寒冷地区在役钢筋混凝土结构物剩余寿命的仿真预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对北方寒冷地区在役钢筋混凝土结构物在使用过程中,受到随机地震、结构自然老化、砼碳化、氯离子侵蚀、钢筋锈蚀、冻融循环等耐久性因素影响,本文以计算机仿真技术研究在役钢筋混凝土结构物的剩余寿命为主线,通过模拟人工地震波,采用时间步长法和事件序列模拟某次地震的发生及烈度,进而以标准反应谱为目标谱仿真产生相应的人工地震波,采用刚度退化原则,考虑结构在地震作用下的损伤积累效应,对钢筋混凝土结构进行弹塑性随机动力反应分析,采用变形和能量双重破坏准则,判定结构的安全性损伤程度。同时考虑砼碳化、钢筋锈蚀、冻融循环等多因素耦合作用下对结构耐久性的影响,采用损伤识别技术确定结构耐久性的破损程度,再利用效益—费用分析方法对结构物进行经济维修决策。经过多次仿真,直到某次地震或耐久性损伤达到极限状态后,判定结构已失效即结构处于严重破坏或倒塌状态时,即得到结构物的一个寿命样本值,经过多次仿真,可得出工程结构的寿命分布、均值与方差,进一步揭示随机地震、耐久性与结构寿命之间的关系。
     本文采用“快冻法”进行冻融循环试验研究,针对不同水灰比,进行普通混凝土的抗冻试验,采用质量损失和相对动弹性模量两项指标评定混凝土的抗冻性对混凝土耐久性的影响,建立了混凝土冻融循环耐久性寿命预测模型。
     论文通过对锈蚀钢筋的力学试验研究及对在役非预应力钢筋混凝土大型屋面板进行加载试验,研究了锈蚀钢筋和破损老化构件的承载能力、变形能力及试验破坏特征,提出了混凝土破损、保护层脱落等耐久性损伤对构件承载力的影响。
     本文采用计算机仿真技术,有效地把结构的安全性、耐久性和经济性结合起来研究在役钢筋混凝土结构物的剩余寿命,并结合这“三性”以北方寒冷地区在役钢筋混凝土单层工业厂房为实例,进行实例验证,结论合理可靠。本文的研究为在役钢筋混凝土结构物预测剩余寿命提供了一种新的思路和方法,具有一定的理论意义和实践应用价值。
Since reinforced concrete structures in cold northern areas are affected by randomearthquake, natural aging, and a number of durability factors such as concretecarbonation, the erosion of chloride ions, steel corrosion, and the freeze-thaw cycle,this paper aims to study the remaining life of in-service reinforced concrete structuresbased on computer simulation. The intensity of an earthquake is simulated by adoptingtime steps method and the sequence of events through the simulation of artificialseismic waves, and thus the correspondent artificial seismic waves are simulated withthe standard response spectrum as the target spectrum. An analysis on random dynamicelastic response of reinforced concrete structures is done by adopting the stiffnessdegradation principle with consideration to the cumulative damage of structures underan earthquake. The damage to the safety of the structures is determined with the failurecriteria of both deformation and energy. Meanwhile, the coupling effect of concretecarbonation, steel erosion and freeze-thaw cycle on the durability of structure are alsoconsidered. The damage to the durability of the structure is determined with damageidentification technology and an economic maintenance decision is made by adoptingbenefit-cost analysis method. The structure is confirmed to be invalid, i.e. it is in a stateof severe damage or collapse, after many times of simulations until the earthquake ordurability damage reaches the limit. Thus a sample value of the life of a structure isobtained after the simulations, from which the life distribution, mean and variance ofthe engineering structure can be deduced to further reveal the relationship between thelife of a structure and random earthquake or durability.
     “Fast-freezing method” has been adopted in this paper for the study of thefreeze-thaw cycle and antifreezing tests have been done on concrete with differentwater-cement ratios. The influence of freezing resistance of concrete on its durability isevaluated by two indexes: mass loss and the relative dynamic elasticity modulus, andthe life prediction model of concrete durability of the freeze-thaw cycle has beenestablished.
     Through the mechanical tests on eroded reinforced bars and load tests onlarge-scale roof boarding of in-service non-prestressed reinforced concrete structures,this paper has studied the carrying capacity, deformability and test failurecharacteristics of eroded reinforced bars and damaged or aged components, and putsforward the influences of durable damages such as the concrete damage and coverdropping on the carrying capacity of components.
