Barrett食管分化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Barrett食管(Barrett's esophagus , BE)多由严重而长期的胃和十二指肠内容物反流刺激食管下段所致,正常的复层鳞状上皮被单层柱状上皮所取代的一种病理现象。随着认知和现代化的发展,我国胃食管反流病的发生愈来愈多,BE的发病率也逐年增加。BE被认为是一种癌前病变,与食管腺癌密切相关,其癌变的危险性较一般人群高出30~125倍。诸多研究已证实肠化生型BE上皮易于向食管腺癌演变,肠化生型BE是研究的热点,近年也逐渐引起国内学者的重视,但遗憾的是研究多着眼于BE的临床分析和BE演变为食管腺癌的机制,而极少涉及BE形成的机制研究。从早期的研究发现BE肠化生细胞的超微结构与正常小肠上皮类似,到近年利用小肠标志物来监测食管腺癌术后复发的研究,都提示肠化型BE与正常小肠上皮存在共性。
     Wnt-β-catenin/Tcf4及Notch-Delta-Hes 1-Math 1信号途径在维持正常状态下小肠上皮的增殖和分化中作用重要。
     Wnt-β-catenin/Tcf4信号途径维持正常状态下小肠上皮的增殖,Wnt途径被激活后,导致β-catenin在细胞浆内聚集并与DNA结合蛋白Tcf/LEF家族成员相互结合,促进转录,细胞增殖。Tcf-4基因敲除小鼠的模型,表现为小肠隐窝干细胞数目减少,失去功能,最终导致小鼠死亡。
     正常状态下,Notch-Delta-Hes1-Math1信号途径通过Hes1对Math1的负调控作用,来决定小肠早期祖细胞的分化方向,从而形成不同种类的小肠细胞。
     本研究检测了BE活检组织中Wnt及Notch信号途径中的关键分子的表达,并将人正常食管鳞状上皮细胞经酸、胆汁酸及两者的混合物处理。观察其形态变化,检测Wnt及Notch信号途径中的关键分子的表达,试图探讨BE发生的可能机制。
     第一部分Barrett食管Wnt及Notch信号途径的表达
     目的:研究BE组织中Wnt及Notch信号途径的关键分子Tcf4, Cdx2, Hes1,Math1的表达。
     方法:用免疫组织化学法测定41例BE组织(肠化18例,非肠化23例)和其配对的正常食管鳞状上皮组织中Tcf4, Cdx2, Hes1,Math1的蛋白表达,同时采用Real-time(荧光定量)PCR法测定mRNA的表达,计算△△C_T值,并分析指标间的相关性。
     结果:Tcf4, Cdx2, Hes1, Math1的表达在肠化组高于非肠化组(P<0.05),高度及低度异型增生组高于无异型增生组(P <0.05),在C≥3Mn组高于其他组(P <0.05,)。mRNA的表达Tcf4与Cdx2、Hes1、Math1正相关(P =0.000), Hes 1与Math 1、Cdx2正相关(P =0.000), Cdx2与Math1正相关(P =0.000)。
     结论:BE组织存在与小肠增殖分化相关的Wnt及Notch信号途径关键分子的表达,其表达与BE的肠化、异型增生及长度密切相关。
     第二部分人正常食管上皮原代细胞的提取分离、鉴定及培养
     目的:探讨人正常食管上皮原代细胞的提取分离、鉴定及培养的方法,以获得一定量的纯度高的细胞,为进一步研究奠定基础。
     方法:人食管上皮细胞来源于食管部分切除手术患者的正常食管组织,先后经DispaseⅡ和胰酶消化,从食管黏膜上分离上皮细胞,和波丝蛋白抗体免疫组织化学染色共同鉴定细胞,无血清角质细胞培养基(K-SFM)培养细胞。采用直接观察,台盼蓝染色进行活力鉴定及细胞计数法绘制细胞生长曲线。
     结果:细胞呈典型“铺路石”状排列,CK13抗体免疫组织化学染色阳性,波丝蛋白抗体免疫组织化学染色阴性,证明培养的细胞为人食管上皮细胞,无间质细胞污染。细胞倍增天数为1.179d,细胞群体倍增时间(population doubling time, PDT)为49.42h
     结论:DispaseⅡ消化分离细胞,K-SFM培养细胞可获得一定量的纯度高的人食管鳞状上皮细胞。
     第三部分酸对人正常食管上皮细胞的影响
     目的:探讨不同pH值的酸孵育后人正常食管鳞状上皮细胞的形态变化及Tcf4, Cdx2,Hes1,Math1的表达
     方法:体外培养人正常食管粘膜上皮细胞,分别在pH 4.0、pH 5.0、pH 6.0的培养液中每天3次,每次10 min孵育,共7天。并设对照组进行比较。采用倒置显微镜细胞大体形态变化,MTT法检测细胞增殖速率,电镜下观察细胞超微结构改变,CK13和CK20抗体荧光染色观察细胞角蛋白表达的变化,Real-time PCR方法检测Tcf4, Cdx2, Hes1,Math1 mRNA的表达,Western-blot方法检测Tcf4, Cdx2,Hes1,Math1蛋白的表达。
     结果:①pH 4.0组5d和7d细胞增殖速率低于其他实验组和空白对照组(P<0.05)。(②电镜下细胞无明显超微结构的改变。③CK13和CK20抗体荧光染色观察细胞角蛋白表达无明显变化;④pH 4.0组细胞Tcf4, Cdx2 mRNA的表达于5d和7d时高于其他组(P<0.05)。⑤pH 4.0组细胞Tcf4, Cdx2蛋白的表达于5d和7d时高于其他组(P<0.05)。
     结论:pH 4.0条件下人正常食管黏膜上皮细胞增殖速率降低,Tcf4, Cdx2mRNA及蛋白表达水平升高。
     第四部分胆汁酸对人正常食管上皮细胞的作用
     目的:探讨不同浓度的胆汁酸孵育后人正常食管鳞状上皮细胞的形态变化及Tcf4,Cdx2, Hes1,Math1的表达
     方法:体外培养人正常食管粘膜上皮细胞,分别在含有浓度分别为250umol、400 umol和500 umol胆汁酸的培养液中每天3次,每次10 min孵育,共7天。并设未加胆汁酸的空白对照组进行比较。采用倒置显微镜细胞大体形态变化,MTT法检测细胞增殖速率,电镜下观察细胞超微结构改变,CK13和CK20抗体荧光染色观察细胞角蛋白表达的变化,Real-time PCR方法检测Tcf4, Cdx2, Hes1,Math1mRNA的表达,Western-blot方法检测Tcf4, Cdx2, Hes 1,Math 1蛋白的表达。
     结果:①5d和7d时各实验组细胞增殖速率低于对照组。②电镜下400 umol组细胞7d后可见张力纤维减少,少数细胞见类似于腺体的超微结构变化。③荧光染色见400 umol组细胞7d CK20蛋白表达;④400 umol孵育组的人正常食管黏膜上皮细胞Tcf4, Cdx2, Hes1,Math1mRNA的表达于7d时高于其他组(P<0.05)。⑤400umol孵育组的人正常食管黏膜上皮细胞Tcf4, Cdx2, Hes1,Math1蛋白的表达于7d时高于其他组(P<0.05)。
     结论:不同浓度的胆汁酸降低人正常食管上皮细胞增殖速率;含有浓度为400 umol胆汁液的培养液中孵育的人正常食管上皮细胞部分可出现超微结构的改变,角蛋白表达发生变化,Tcf4, Cdx2, Hes1,Math1mRNA及蛋白表达水平显著升高。
     第五部分酸及胆汁酸的混合物对人正常食管上皮细胞的影响
