的比较研究[J].中华医学杂志,1996,76(7):527-530.
    [89]Burder SP,KurthAA,Shea M,et al.Bone regeneration by implantation of purified,culture-expanded human mesenchymal stem cells[J].J Orthop Res,1998,16(2):155-162.
    [90]Schmitz JP,Hollinger JO.The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions[J].Clin Orthop Relat Res,1986,(205):299-308.
    [91]Bosch C,Melsen B,Vargervik K.Importance of the critical-size bone defect in testing bone-regenerating materials[J].J Craniofac Surg,1998,9(4):310-316.
    [92]Blanquaert F,Saffar JL,Colombier ML,et al.Heparan-like molecules induce the repair of skull defects[J].Bone,1995,17(6):499-506.
    [93]Mhawi AA,Peel SA,Fok TC,et al.Bone Regeneration in Athymic Calvarial Defects With Accell DBM100[J].J Craniofac Surg,2007,18(3):497-503.
    [94]Cowan CM,Aghaloo,T,Chou YF,et.al.MicroCT Evaluation of Three-Dimensional Mineralization in Response to BMP-2 Doses In Vitro and in Critical Sized Rat Calvarial Defects[J].Tissue Eng,2007,13(3):501-512.
    [95]Takagi K,Urist MR.The reaction of the dura to bone morphogenetic protein(BMP)in repair of skull defects[J].Ann Surg,1982,196(1):100-109.
    [96]Liu BL,McGrath J,McCabe L,et al.Response of murine osteoblasts and porous hydroxyapatite scaffolds to two-step,slow freezing and vitrification processes[J].Cell Preservation Technol,2002,1(1):33-44.
    [97]Bianchi V,Coticchio G,Fava L,et al.Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration[J].Hum Reprod,2005,20(4):1078-1083.
    [98]Fahy GM,Macfarlane DR,Angell CA,et al.Vitrification as an approach to cryopreservation[J].Cryobiology,1984,21(4):407-426.
    [99]Rall WF,Fahy GM.Ice-free cryopreservation of mouse embryos at-196℃ by vitrification[J].Nature,1985,313(6003):573-575.
    [100]Son WY,Lee SY,Chang MJ,et al.Pregnancy resulting from transfer of repeat vitrified blastocysts produced by in-vitro matured oocytes in patient with polycystic ovary syndrome[J].Reprod Biomed Online,2005,10(3):398-401.
    [101]Kyono K,Fuchinoue K,Yagi A,et al.Successful pregnancy and delivery after transfer of a single blastocyst derived from a vitrified mature human oocyte[J].Fertil Steril,2005,84(4):1017.
    [102]Zhou CQ,Mai QY,Li T,et al.Cryopreservation of human embryonic stem cells by vitrification[J].Chin Med J,2004,117(7):1050-1055.
    [103]Cai X Y,Chen GA,Lian Y,et al.Cryoloop vitrification of rabbit oocytes[J].Hum Reprod,2005,20(7):1969-1974.
    [104]Selman H,Angelini A,Barnocchi N,et al.Ongoing pregnancies after vitrification of human oocytes using a combined solution of ethylene glycol and dimethyl sulfoxide[J].Fert Steril,2006,86(4):997-1000.
    [105]Sheehan CB,Lane M,Gardner DK,et al.The CryoLoop facilitates revitrification of embryos at four successive stages of development without impairing embryo growth[J].Hum Reprod',2006,21(11):2978-2984.
    [106]Gorlin J.Stem cell cryopreservation[J].J Infus Chemother,1996,6(1):23-27.
    [107]Bakken AM.Cryopreserving human peripheral blood progenitor cells[J].Curr Stem Cell Res Ther,2006,1(1):47-54.
    [108]Vajta G,Holm P,Kuwayama M,et al.Open Pulled Straw(OPS)vitrification:a new way to-reduce cryoinjuries of bovine ova and embryos[J].Mol Reprod Dev,1998,51(1):53-58.
    [109]A1-Hasani S,Diedrich K,van der Ven H,et al.Cryopreservation of human oocytes[J].Hum Reprod,1987,2(8):695-700.
    [110]Sakai A,Engelmann F.Vitrification,encapsulation-vitrification and droplet-vitrification:a review[J].Cryo Lett,2007,28(3):151-172.
    [111]Liu G,Shu C,Cui L,et al.Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells[J].Cryobiology,2008,56(3):209-215.
    [112]Dai KR,Xu XL,Tang TT,et al.Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone[J].Calcif Tissue Int,2005,77(1):55-61.