     This paper has adopted computer simulation and studied the remaining life of anin-service reinforced concrete structure by taking account of its safety, durability andcost-effectiveness. Besides, an in-service single-deck industrial factory building in thecold northern area has been used as an example for verification. The conclusion isreasonable and reliable. This paper has offered a new insight and method on the studyof the prediction of the remaining life of in-service reinforced concrete structures andhas a theoretical significance and practical value.
引文
[1]王增忠.基于混凝土耐久性的建筑工程项目全寿命经济分析[D],同济大学硕士论文,2006.
    [2]王增忠.基于混凝土耐久性的建筑工程项目全寿命经济分析[J].同济大学学报,2006,4(2):19-26.
    [3] The institution of Civil Engineers. How to make today’s concrete durable for tomorrow
    [R].London:1985.
    [4] Mehta P.K. Concrete durability-fifty year’s progress[C]. Proc. of the2nd Inter. Conf. onConcrete Durability. ACI SP126-1,199:1-31.
    [5]李家正,杨华全,董芸.混凝土含气量及气孔特征对混凝土抗冻性的影响.第四届全国混凝土耐久性学术交流会论文集[C].机械工业出版社2006:152-154.
    [6]张鸿雁.混凝土抗冻性耐久性研究[D].内蒙古科技大学硕士论文,2009,5.
    [7]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学出版社,1998
    [8]金伟良,赵羽习.混凝土结构耐久性[M].北京二科学出版社,2002
    [9]胡聿贤.地震工程学[M].地震出版社.2006.
    [10]王一功.特殊场地上的土结构共同作用初步研究[D].重庆大学硕士学位论文.2004.
    [11]王巧瑞,已有旧建筑物维修改造研究.[D].硕士学位论文.西安建筑科技大学.2007
    [12] Emin Aktan,James Beek,Phillip Comwell,etal. The State of the Art in StructuralIdentification of Constructed Facilitew[R],A Report by the ASCE Committee on StructuralIdentification of Constructed Facilities1999.
    [13] S. Rashidi. Seismic Analysis of Steel Frames Using Spectral Rep2resenta taion BasedArtificial Accelerograms[J]. Structures,2005.
    [14]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [15]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测[J].大连理工大学学报,2002,42(1):83-87
    [16]赵尚传,赵国藩.基于可靠性的在役混凝土结构剩余使用寿命预测[J].建筑科学,2001,17(5):1922。
    [17]杜修力.结构弹塑性地震反应现状评述[J].工程力学,1994,11(2).
    [18]汪梦甫,沈蒲生.钢筋混凝土高层结构非线性地震反应分析现状[J].世界地震工程,1998,14(2).
    [19]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.
    [20]阎奇武.钢筋混凝土框筒结构在地震作用下空间杆系层模型非线性分析[D].湖南大学博士学位论文,2001.
    [21]蒋通,宋亚新,楼梦麟.高层框-剪结构空间协同弹塑性地震反应分析[J].地震工程与工程振动,1998,18(2).
    [22]武藤清,腾家禄等(译).结构物动力设计[M].北京:中国建筑工业出版社,1984.
    [23]姬守中.高层钢筋混凝土框-剪结构在地震作用下的弹塑性时程反应分析[D].同济大学博士学位论文,2002.
    [24]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程,2002,18(1).
    [25]郭丰雨.钢筋混凝土核心筒非线性地震反应分析方法研究[D].中国地震局工程力学研究所硕士学位论文,2004.
    [26]李兵,李宏男,陈鑫.钢筋混凝土剪力墙宏观有限元模型分析[J].沈阳建筑工程学院学报(自然科学版),2004,18(2).
    [27]孙景江.钢筋混凝土非线性分析模型综述分析[J].世界地震工程,1994(1).
    [28]宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法[M].大连理工大学出版社,1993.
    [29]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动,2004,24(1).
    [30]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4).
    [31]何政.钢筋混凝土结构非线性分析及地震损伤性能设计与控制[D].哈尔滨工业大学博士学位论文,2000..
    [32] Kachanov LM.Time of the rupture process under creep conditon.Izv Alad Nauk USSR OtdTekhn Nauk,1958,8:26~31.
    [33] Rabotnov YN.On the equations of state for creep.Progress in Applied Mechanics,1963:307~315.
    [34] C.Farhat,F.M.Hemez.Updating finite element dynamic models using an elelment by elementsensitivity methodology[J].AIAA Journal.1993,31(9):1702-1711.