     目的:探讨酸及胆汁酸的混合物孵育后人正常食管鳞状上皮细胞的形态变化及Tcf4,Cdx2, Hes1,Math1的表达
     方法:体外培养人正常食管粘膜上皮细胞,在pH值为4.0、胆汁酸浓度为400uml的培养液中每天3次,每次10 min孵育,共7天。设未加酸及胆汁酸混合物的空白对照组、pH4.0组及含400 umol浓度胆汁酸组3组进行比较。采用倒置显微镜细胞大体形态变化,MTT法检测细胞增殖速率,电镜下观察细胞超微结构改变,CK13和CK20抗体荧光染色观察细胞角蛋白表达的变化, Real-time PCR方法检测Tcf4, Cdx2, Hes1,Math1 mRNA的表达,Western-blot方法检测Tcf4,Cdx2, Hes1,Math1蛋白的表达。
     结果:①7d时各实验组细胞增殖速率低于对照组,混合组细胞增殖速率低于400umol组。②电镜下细胞无明显超微结构的改变。③7d时混合组细胞可见微弱的CK20的表达。④7d时混合物组Tcf4, Cdx2 mRNA的表达高于未加空白对照组(P<0.05),低于pH4.0组及400 umol浓组(P<0.05) ; 7d时混合物组Hes1,Math1mRNA的表达高于对照组和pH4.0组(P<0.05),低于400 umol组(P<0.05)。⑤7d时混合物组Tcf4, Cdx2蛋白的表达高于未加空白对照组(P<0.05),低于pH4.0组及400 umol组(P<0.05) ; 7d时混合物组Hes 1,Math 1蛋白的表达高于对照组和pH4.0组(P<0.05),低于400 umol组(P<0.05)。
     结论:酸及胆汁酸联合作用降低人正常食管上皮细胞增殖速率,对细胞增殖速率的影响强于胆汁酸。酸及胆汁酸混合组Tcf4, Cdx2, Hes1,Math1rnRNA及蛋白表达水平升高,但表达低于胆汁酸。
     本研究结果提示BE组织中存在Wnt及Notch信号途径的关键分子Tcf4,Cdx2, Hes1,Math1的异常表达。人食管正常鳞状上皮细胞在pH4.0的条件下Tcf4, Cdx2呈高表达。人食管正常鳞状上皮细胞在含有浓度为400 umol胆汁液的培养液中孵育,Tcf4, Cdx2, Hes1,Math1的表达升高。
Barrett's esophagus(BE) is an acquired condition that results from chronicgastro-oesophageal reflux.It is characterised by the metaplastic replacement of the normalsquamous epithelium of the lower oesophagus by columnar epithelium.In humans,it isclearly known that severe gastroesophageal reflux is main causes for BE,but it would be ofno importance were it not for its well-recognized association with esophagealadenocarcinoma.The rapid rise in the incidence of adenocarcinoma of the esophagus (ACE)has evoked greatly increased interest in BE,moreover,it is being seen as a growingpublic health problem in Western countries.Recent years,the prevalence of this disease isincreasing in China,partly because of increasing usage of endoscopy,and also because of atrue rise in the prevalence of the disease,mainly due to a concomitant rise ingastro-intestinal reflux disease(GERD).
     As more appropriately known,BE owes its importance to being a precursor lesion ofACE.The risk of cancerization is about 30~125 folds higher than general people.Researches have shown that specialized intestinal metaplasia (SIM) mucosa of Barrett'sesophagus (BE) predisposes to the development of esophageal adenocarcinoma and SIMhave always attracted scientists' interest.Earlier studies have demonstrated that SIMmucosa of BE had shown some similarities to normal intestinal epithelium on morphologyand histology.Then,it is reasonable that the signal pathways of forming intestinalepithelium may be involved in the formation of BE.
     Wnt-β-catenin/Tcf4 and Notch-Delta-Hes1-Math1 pathways maintain the proliferation and differentiation of normal intestinal epithelium.On normal condition ,assoon as Wnt pathways is activatied,β-catenin is generated and assembled inside of cell.Andβ-catenin combine with members of the Tcf/LEF family protein of DNA combinedprotein,which promoting the transcription ,activating cell proliferation.Notch pathwaydecide the direction of intestinal progenitor cell differentiation on early stage.The decisionis carried out by the reverse feedback regulation between Mathl and Hes1.Then thevarious intestinal cell are formed eventually.