    [113]Liu GP,Zhao L,Cui L,et al.Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate[J].Biomed Mater,2007,2(2):78-86.
    [114]Yuan J,Cui L,Zhang WJ,et al.Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate[J].Biomaterials,2007,28(6):1005-1013.
    [115]Shang Q,Wang Z,Liu W,et al.Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells[J].J Craniofac Surg,2001,12(6):586-593.
    [116]Casabona F,Martini,MuragliaA,et al.Prefabricated engineered bone flaps:an experimental model of tissue reconstruction in plastic surgery[J].Plast Reconstr Surg,1998,101(3):577-581.
    [117]Quarto R,Mastrogiacomo M,Cancedda R,et al.Repair of large bone defects with the use of autologous bone marrow stromal cells[J].N Engl J Med,2001,344(5):385-386.
    [118]Power MJ,Fottrell PF.Osteocalcin:Diagnostic Methods and Clinical Applications[J].Crit Rev Clin Lab Sci,1991,28(4):287-335.
    [119]Kotobuki N,Hirose M,Machida H,et al.Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells[J].Tissue Eng,2005,11(5-6):663-673.
    [120]Guyomard C,Rialland L,Fremond B,et al.Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes[J].Toxicol Appl Pharmacol,1996,141(2):349-356.
    [121]Yoshikawa T,Nakajima H,Takakura Y,et al.Osteogenesis with cryopreserved marrow mesenchymal cells[J].Tissue Eng,2005,11(1-2):152-160.
    [122]Toriumi DM,Robertson K.Bone inductive biomaterials in facial plastic and reconstructive surgery[J].Facial Plast Surg,1993,9(1):29-36.
    [123]Winn SR,Schmitt JM,Buck D,et al.Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats[J].J Biomed Mater Res,1999,45(4):414-421.
    [124]Acarturk TO,Hollinger JO.Commercially Available Demineralized Bone Matrix Compositions to Regenerate Calvarial Critical-Sized Bone Defects[J].Plast Reconstr Surg,2006,118(4):862-873.
    [125]Aalami 00,Nacamuli RP,Lenton KA,et al.Applications of a Mouse Model of Calvarial Healing:Differences in Regenerative Abilities of Juveniles and Adults[J].Plast Reconstr Surg,2004,114(3):713-720.
    [126]Freeman E,Turnbull RS.The value of osseous coagulum as a graft material[J].J Periodontal Res,1973,8(4):229-36.
    [127]Glowacki J,Altobelli D,Mulliken JB.Fate of mineralized and demineralized osseous implants in cranial defects[J].Calcif Tissue Int,1981,33(1):71-76.
    [128]Chim H,Schantz JT.Human Circulating Peripheral Blood Mononuclear Cells for Calvarial Bone Tissue Engineering[J].Plast Reconstr Surg,2006,117(2):468-478.
    [129]Kamakura S,Sasano Y,Homma H,et al.Implantation of Octacalcium Phosphate(0CP)in Rat Skull Defects Enhances Bone Repair[J].J Dent Res,1999,78(11):1682-1687.
    [130]Sakata Y,Ueno T,Kagawa T,et al.Osteogenic potential of cultured human periosteum-derived cells-a pilot study of human cell
    transplantation into a rat calvarial defect model[J].J Craniomaxillofac Surg,2006,34(8):461-465.
    [l31]Kaigler D,Krebsbach PH,Wang Z,et al.Transplanted endothelial cells enhance orthotopic bone regeneration[J].J Dent Res,2006,85(7):633-637.
    [132]Wang J,Glimcher MJ.Characterization of Matrix-Induced Osteogenesis in Rat Calvarial Bone Defects:Ⅱ.Origins of Bone-Forming Cells[J].Calcif Tissue Int,1999,-65(6>:486-493.
    [133]Sikavitsas VI,van den Dolder J,Bancroft GN,et al.Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model[J].J Biomed Mater Res A,2003,67(3)::944-951.
    [134]Chen F,Ouyang H,Feng X,et al.Anchoring dental implant in tissue-engineered bone using composite scaffold:a preliminary study in nude mouse model[J],J Oral Maxillofac Surg,2005,63(5):586-591.
    [l35]Urist MR.Bone:formation by autoinduction[J].Science,1965,150(698):893-899.
    [136]Lutolf MP,Weber FE,Schmoekel HG,et al.Repair of bone defects using synthetic mimetics of collagenous extracellular matrices[J].Nat Biotechnol,2003,21(5):513-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700