    [35] KFAlvin.Finite element model update via Bayesian estimation and minimization ofdynamic residuals[J].AIAA Journal.1997,35(5):879-886.
    [36] K F Alvin.Robust model error localization for damage detection and finite element modelupdate[J].International Adaptive Structures Conference. Key West, FL,USA,Nov,1995.
    [37]王中东,夏熙梅,陈塑寰.基于剩余模态力分析方法的结构损伤识别[J].吉林工业大学学报,1999,29(3):27-31.
    [38]李学平,余志武.基于动力特性的结构损伤识别方法[J].动力学与控制学报,2006,(4)1:84-87.
    [39]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法[J].工程力学,2004,21(1):21-25.
    [40]綦宝晖,邬瑞锋等.一种桁架结构损伤识别的柔度阵法[J].计算力学学报,2001,18(1):42-47.
    [41]郭杏林,陈建林.基于神经网络技术的结构损伤识别[J].大连理工大学学报,2002,42(3):269-273.
    [42] Pande PC,Barai W V. Multiplayer perceptron in damage detection of bridge structures[J].Computers&Structures,1995,54(4):597-608.
    [43]王建民,陈龙珠.组合神经网络在结构损伤检测中的应用[J].计算力学学报,2005,22(2):247-251.
    [44]陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法[J].工程力学,1999,16(1):35-42.
    [45]朱宏平,千力.利用振动模态测量值和神经网络方法的结构损伤识别研究[J]计算力学学报,2005,22(2):193-196
    [46] Zhu H,Shima Y. Damage detection in structures using modified back-propagation neuralnetworks[J]. Acta Mechanica Solida Sinica,2002,15(4):358-370.
    [47]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学,2004,21(1):42-47.
    [48]鞠彦忠,阎贵平,陈建斌等.用小波神经网络检测结构损伤[J].工程力学,2003,20(6):176-181.
    [49]袁旭东,周晶,黄梅.基于静力位移及频率的结构损伤识别神经网络方法[J].哈尔滨工业大学学报,2005,37(4):487-490.
    [50]韩大建,陈太聪,苏成.BP神经网络用于斜拉桥施工过程中混凝土弹性模量的识别[J].桥梁建设,2003,1:74-79.
    [51]翟东武.采用神经网络半主动模糊控制系统提高桥梁结构的安全性[J].中国安全科学学报,2001,11(6):20-23。
    [52]姜绍飞,刘明,倪一清等.大跨悬索桥损伤定位的自适应概率神经网络研究[J].土木工程学报,2003,36(8):75-78.
    [53] Doebling S w,Farrar c R,Prinme M B,Shevitz D w.Darrlage identification and healthmoni-toring of smactural andmechanical systems from changes in their vibrationcharacteristies:a review[J]. Los Alamos National Laboratory Report LA13070-NS,1996.
    [54]姜绍飞,钟善桐.神经网络在结构工程中的应用[J].哈尔滨建筑大学学报,1998,31(6):129-133.
    [55] Adeli H.Neural networks in civil engineering[J].Computer-Aided Gvil and IntructureEnneering,2001,16:126-142.
    [56]王柏生,丁皓江,倪一清等.模型参数误差对用神经网络进行结构损伤识别的影响[J].土木工程学报,2000,33(1):50-55.
    [57]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点[J].工程力学,2000,17(1):25-34.
    [58] Wu X,Ghaboussi J,Garrett J H.Use of neuralnetworks in detection of structural damage[J].Computers&Structures,1992,42:649-659.
    [59] Kam inski P C.The approximate location of damagethrough the analysis of naturalfrequencies with artificialneural networks[J].Journal of Process Mechanical Engineering,MechE,1995,209:117-123.
    [60] Cameliet J, Hens H. Probabilistic Nonlocal Damage Model for Continua with Random FieldProperties[J].JournalofEngineeringMechanics,1994,120(10):2013-2027
    [61] Krajcinovic, D. Damage mechanics, Mechanics of Material1989
    [62] BreysseD. Probabilistic Formulation of Damage Evolution Law of CementitiousComposites[J].Journal of Engineering Mechanics,1990,116(7):1489-1511
    [63] Kandarpa S,Kirlaier D J. Stochastic Damage Model for Brittle Materials Subjected toMonotonic Loading[J]. Journal of Engineering Mechanics1996.122(8):788-795
    [64]张其云.混凝土随机损伤本构关系研究[[D],上海:同济大学,2001
    [65]吴斌,欧进萍等.基于可靠度的结构损伤性能设计,世界地震工程,2002(9),Vol.l8(3):9-18
    [66]张立翔,赵造东,李庆斌.混凝土的P-D—曲线及其累积损伤特性分析,2002(10),Vo1.19(5):87-91
    [67] Lignon S, Jzquel L. A robust approach fo r se ism ic damage assessm ent, Com puter&Structures,2007,85(4):4-14.