     In this study ,the expression of key regulators of Wnt-β-catenin/Tcf4 andNotch-Delta-Hes1-Math1 pathways,Tcf4,Cdx2,Hes1 and Math1 were examined in biopsyspecimen of patients with BE.And human primary normal esophagus squamous epithelialcells were dealt with acid ,bile acid and the mixture of both ,the morphological changeswere observed,the expression of Tcf4,Cdx2,Hes1 and Math1 were examined in cells ofvarious groups.Our aimis to investigate the possible mechanism differentiation of BE.
     PartⅠExpression of Wnt and Notch signal pathways in Barrett'sesophagus
     Aim:To investigate the expression of key regulators of Wnt and Notch signal pathwaysin Barrett's esophagus (BE).
     Methods:Patients were diagnosed by the Montreal definition and grouped by the Prague C& M criteria.Several samples were taken from BE and two paired normalesophagus samples were taken from at least 5cm above BE.The expression ofTcf4,Cdx2,Hes1,Math1 in 41 paired biopsy samples were measured byimmunohistochemistry staining and Real-time PCR ,the relationship betweenthese regulators was analyzed.
     Results:The mRNA and protein expression of Tcf4,Cdx2,Hes1,Mathl in the group ofintestinal metaplasia were greater than that of in the group of non-intestinal metaplasia (P<0.05) ,and were greater in the group of C≥3Mn than other groups(P<0.05) ,while the mRNA expression of these regulators in the group ofhigh-grade dysplasia was more than non- dysplasia group (P<0.05) ,the value of△△CT of Tcf4,Cdx2,Hes1 and Math1 mRNA were correlated positively (P=0.000).
     Conclusion In BE,there is definitely the expression of key regulators of the Wnt andNotch signal pathways which mantaining intestinal proliferation anddifferentiation,related to intestinal metaplasia,dysplasia and the length of BEclosely.
     PartⅡIsolation,Identification and Subculture of human esophagueai squamousepithelial cells
     Aim:To seek the optimization for the culture of high purify and significant quantity ofnormal human esophageal squamous epithelial cells ;And to make base for furtherresearch
     Methods:Normal esophagus tissues obtained from the patients carried outoesophagectomy because of benign or malignant diseases.All tissues werejudged as normal esophagus tissues by pathologists.Cells were isolated fromthese tissues by dispaseⅡdigestion and trypsinization and then primarilycultured and subcultured in serumfree keratinocyte medium (K-SFM).Thebiological characteristics of the cells were investigated through directobservation ,living cells were accouting by Trypan blue staining Growthkinetic curves were drawn by accouting cell number.Cells were identifiedimmunohistochemically using antihuman monoclonal antibody of thecytokeratin 13/10 (CK13/10) and vimentin.
     Results:The cells displayed a cobblestone morphalogy,characteristic of epithelial cells andimmunocytochemistry stained positive for the epithelial cell markeranti-CK13/10,which indicated that the cells were human esophageal epithelialcells.The negative immunocytochemistry stained for anti-Vimentin whichwas interstitial cell marker showed that all cells were not contaminated byinterstitial cell .The cells' doubling day was 1.t 79d and population doubling time(PDT) was 49.42h,
     Conclusion:DispaseⅡdigestion and K-SFM are effective methods to obtain and culturehigh purify ,significant quantity of human normal esophageal epithelial cells invitro.
     PartⅢThe effects of acid exposure in normal human esophageal squamousepithelial cells in vitro
     Aim:To observe the effects of acid exposure on cell morphological changes and theexpression of key regulators of Wnt and Notch signal pathways in normal humanesophageal squamous epithelial cells in vitor.
     Methods:Normal human esophageal squamous epithelial cells were grouped intofour ,treated by acidified medium (pH 4.0、pH 5.0、pH 6.0) for three times per day,10 min each time and the same treat for 7 days.The control group was not treatedby acidified medium.The morphological changes were observed through invertedphase contrast microscope,the mRNA and protein expression of Tcf4,Cdx2,Hes1,Math1 were detected by Real-time PCR and Western-blot,respectively.
     Results:①The cell proliferation of pH 4.0 group was lower than other groups and controlgroup (P<0.05) on 5d and 7d.②Distinct ultrastructure changs were not observedby electron microscope.③The expression spectrum of cytokeratin did notchange ,which investigated by immunofluorescence staining for anti-CK13/10 andanti-CK20.④The mRNA expression of Tcf4,Cdx2 in the group of the pH 4.0 were higher than other groups on 5d and 7d (P<0.05).(5)The protein expression of Tcf4,Cdx2 in the group of the pH 4.0 were higher than other groups on 5d and 7d(P<0.05).
     Conclusion:In vitro,the proliferation of normal human esophageal squamous epithelialcells treated by acidified medium (pH 4.0) was lower,but the mRNA and proteinexpression ofTcf4,Cdx2 in the cells treated by acid (pH 4.0) were higher.
     PartⅣThe effects of bile acid exposure in normal human esophageal squamousepithelial cells in vitro
     Aim:To observe the effects of bile acid exposure on cell morphologicalchanges and the expression of key regulators of Wnt and Notch signal pathways innormal human esophageal squamous epithelial cells in vitor.
     Methods:Normal human esophageal squamous epithelial cells were grouped intofour ,treated by medium contained various concentration bile acid (250umol、400umol and 500 umol)for three times per day,10 min each time and the same treat for7 days.The control group was not treated by bile acid.The morphological changeswere observed through inverted phase contrast microscope,the mRNA and proteinexpression of Tcf4,Cdx2,Hes1,Math1 were detected by Real-time PCR andWestern-blot,respectively.
     Results:①The cell proliferation of all groups treated by bile acid was lower than controlgroup (P<0.05) on 5d and 7d.②Distinct ultrastructure changs could be observedby electron microscope in the cells of 400 umol group on 7d.③The expression(red) were detected by immunofluorescence staining for anti-CK13/10,also theexpression (green) were detected for anti-CK20 which was a special bio-markerof BE in the 400 umol group on 7d.④The mRNA expression of Tcf4,Cdx2 ,Hes1,Math1 in the 400 umol group were higher than other groups on 7d(P<0.05).⑤The protein expression of Tcf4,Cdx2 ,Hes1,Math1 in the 400 umol group were higher than other groups on 7d (P<0.05).
     Conclusion:In vitro,the proliferation of normal human esophageal squamous epithelialcells treated by medium contained various concentration bile acid was lower;themRNA and protein expression of Tcf4,Cdx2 ,Hes1,Math1 in the cells treated bymedium contained 400 umol bile acid were higher.
     PartⅤThe effects of mixture of acid and bile acid exposure in normal humanesophageal squamous epithelial cells in vitro
     Aim:To observe the effects of mixture of acid and bile acid exposure on cellmorphological changes and the expression of key regulators of Wnt and Notchsignal pathways in normal human esophageal squamous epithelial cells in vitor.
     Methods:Normal human esophageal squamous epithelial cells were treated by acidified atpH4.0 and contained 400 umol bile acid medium (mixture group)for three times perday,10 min each time and the same treat for 7 days.Other group (pH4.0 acidifiedgroup ,400 umol bile acid contained group and untreated group) were ascontrol.The morphological changes were observed through inverted phase contrastmicroscope,the mRNA and protein expression of Tcf4,Cdx2,Hes1,Math1 weredetected by Real-time PCR and Western-blot,respectively.
     Results:①The cell proliferation of all treated groups was lower than untreated group(P<0.05) on 7d,and that of mixture group were lower than 400 umol group.②Distinct ultrastructure changs were not observed by electron microscope.③Theweak protein expression of CK20 were investigated by immunofluorescencestaining on 7d.④On 7d,the mRNA expression of Tcf4,Cdx2 in the mixture groupwere higher than the un-teated group on 7d (P<0.05),but less than the 400umolgroup and the pH4.0 group;the mRNA expression of Hes1,Math1 in the mixturegroup were higher than the un-teated group and the pH4.0 group (P<0.05),but less than the 400umol group .⑤On 7d,the protein expression of Tcf4,Cdx2 in themixture group were higher than the untreated group on 7d (P<0.05),but less than the400umol group and the pH4.0 group;the mRNA expression of Hes1,Math1 in themixture group were higher than the un-teated group and the pH4.0 group(P<0.05),but less than the 400umol group.
     Conclusion:In vitro,the proliferation of normal human esophageal squamous epithelialcells treated by mixture of acid and bile acid was lower,which has stronger effectthan bile acid alone.The mRNA and protein expression of Tcf4,Cdx2,Hes1,Math1in the cells treated by mixture of acid and bile acid were higher,but still less than thatof the cells treated by bile acid alone.
     In summary,we observed that there was definitely abnormal expression of keyregulators of the Wnt and Notch signal pathways in BE,and in vitro,the mRNA andprotein expression of Tcf4,Cdx2 in normal human esophageal squamous epithelialcells treated by acid (pH 4.0) were higher,the mRNA and protein expression of Tcf4,Cdx2 ,Hes1,Math1 in the cells treated by medium contained 400 umol bile acid werehigher.
引文
[1]Falk,GW.Barrett’s esophagus.Gastroenterology.2002,122(6):1569-1591.
    [2]陈霞,朱良如,侯晓华.中国人Barrett食管临床特点分析.胃肠病学和肝病学杂志:102-105.2008,17(2):102-105.
    [3]Lagarde,SM,ten Kate,F J,Reitsma,JB,et al.Prognostic factors in adenocarcinoma of the esophagus or gastroesophageal junction.J Clin Oncol.2006,24(26):4347-4355.
    [4]Zwas,F,Shields,HM,Doos,WG,et al.Scanning electron microscopy of barrett's epithelium and its correlation with light microscopy and mucin stains.Gastroenterology.1986,90(6):1932-1941.
    [5]Chaves,P,Pereira,AD,Cruz,C,et al.Recurrent columnar-lined esophageal segments--study of the phenotypic characteristics using intestinal markers.Dis Esophagus.2002,15(4):282-286.
    [6]Gregorieff,A,Pinto,D,Begthel,H,et al.Expression pattern of wnt signaling components in the adult intestine.Gastroenterology.2005,129(2):626-638.
    [7]Liu,T,Zhang,X,So,CK,et al.Regulation of cdx2 expression by promoter methylation,and effects of cdx2 transfection on morphology and gene expression of human esophageal epithelial cells.Carcinogenesis.2007,28(2):488-496.
    [8]Clement,G,Braunschweig,R,Pasquier,N,et al.Alterations of the wnt signaling pathway during the neoplastic progression of barrett's esophagus.Oncogene.2006,25(21):3084-3092.
    [9]Ohlstein,BSpradling,A.Multipotent drosophila intestinal stem cells specify daughter cell fates by differential notch signaling.Science.2007,315(5814):988-992.
    [10]Fre,S,Huyghe,M,Mourikis,P,et al.Notch signals control the fate of immature progenitor cells in the intestine.Nature.2005,435 (7044):964-968.
    [11]Mutoh,H,Sakamoto,H,Hayakawa,H,et al.The intestine-specific homeobox gene cdx2 induces expression of the basic helix-loop-helix transcription factor mathl.Differentiation.2006,74(6): 313-321.
    [12] Vakil, N, van Zanten, SV, Kahrilas, P, et al. The montreal definition and classification of gastroesophageal reflux disease: A global evidence-based consensus. Am J Gastroenterol.2006,101 (8): 1900-1920; quiz 1943.
    [13]Sharma, P, Dent, J, Armstrong, D, et al. The development and validation of an endoscopic grading system for barrett's esophagus: The prague c & m criteria.Gastroenterology.2006,131 (5): 1392-1399.