    [68]何浩祥,闫维明,乔亚玲.物元分析理论在钢筋混凝土结构地震损伤评估中的应用[J].北京工业大学学报,2006,32(9):791-797.
    [69] Ma TW, YangH T, Chang C C. Structura l dam age diagnosis and assessm en t under seismic exc itations [J]. Journa l ofeng inee ringm echan ics,2005,131(10):1036-1045.
    [70]罗刚.氯离子侵蚀环境下钢筋混凝土构件的耐久寿命预测[DJ(硕士学位论文).福建泉州:华侨大学.2003
    [71]刘鲲.建筑结构修缮.北京:中国建筑工业出版社,1980
    [72]赵国藩,曹居易,张宽权.工程结构可靠度.北京:水利水电出版社,1984
    [73]李桂青.结构控制与控制结构,结构工程学科的未来.北京:清华大学出版社,1988
    [74]李桂青.工程结构时变可靠度理论及其应用.北京:科学出版社,2001
    [75]欧进萍.海洋平台结构安全评定:理论方法与应用.北京:科学出版社,2003
    [76]王光远.工程软设计理论.北京:科学出版社,1992
    [77]张爱林.在役石油井架结构的模糊动态可靠度评估的维修决策[D].博士学位论文.哈尔滨建筑大学,1994
    [78]刘玉彬,王光远.以动态模糊随机可靠度为参数的在役结构维修决策.哈尔滨建筑大学学报.1996,29(2):1~6
    [79]秦剑君,刘西拉等.结构最有可靠度的选择模型与经济收益及维修策略的影响岩石力学与工程学报.2005,24(1):97~103
    [80]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996
    [81]王晓鸣,李桂青.住宅老化机理及维修决策评价.武汉工业大学学报.1998,(20):51~54
    [82] Xiaoming Wang, Yang Wang, Fan Yang. Housing maintainability and its decision-making inChina, EASEC-10
    [83]王晓鸣.住宅建筑的维修性与维修性决策研究.华中科技大学学报(城市科学版).2004,21(1):5~9
    [84]陈兴海.住宅建筑的维修性与动态维修决策研究[D].硕士学位论文.武汉:华中科技大学,2003
    [85] Jan M.van Noortwijk,Dan M.Frangopol.Deterioration and maintenance models for insuringsafety of civil infrastructures at lowest life-cycle cost.Third IABMAS Workshop onLife-Cycle Cost Analysis and Design of Civil Infrastructures Systems240,39(2003)
    [86] O.Ditlevsen and T.Arnbierg.Decision rules in re-evaluation of concrete structures.Proceedings of DABI Symposium on Re-evaluation of Concrete Structures.Danish InstituteJournal,1989,80.
    [87] H.O.Madsen and Z.P.Bazant,Uncertainty analysis of creep and shrinkage effects in concretestructures.American Concrete Institute Journal,1983,80.