    [14] Milano, F, van Baal, JW, Buttar, NS, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells.Gastroenterology.2007,132(7): 2412-2421.
    [15] Pera, M, Brito, MJ, Poulsom, R, et al. Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats.Carcinogenesis.2000,21(8): 1587-1591.
    [16] Korinek, V, Barker, N, Moerer, P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking tcf-4. Nat Genet. 1998,19(4): 379-383.
    [17] Yang, Q, Bermingham, NA, Finegold, MJ, et al. Requirement of mathl for secretory cell lineage commitment in the mouse intestine. Science.2001,294(5549): 2155-2158.
    [18]Sharma, P, McQuaid, K, Dent, J, et al. A critical review of the diagnosis and management of barrett's esophagus: The aga Chicago workshop. Gastroenterology.2004,127(1): 310-330.
    [19] Palanca-Wessels, MC, Barrett, MT, Galipeau, PC, et al. Genetic analysis of long-term barrett's esophagus epithelial cultures exhibiting cytogenetic and ploidy abnormalities.Gastroenterology. 1998,114(2): 295-304.
    [20] Garewal, HS, Leibovitz, A, Sampliner, RE, et al. Tissue culture of epithelial cells from esophageal specialized columnar epithelium (barrett's esophagus). Dig Dis Sci.1992,37(4): 532-536.
    [21]Germain,L,Rouabhia,M,Guignard,R,et al.Improvement of human keratinocyte isolation and culture using thermolysin.Burns.1993,19(2):99-104.
    [22]Fitzgerald,RC,Farthing,MJTriadafilopoulos,G.Novel adaptation of brush cytology technique for short-term primary culture of squamous and barrett's esophageal cells.Gastrointest Endosc.2001,54(2):186-189.
    [23]Harvima,IT,Lappalainen,K,Hirvonen,MR,et al.Heparin modulates the growth and adherence and augments the growth-inhibitory action of tnf-alpha on cultured human keratinocytes.J Cell Biochem.2004,92(2):372-386.
    [24]Maurice,S,Srouji,SLivne,E.Isolation of progenitor cells from cord blood using adhesion matrices.Cytotechnology.2006,52(2):125-137.
    [25]Shepherd,TG,Theriault,BL,Campbell,E J,et al.Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients.Nat Protoc.2006,1 (6):2643-2649.
    [26]Deurholt,T,ten Bloemendaal,L,Chhatta,AA,et al.In vitro functionality of human fetal liver cells and clonal derivatives under proliferative conditions.Cell Transplant.2006,15(8-9):811-822.
    [27]Takami,Y,Matsuda,T,Yoshitake,M,et al.Dispase/detergent treated dermal matrix as a dermal substitute.Burns.1996,22 (3):182-190,
    [28]Croagh,D,Phillips,WA,Redvers,R,et al.Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers.Stem Cells.2007,25(2):313-318.
    [29]鲍春荣,丁芳宝,黄盛东等.人食管上皮细胞培养、冻存及复苏方法的实验研究.上海医学.2006,29(6):339-341.
    [30]Richards,S,Leavesley,D,Topping,G,et al.Development of defined media for the serum-free expansion of primary keratinocytes and human embryonic stem cells.Tissue Eng Part C Methods.2008,14(3):221-232.
    [31]Ouatu-Lascar,R,Fitzgerald,RCTriadafilopoulos,G.Differentiation and proliferation in barrett's esophagus and the effects of acid suppression. Gastroenterology. 1999,117(2): 327-335.
    [32] Fitzgerald, RC, Omary, MBTriadafilopoulos, G. Dynamic effects of acid on barrett's esophagus. An ex vivo proliferation and differentiation model. J Clin Invest. 1996,98(9):2120-2128.
    [33] Peters, FT, Ganesh, S, Kuipers, EJ, et al. Effect of elimination of acid reflux on epithelial cell proliferative activity of barrett esophagus. Scand J Gastroenterol.2000,35(12): 1238-1244.
    [34] Marchetti, M, Caliot, EPringault, E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci.2003,116(Pt 8): 1429-1436.
    [35] Jankowski, JA, Harrison, RF, Perry, I, et al. Barrett's metaplasia. Lancet.2000,356(9247): 2079-2085.
    [36] Stein, HJ. Role of acid and bile in the genesis of barrett's esophagus. Chest Surg Clin N Am.2002,12(1): 39-45.
    [37] Kahrilas, PJ. Gerd pathophysiology: The importance of acid control. Rev Gastroenterol Mex.2003,68 Suppl 3(14-19.
    [38] van Baal, JW, Milano, F, Rygiel, AM, et al. A comparative analysis by sage of gene expression profiles of barrett's esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology.2005,129(4): 1274-1281.
    [39] Sang, Q Young, HM. The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res.1998,809(2): 253-268.
    [40] Rosch, W. [reflux disease and barrett esophagus-monitoring and therapy]. Schweiz Rundsch Med Prax. 1994,83(25-26): 783-785.
    [41] Shaheen, NRansohoff, DF. Gastroesophageal reflux, barrett esophagus, and esophageal cancer: Clinical applications. Jama.2002,287(15): 1982-1986.
    [42] Chang, JTKatzka, DA. Gastroesophageal reflux disease, barrett esophagus, and esophageal adenocarcinoma. Arch Intern Med.2004,164(14): 1482-1488.
    [43] Menke-Pluymers, MB, Hop, WC, Dees, J, et al. Risk factors for the development of an adenocarcinoma in columnar-lined (barrett) esophagus. The rotterdam esophageal tumor study group. Cancer. 1993,72(4): 1155-1158.
    [44] Veugelers, PJ, Porter, GA, Guernsey, DL, et al. Obesity and lifestyle risk factors for gastroesophageal reflux disease, barrett esophagus and esophageal adenocarcinoma.Dis Esophagus.2006,19(5): 321-328.
    [45] Sharma, P. Barrett esophagus: Will effective treatment prevent the risk of progression to esophageal adenocarcinoma? Am J Med.2004,117 Suppl 5A(79S-85S.