    [88]蒋之峰,何肇弘选编.钢筋混凝土建筑物劣化诊断技术规程及说明[R].冶金部建筑研究总院建筑技术情报研究室,1987
    [89] Shigeru Morinagu. Prediction of Service Lives of Reinforced Concrete Buildings Based OnRate of Corrosion of Reinforcing Steel[R], SHIMIZU Corporation,1986
    [90] YB219-89钢铁工业建筑可靠性鉴定规程[s],北京,1989
    [91]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法h].北京:清华大学,1995
    [92]王娴明,赵宏延.一般大气条件下钢筋混凝土构件剩余寿命的预测闭.建筑结构学报,1996(6):3739
    [93] Swamy R N, Hamada I}, Laiw J C. A Critical Evaluation of Chloride Penetration intoConcrete in Marin Environment[C], International Symposium on the Corrosion andCorrosion Protection ofReinforcement, Shielfild University, ed.R N Sway,1994
    [94]许丽萍,吴学礼,黄士元.C1—环境下混凝土使用寿命预测.上海建材学院学报(J].1994,4(2):322329
    [95]西安建筑科技大学.建筑物的可靠性与耐久性[R].西安建筑科技大学内部资料,1994
    [96] G.Somerville. The design life of structures[R]. Edi. Blackie and Son Ltd.,1992
    [97]牛荻涛.混凝土结构耐久性与寿命预测}Ml北京:科学出版社,2003
    [98] Chan H Y and Melchers R E. Time-dependent Resistance Deterioration in ProbabilisticStructural Systems, Civil Engineering,1995,12:115-132
    [99]陈朝辉,卢有杰,刘西拉.结构抗震维修的工程应用[R].混凝土结构耐久性设计与评估年度研究报告.清华大学土木系,1997,11:6586
    [100] Tao Zongwei., Corotis Ross B,Ellis J Hugh. Reliability-based Structural Design withMarkov Decision Processes[j],Journal of Structure Engineering,1995,121(6):971980
    [101]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测叨.大连理工大学学报,2002,42(1):83-87
    [102]谢行皓.建筑工程系统仿真[M].北京科学出版社.2001.
    [103]谢行皓.马尔可夫决策的计算机模拟[J].西安冶金建筑学院学报.1989.21(2):15~21.
    [104]陈进,谢行皓,张健.风险分析的计算机仿真[J].西安冶金建筑学院学报.1991.23(1):22~27.
    [105]王庆熙,谢行皓,白润山.在地震作用下框架寿命的计算机模拟[J].西安冶金建筑学院学报.1991.23(3):50~56.
    [106]王劲松,蔡淑琴,黎志成,智能模拟系统[J].北京航空航天大学学报.1993.3(1):47~50.
    [107]湛露,黎志成.智能化模拟模型生成系统的机理探讨[J].北京航空航天大学学报.1993.3(1):56~60.
    [108]蔺石柱,王庆熙,谢行皓.抗震修复工程结构结构寿命的计算机模拟[J].北京航空航天大学学报.1993.3(1):111~117.
    [109]李建华,李杰.考虑反应谱变异特性的人工合成地震波[J].同济大学学报,2002,30(9):1038-1043.
    [110]高玉峰,张健.地震动危险性分析研究[M].北京:科学出版社,2007.
    [111] Fajfar P, Fischinger M. Mathematical modeling of reinforced concrete structural walls fornonlinear seismic analysis. Structural Dynamics,1990:471-478.
    [112] Linde P,Bachmann H. Dynamic modeling and design of earthquake resistant walls. EESD,1994,23:1331-1350.
    [113] Azzato F, Vulcano A. Modeling of RC frame-wall structures for nonlinear seismic analysis.Proc.11th, WCEE,1996.
    [114]王涛.钢筋混凝土框架-剪力墙结构弹塑性地震反应分析[D].哈尔滨:中国地震局工程力学研究所,2006,45-61
    [115] Park YJ, Ang A H-S. Mechanistic seismic damage model for reinforced concrete. J. Struct.Eng, ASCE,1985,111(4).
    [116]李康宁等.建筑物三维分析模型及其用于结构地震反应分析的可靠性[J].建筑结构,2008,30(6).
    [117]刘晶波,王振宇,杜修力等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [118]刘晶波,李彬.三维粘弹性静-动力统一人工边界[J].中国科学E辑,2005,35(9):966-980
    [119] Liao Z.P,Wong H.L. A transmitting boundary for the numerical simulation of elastic wavePropagation[J]. Soil Dynamics and Earthquake Engineering,1984,3(3):174-183.
    [120]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件[J].力学学报,2006,38(l):49-56
    [121]吴育才,黄宗明,王金海.单层厂房震例及其应用[M].山东:科学技术出版社.1991.
    [122]胡聿贤.地震安全性评价技术教程[M].北京:地震出版杜,1999.
    [123]葛学礼,朱立新,王亚勇.村镇建筑震害与抗震技术措施[J].工程抗震.2001,22(2)
    [124]黄朝光,彭大文.人工合成地震波的研究[J].福州大学学报.1996(4):82-88
    [125] Dominguez. Dynamic stiffness of rectangular foundation[R]. Dept. of Civil Eng. MIT,Cambridge,MA,Report No.78-24,1978.
    [126]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程.2000,16(3):33-38
    [127] Clayton R.,Engquist B. Absorbing boundary conditions for acoustic and elastic waveequations[J].Bulletin of the Seismological Society of America Vol.671977,1529-1540.