    [46] 陈 霞,朱良如,郑丽端等.Barret 食管 Wnt 及信号途径的表达.中华消化杂志.2008,28(8): 544-546.
    [47] Kauer, WKStein, HJ. Role of acid and bile in the genesis of barrett's esophagus. Chest Surg Clin N Am.2002,12(l): 39-45.
    [48] Zaninotto, G, Portale, G, Parenti, A, et al. Role of acid and bile reflux in development of specialised intestinal metaplasia in distal oesophagus. Dig Liver Dis.2002,34(4):251-257.
    [49] Pohler, E, Craig, AL, Cotton, J, et al. The barrett's antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics.2004,3(6):534-547.
    [50] Dvorakova, K, Payne, CM, Ramsey, L, et al. Apoptosis resistance in barrett's esophagus: Ex vivo bioassay of live stressed tissues. Am J Gastroenterol.2005,100(2):424-431.
    [51] Yen, CJ, Izzo, JG, Lee, DF, et al. Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in barrett's-associated esophageal adenocarcinoma. Cancer Res.2008,68(8): 2632-2640.
    [52] Capello, A, Moons, LM, Van de Winkel, A, et al. Bile acid-stimulated expression of the farnesoid x receptor enhances the immune response in barrett esophagus. Am J Gastroenterol.2008,103(6): 1510-1516.
    [53] De Gottardi, A, Hadengue, ADumonceau, JM. Retinoids, bile acids and ppars in barrett's oesophagus. Gut.2008,57(l): 137.
    [54] Chang, CL, Lao-Sirieix, P, Save, V, et al. Retinoic acid-induced glandular differentiation of the oesophagus. Gut.2007,56(7): 906-917.
    [55] Burnat, G, Rau, T, Elshimi, E, et al. Bile acids induce overexpression of homeobox gene cdx-2 and vascular endothelial growth factor (vegf) in human barrett's esophageal mucosa and adenocarcinoma cell line. Scand J Gastroenterol.2007,42(12): 1460-1465.
    [56] Silberg, DG, Swain, GP, Suh, ER, et al. Cdx1 and cdx2 expression during intestinal development. Gastroenterology.2000,119(4): 961-971.
    [57] Silberg, DG, Sullivan, J, Kang, E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology.2002,122(3): 689-696.
    [58] Hak, NG, Mostafa, M, Salah, T, et al. Acid and bile reflux in erosive reflux disease,non-erosive reflux disease and barrett's esophagus. Hepatogastroenterology. 2008,55(82-83): 442-447.
    [59] Orel, RVidmar, G. Do acid and bile reflux into the esophagus simultaneously?Temporal relationship between duodenogastro-esophageal reflux and esophageal ph.Pediatr Int.2007,49(2): 226-231.
    [60]Seery, JP. Stem cells of the oesophageal epithelium. J Cell Sci.2002,115(Pt 9):1783-1789.
    [61] Miyashita, T, Ohta, T, Fujimura, T, et al. Duodenal juice stimulates oesophageal stem cells to induce barrett's oesophagus and oesophageal adenocarcinoma in rats. Oncol Rep.2006,15(6): 1469-1475.
    [62] Weston, AP, Krmpotich, PT, Cherian, R et al. Prospective evaluation of intestinal metaplasia and dysplasia within the cardia of patients with barrett's esophagus. Dig Dis Sci.1997,42(3): 597-602.
    [63] Csendes, A, Smok, G, Burdiles. P, et al. Prevalence of intestinal metaplasia according to the length of the specialized columnar epithelium lining the distal esophagus in patients with gastroesophageal reflux. Dis Esophagus.2003,16(1): 24-28.
    [64] Pfaffenbach, B, Hullerum, J, Orth, KH, et al. Bile and acid reflux in long and short segment barrett's esophagus, and in reflux disease. Z Gastroenterol.2000,38(7):565-570.
    [1]Lagarde,SM,ten Kate,F J,Reitsma,JB,et al.Prognostic factors in adenocarcinoma of the esophagus or gastroesophageal junction.J Clin Oncol.2006,24(26):4347-4355.
    [2]Sharma,PSampliner,RE.Barrett esophagus.Curr Opin Gastroenterol.2002,18(4):471-478.
    [3]Chang,JTKatzka,DA.Gastroesophageal reflux disease,barrett esophagus,and esophageal adenocarcinoma.Arch Intern Med.2004,164(14):1482-1488.
    [4]陈霞,朱良如,侯晓华.中国人Barrett食管临床特点分析.胃肠病学和肝病学杂志.2008,17(102-105.
    [5]房殿春,郭红.全国首届Barrett食管诊断和治疗研讨会会议纪要.胃肠病学和肝病学杂志.2006,15(1):83-82.
    [6]Falk,GW.Barrett's esophagus.Gastroenterology.2002,122(6):1569-1591.
    [7]Lee,HL,Eun,CS,Lee,OY,et al.Association between gerd-related erosive esophagitis and obesity.J Clin Gastroenterol.2008,42(6):672-675.
    [8]Westhoff,BC,Weston,A,Cherian,R,et al.Development of barrett's esophagus six months after total gastrectomy.Am J Gastroenterol.2004,99(11):2271-2277.
    [9]Fransworth,AE.Adenocarcinoma in a barrett oesophagus.Med J Aust.1975,01(15):470-472.
    [10]郑丽端,杨秀萍,侯晓华.具有双重黏膜肌层的Barrett食管腺癌一例.中华消化内镜杂志.2005,22(2):134-135.
    [11]Romero,Y,Cameron,AJ,Schaid,DJ,et al.Barrett's esophagus:Prevalence in symptomatic relatives.Am J Gastroenterol.2002,97(5):1127-1132.
    [12]Romero,Y,Cameron,AJ,Locke,GR,3rd,et al.Familial aggregation of gastroesophageal reflux in patients with barrett's esophagus and esophageal adenocarcinoma.Gastroenterology.1997,113 (5):1449-1456.