    [128] A.J.DeekM.F Randolph. Axisymmetric Time-Domain Transmiting Boundaries[J]. Jounal ofEngineering Mechanics,ASCE,1994,120(l):25-42.
    [129] Zhang C.H.,Zhao C.B. Coupling method of finite and infinite elements for stripfoundation wave problems[J]. Earthq,Eng. Strue. Dyn.,Vol.15,1987.
    [130] Medina F,Taylor R.T. Finite element techniques for Problems of unboundeddomains. Int[J]. Num.Meth.Eng.,Vol.19,1983,1209-1226.
    [131]倪永军,朱烯.考虑时间空间变化的人工随机场模拟[J].地震学报.2005,24(7):407-412
    [132]赵隆茂,杨桂通.动力响应数值分析中的hourglass现象[J].计算力学学报,2003,20(l):53-58
    [133]建筑抗震设计规范GB50011-2010[S].北京:中国建筑工业出版社,2001.
    [134] H.J.Nusshaumer,胡光锐译.快速傅立叶变换和卷积算法[M].上海:科学技术文献出版社.1984.
    [135]首培杰等.地震波在工程中的应用[M].北京:地震出版社,1982
    [136]沈聚敏,高小旺,周锡元,刘晶波.抗震工程学[M].北京:中国建筑工业出版社.2000.
    [137] Sun Jingjiang, etc. Lateral load pattern in pushover analysis[J].Earthquake Engineering andEngineering Vibration,2003,2(1):99~107.
    [138] Krawinkler H. Seneviratna G D P K,Pros and con of a pushover analysis of seismicperformance evaluation[J].Engineering Structures,1998,20(4-6):452-464.
    [139]熊学玉、李春祥、耿耀明、黄鼎叶.大跨预应力混凝土框架结构的静力弹塑性(Pushover)分析[J].地震工程与工程振动,2004,24(1):68-75.
    [140]叶燎原,潘文.结构静力弹塑性分析(Push..over)的原理和计算实例[J].建筑结构学报,2000,21(1):68..69.
    [141]彪仿俊等.动力弹塑性时程分析的方法及其应用[J].深圳土木与建筑,2006(01):26-29
    [142]吴京,孟少平,邹滨.预应力混凝土框架结构抗震推倒分析[J].工业建筑,2002,32(10):7-13.
    [143]刘探海.框架-剪力墙结构弹塑性地震反应分析[D].太原理工大学,2010,5
    [144] Jennings P C.Periodic response of a general yielding structure[J].Journal of EnginneeringMechanical Division,ASCE,1964,90(EM2):131~165.
    [145] Clough R W and Johnston S B.Effect of stiffness degradation on earthquake ductilityrequirements [A].Proc.2th Japan Earth.Engng.Symp.[C].1966,Tokyo Japan.
    [146] Takeda T,Sozen M A and Nielson N N.Reinforced concrete response to simulatedearthquakes[J].Journal of Structural Division,ASCE,1970,96(ST12):2557~2572.
    [147] Park YJ,Ang,A H S.Mechanistic seismic damage model for reinforced concrete[J].Journal ofStruct.Engrg.Div.ASCE,1985.114(4):722~739.
    [148] Park Y J,Reinhorn A M and Kunnath S K.IDARC:Inelastic Damage Analysis of Reinforcedconcrete Frame-shear-wall Structures[R].Report No.NCEER-87-0008, State University ofNew York at Buffalo.
    [149] Kabeyasawa T.etc,U.S.-Japan Cooperative Research on R/C Full-scale Building Test,Part5:Discussion of dynamic response system[A],8th WCEE[C],627~634.
    [150] Ozcebe G.&Saatcioglu M.,Hysteretic Shear Model for RC Members[J],Journal of StructuralEngineering,1989,115(1):132~148.
    [151]洪起,田中尚.ホワイトノイス受ける1自由度系の履历吸收ヱネルギ—,日本建筑学会议论文报告集。270号,1978.
    [152]星谷胜,山崎武文.地震动ヱネルギ—に基づく应答解析,土木学会论文报告集,第291号,1979.
    [153]平尾等.强震下における一自由度系の履历吸收ヱネルギ—と弹性应答值との关系について,土木学会论文集,第368号/I—5,1986.
    [154]浅野幸一郎等.履历塑性变形领域における1质点构造物の非定常テングメ应答について,日本建筑学会论文报告集,第241号,1976.