    [13]Veugelers,PJ,Porter,GA,Guernsey,DL,et al.Obesity and lifestyle risk factors for gastroesophageal reflux disease, barrett esophagus and esophageal adenocarcinoma.Dis Esophagus.2006,19(5): 321-328.
    [14] Ryan, AM, Healy, LA, Power, DG, et al. Barrett esophagus: Prevalence of central adiposity, metabolic syndrome, and a proinflammatory state. Ann Surg.2008,247(6):909-915.
    [15] Caygill, CP, Watson, A, Reed, PI, et al. Characteristics and regional variations of patients with barrett's oesophagus in the uk. Eur J Gastroenterol Hepatol.2003,15(11):1217-1222.
    [16] Hamilton, SR, Smith, RRCameron, JL. Prevalence and characteristics of barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Hum Pathol.l988,19(8): 942-948.
    [17] Okita, K, Amano, Y, Takahashi, Y, et al. Barrett's esophagus in japanese patients: Its prevalence, form, and elongation. J Gastroenterol.2008,43(12): 928-934.
    [18] Sivri, B. Low prevalence of barrett esophagus in turkey. Turk J Gastroenterol.2008,19(3): 143-144.
    [19] Jolly, AJ, Wild, CPHardie, LJ. Acid and bile salts induce DNA damage in human oesophageal cell lines. Mutagenesis.2004,19(4): 319-324.
    [20] Nehra, D, Howell, P, Pye, JK, et al. Assessment of combined bile acid and ph profiles using an automated sampling device in gastro-oesophageal reflux disease. Br J Surg. 1998,85(1): 134-137.
    [21] Orel, RVidmar, G. Do acid and bile reflux into the esophagus simultaneously?Temporal relationship between duodenogastro-esophageal reflux and esophageal ph.Pediatr Int.2007,49(2): 226-231.
    [22] Fiorucci, S, Distrutti, E, Di Matteo, F, et al. Circadian variations in gastric acid and pepsin secretion and intragastric bile acid in patients with reflux esophagitis and in healthy controls. Am J Gastroenterol. 1995,90(2): 270-276.
    [23] Capello, A, Moons, LM, Van de Winkel, A, et al. Bile acid-stimulated expression of the farnesoid x receptor enhances the immune response in barrett esophagus. Am J Gastroenterol.2008,103(6): 1510-1516.
    [24] Dvorakova, K, Payne, CM, Ramsey, L, et al. Apoptosis resistance in barrett's esophagus: Ex vivo bioassay of live stressed tissues. Am J Gastroenterol.2005,100(2):424-431.
    [25] De Gottardi, A, Hadengue, ADumonceau, JM. Retinoids, bile acids and ppars in barrett's oesophagus. Gut.2008,57(1): 137.
    [26] Chang, CL, Lao-Sirieix, P, Save, V, et al. Retinoic acid-induced glandular differentiation of the oesophagus. Gut.2007,56(7): 906-917.
    [27] Burnat, G, Rau, T, Elshimi, E, et al. Bile acids induce overexpression of homeobox gene cdx-2 and vascular endothelial growth factor (vegf) in human barrett's esophageal mucosa and adenocarcinoma cell line. Scand J Gastroenterol.2007,42(12): 1460-1465.
    [28] Seery, JP. Stem cells of the oesophageal epithelium. J Cell Sci.2002,115(Pt 9):1783-1789.
    [29] Kalabis, J, Oyama, K, Okawa, T, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest.2008,118(12): 3860-3869.
    [30] Pera, M, Brito, MJ, Poulsom, R, et al. Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats.Carcinogenesis.2000,21(8): 1587-1591.
    [31] Hattori, T, Mukaisho, KMiwa, K. [pathogenesis of barrett's esophagus-new findings in the experimental studies of duodenal reflux models]. Nippon Rinsho.2005,63(8):1341-1349.
    [32] Tang, LHKlimstra, DS. Barrett's esophagus and adenocarcinoma of the gastroesophageal junction: A pathologic perspective. Surg Oncol Clin N Am.2006,15(4): 715-732.
    [33] Csendes, A, Smok, G, Quiroz, J, et al. Clinical, endoscopic, and functional studies in 408 patients with barrett's esophagus, compared to 174 cases of intestinal metaplasia of the cardia. Am J Gastroenterol.2002,97(3): 554-560.
    [34] Hongo, M. Review article: Barrett's oesophagus and carcinoma in japan. Aliment Pharmacol Ther.2004,20 Suppl 8(50-54.
    [35] Avidan, B, Sonnenberg, A, Schnell, TG, et al. There are no reliable symptoms for erosive oesophagitis and barrett's oesophagus: Endoscopic diagnosis is still essential.Aliment Pharmacol Ther.2002,16(4): 735-742.
    [36] Sampliner, RE. Updated guidelines for the diagnosis, surveillance, and therapy of barrett's esophagus. Am J Gastroenterol.2002,97(8): 1888-1895.
    [37] Wani, SSharma, P. Narrow band imaging in barrett's esophagus. Expert Rev Gastroenterol Hepatol.2007,1(1): 53-60.
    [38] Kuznetsov, K, Lambert, RRey, JF. Narrow-band imaging: Potential and limitations.Endoscopy.2006,38(1): 76-81.
    [39] Lee, MMEnns, R. Narrow band imaging in gastroesophageal reflux disease and barrett's esophagus. Can J Gastroenterol.2009,23(2): 84-87.
    [40] Shimizu, M, Nagata, K, Yamaguchi, H, et al. Squamous intraepithelial neoplasia of the esophagus: Past, present, and future. J Gastroenterol.2009,44(2): 103-112.
    [41] East, JE, Tan, EK, Bergman, JJ, et al. Meta-analysis: Narrow band imaging for lesion characterization in the colon, oesophagus, duodenal ampulla and lung. Aliment Pharmacol Ther.2008,28(7): 854-867.
    [42] Curvers, WL, Bohmer, CJ, Mallant-Hent, RC, et al. Mucosal morphology in barrett's esophagus: Interobserver agreement and role of narrow band imaging. Endoscopy.2008,40(10): 799-805.
    [43] Hamoui, N, Peters, JH, Schneider, S, et al. Increased acid exposure in patients with gastroesophageal reflux disease influences cyclooxygenase-2 gene expression in the squamous epithelium of the lower esophagus. Arch Surg.2004,139(7): 712-716; discussion 716-717.
    [44] Oyama, K, Fujimura, T, Ninomiya, I, et al. A cox-2 inhibitor prevents the esophageal inflammation-metaplasia-adenocarcinoma sequence in rats. Carcinogenesis.2005,26(3):565-570.
    [45] Lord, RV, Brabender, J, Wickramasinghe, K, et al. Increased cdx2 and decreased pitxl homeobox gene expression in barrett's esophagus and barrett's-associated adenocarcinoma. Surgery.2005,138(5): 924-931.
    [46] Steininger, H, Pfofe, DA, Muller, H, et al. Expression of cdx2 and muc2 in barrett's mucosa. Pathol Res Pract.2005,201(8-9): 573-577.
    [47] Ormsby, AH, Vaezi, MF, Richter, JE, et al. Cytokeratin immunoreactivity patterns in the diagnosis of short-segment barrett's esophagus. Gastroenterology.2000,119(3):683-690.
    [48] van Lier, MG, Bomhof, FJ, Leendertse, I, et al. Cytokeratin phenotyping does not help in distinguishing oesophageal adenocarcinoma from cancer of the gastric cardia. J Clin Pathol.2005,58(7): 722-724.
    [49] Iwata, T, Kurita, N, Nishioka, M, et al. Usefulness of cytokeratin immunoreactivity pattern for distinction of barrett's esophagus from intestinal metaplasia of the stomach.Hepatogastroenterology.2007,54(78): 1710-1712.
    [50] van Baal, JW, Bozikas, A, Pronk, R, et al. Cytokeratin and cdx-2 expression in barrett's esophagus. Scand J Gastroenterol.2008,43(2): 132-140.
    [51] White, NM, Gabril, M, Ejeckam, G, et al. Barrett's esophagus and cardiac intestinal metaplasia: Two conditions within the same spectrum. Can J Gastroenterol.2008,22(4):369-375.
    [52] Arra, A, Nieva, NB, Rey, N, et al. [cytokeratin 7 and 20 in barrett's esophagus]. Rev Fac Cien Med Univ Nac Cordoba.2005,62(3): 57-62.
    [53] Ramel, S, Reid, BJ, Sanchez, CA, et al. Evaluation of p53 protein expression in barrett's esophagus by two-parameter flow cytometry. Gastroenterology. 1992,102(4 Pt 1): 1220-1228.
    [54] Flejou, JF, Volant, A, Diebold, MD, et al. [overexpression of protein p53 and barrett esophagus. A frequent and early event in the course of carcinogenesis]. Gastroenterol ClinBiol.l995,19(5): 475-481.
    [55] Schneider, PM, Holscher, AH, Wegerer, S, et al. [clinical significance of p53 tumor suppressor gene mutations in adenocarcinoma in barrett esophagus]. Langenbecks Arch Chir Suppl Kongressbd.l998,115(SupplⅠ): 495-499.
    [56] Gimenez, A, de Haro, LM, Parrilla, P, et al. Immunohistochemical detection of p53 protein could improve the management of some patients with barrett esophagus and mild histologic alterations. Arch Pathol Lab Med. 1999,123(12): 1260-1263.
    [57] Kerkhof, M, Steyerberg, EW, Kusters, JG, et al. Aneuploidy and high expression of p53 and ki67 is associated with neoplastic progression in barrett esophagus. Cancer Biomark.2008,4(1): 1-10.
    [58] El-Serag, HB, Aguirre, TV, Davis, S, et al. Proton pump inhibitors are associated with reduced incidence of dysplasia in barrett's esophagus. Am J Gastroenterol.2004,99(10):1877-1883.
    [59] Ouatu-Lascar, R, Fitzgerald, RCTriadafilopoulos, G. Differentiation and proliferation in barrett's esophagus and the effects of acid suppression. Gastroenterology.1999,117(2): 327-335.
    [60] Corley, DA, Kerlikowske, K, Verma, R, et al. Protective association of aspirin/nsaids and esophageal cancer: A systematic review and meta-analysis. Gastroenterology.2003,124(1): 47-56.
    [61] Buttar, NS, Wang, KK, Leontovich, O, et al. Chemoprevention of esophageal adenocarcinoma by cox-2 inhibitors in an animal model of barrett's esophagus.Gastroenterolo'gy.2002,122(4): 1101 -1112.
    [62] Heath, EI, Canto, MI, Piantadosi, S, et al. Secondary chemoprevention of barrett's esophagus with celecoxib: Results of a randomized trial. J Natl Cancer Inst.2007,99(7):545-557.
    [63]Wang,KKSampliner,RE.Updated guidelines 2008 for the diagnosis,surveillance and therapy of barrett's esophagus.Am J Gastroenterol.2008,103(3):788-797.
    [64]Ganz,RA,Overholt,BF,Sharma,VK,et al.Circumferential ablation of barrett's esophagus that contains high-grade dysplasia:A u.S.Multicenter registry.Gastrointest Endosc.2008,68(1):35-40.
    [65]Schembre,DB,Huang,JL,Lin,OS,et al.Treatment of barrett's esophagus with early neoplasia:A comparison of endoscopic therapy and esophagectomy.Gastrointest Endosc.2008,67(4):595-601.
    [66]Corley,DA,Levin,TR,Habel,LA,et al.Surveillance and survival in barrett's adenocarcinomas:A population-based study.Gastroenterology.2002,122(3):633-640.
    [67]房殿春,许国铭,赵晶京.Barrett食管诊治共识(2005重庆草案).胃肠病学和肝病学杂志.2006,15(1):80-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700