    [155] Biswas,M,Pandeyet,A numerical study of structural damage detection using changes in therotation of mode shampes [J]Jounal of Sound and Viberation,March,2002,VOI.251(2)
    [156]李德葆,陆秋海.试验模态分析及应用.北京:科学出版社,2001
    [157] Doebling S W et al.A summary review of vibration-based damage identification methods,The Shoek and Vibration Digest,March,1998,92~105.
    [158] Farrar C R et al.Dynamic characterization and damage detection in the I—40brige overtheRio Grande.Los Alamos National Laboratory report LA—12767—MS
    [159] Farrar C Retal.Var iability of modal Parameters measured on the Alamos Canyon Bridge,Proceeding S of the15th IMAC,orlando,FL.,257~263
    [160] Doebling SWetal. Effeet sof measurement statistics on the deteetion of damage in theAlamos Canyon Bridge,Proeeedings of the15th IMAC,orlando FL.,919~929
    [161] Ju F Detal. Modal frequency method in diagnosis of fracture damage in strueture,Proceedings of the4th IMAC,LosAngeles,1986,1168~1174
    [162] Salane H Jetal. Identifieation of modal ProPerties of bridges,Joumal of StructoralEngineering. ASCE,116970,1990,2008~2021
    [163] Gomes A MAetal. On the use of modal analysis for craek ideniifieation,Proeeedings of the8sth IMAC,Florida,2,1990,1108~1115
    [164] HeJ.Analytiealsti stiffness matrix eorrection using measure dvibration modes,NodalAnalysis,1986,l(3):9—14
    [165] GysinHPetal.Struct Uraldesign sensitivity analysis with generalized global stiflhessandmassmatrices,A IAAJ.1984,22(9):1299—1303
    [166] ParkY5etal.Weight—error-matrixa PPlieation todeteet stiflhess damage—eharacteristiemeasuremeni,ModalAnalysis,1988,3(3):101—107
    [167] Salawn05etal.struetura damage deteetion using experimental modal analysis-A eomParisonofsomemethods roeeedings1lth,1993,254—26
    [168] Tsai-Jeon Huang etal. Structural damage deteetion using Energy Transfer Ratio(ETR),Proeeedings of14th IMAC,1996,126~132
    [169] Liang Zetal. On deteetion of damage loeation of bridges Proceedings of IMAC1996,308~312
    [170] Samer Hetal. Damage deteetion using vibration measurements,Proeeedings of15th IMAC,Florida,1997,113~116
    [171] Ceasar J Cetal.Damage location in a space truss model using modal strain energy,Proceedings of15sth IMAC,Florida,1997,1786~1792
    [172] Phillip Cetal. Applieation of the strain energy damage deteetion method to Plate-likestructures,Proceedings of15sth IMAC,Florida,1997,1312~1318
    [173] Yoo SH.Deteetion and loeation0g acraek in a plate using modal analysis,Proeeedings of17th IMAC,Florida,1999,1902~1908
    [174] osegueda RAetal. A modal strain energy distribution method to loealize and quantifydamage,Proceedings of15th IMAC,Florida,1997,1298~1304
    [175]吴琼.基于数学模型的结构损伤定位方法的研究:[学位论文].南京:南京航空航天大学,1997
    [176]史治宇.基于动态试验数据的结构破损诊断研究:[学位论文],南京:南京航空航天大学,1996
    [178] David C. Zimmerman etal. Struetural damage detection using frequency response funetionProceedings of13th IMAC,1995,179~184
    [179] Nils-Erik Wibbeg,Romualdas Bausys,patrik Hager,Improved Eigenfrequencies andEigenmodes in Free Vibration Analysis,Computers and Struetures73(1999),78~89:
    [180] Trendafilove1etal. Two statistieal Pattem reeognition methods for damage loealiZation,Proeeedings of17th IMAC,1999,1380~1386
    [181] Hermans Letal.Health monitoring and detection of a fatigue problem of a sports car,Proeeedings of17th IMAC,1999,42~46
    [182] Hoon Sohn etal.A baysian probabilistic approach for struetural damage detection,Earthquake Engineering and Struetural Dynamies,1997,1276~1281
    [183] Vanic M Wetal. A baysian probabilistie approach to structural health monitoring,Proeeedings of17th IMAC,1999,342~348
    [184] Mander,Priestley,Park.Theoretical Stress~strain Model for Confined Concrete.Journal ofStructural Division.ASCE.1988,8
    [185]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力~应变全曲线方程.建筑结构学报,1982,9
    [186] Sheikh,Uzumeri.Analytical Model for Concrete Confinementin Tied Columns. ASCE,1982,12
    [187] Kent, Park. Flexural Members With Confined Concrete. ASCE,1971,7
    [188] Park, Priestley, Gill. Ductility of Square-confined Concrete Columns.ASCE.1982,4
    [189] Shah,Fafitis and Richard.Cyclic Loading of Spirally Reinforced Concrete.ASCE,1983,6
    [190]袁锦根.约束钢筋混凝土压弯构件延性和它的滞回特征.约束混凝土与普通混凝土强度理论及应用学术讨论会论文集〔C〕.烟台.1987,10
    [191] Blakeley,Park.Prestressed Concrete Sections with Cyclic Flexure. ASCE.1973,8
    [192] Park,Kent,Sampson. Reinforced Concrete Members with Cyclic Loading. ASCE.1972,7
    [193] Yankelevsky,Reinhardt. Model for Cyclic Compressive Behavior of Concrete.ASCE.1987,2
    [194] Yankelevsky, Reinhardt.Uniaxial Cyclic Behavious of Concrete in Tension. ASCE.1989,1
    [195]邹离湘.反复荷载下钢筋混凝土本构关系研究.深圳大学学报.1996,12
    [196]李杰,李国强.地震工程学导论,地震出版社,1992
    [197]郭子雄,刘阳,杨勇.结构震害指数研究评述[J].地震工程与工程振动,2004,24(5):56-61.
    [198]尹之潜.地震灾害损失预测研究.地震工程与工程振动,1991,11(4):87-96
    [199] P. K. Mehta. Concrete durability—fifty years’ progress, Proceedings of second InternationalConference on Concrete Durability [C], ACI SP126-1,1991, pp.1-31
    [200] Environmental Actions and Response: Survey, Inspection and Measurement, BE95-1347DuraCrete, pp.9-14
    [201]蒋利学,张誉.混凝土碳化深度的计算与试验研究[J].混凝土,1996,(4):12-17
    [202]方璟.大坝混凝土耐久性研究[J].混凝土与水泥制品,1993,(6):31-36
    [203]冯乃谦著.实用混凝土大全[M].北京:科学出版社,2001
    [204] K. Kamimura. Changes in weight and dimension in the drying and carbonation of Portlandcement mortars [J], Concrete Research,1965,17(50):5-14
    [205]方璟.大坝混凝土耐久性研究[J].混凝土与水泥制品,1993,(6):30-37
    [206]薛庆.引气剂与混凝土高性能化[J].混凝土,2005,186(4):22-25
    [207]方璟.大坝混凝土耐久性研究[J].混凝土与水泥制品,1993,(6):29-36
    [208] V. Anna, A. Schrefler Bernhard, and V. Vitaliani Renato.2-D model for carbonation andmoisture/heat flow in porous materials [J], Cement and Concrete Research,1995,25(8):1703-1712
    [209] Y. F. Houst. The role of moisture in the carbonation of cementitious materials [J],International Zeitschrift für Bauinstandsetzen,1996, pp.49-66
    [210] D. J. Anstice, C. L. Page, and M. M. Page. The pore solution phase of carbonated cementpastes [J], Cement and Concrete Research,2004,35(2005):377-383
    [211]牛荻涛著.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003
    [212]邸小坛,周燕著.旧建筑物的检测加固与维护[M].北京:地震出版社,1992
    [213]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,(6):18-22
    [214] L. J. Parrott, et al. A study of carbonation-induced corrosion [J]. Magazine of ConcreteResearch,1994,166(46):23-28
    [215]蒋利学,贡春成.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4-7
    [216]蒋利学,张誉.混凝土碳化深度的计算与试验研究[J].混凝土,1996,(4):12-17
    [217]蒋利学,贡春成.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4-7
    [218] Y. F. Houst, F. H. Wittmann. Depth profile of carbonates formed during natural
    [219]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:26-29
    [220] A. M. Neville. Chloride attack of reinforced concrete—an overview [J], Materials andstructures,1995,(28):63-70
    [221]李积平,潘德强等.海工高性能混凝土抗氯离子侵蚀耐久寿命预测.土建结构工程的安全性与耐久性[M],北京:中国建筑工业出版社,2001
    [222] M. D. A. Thomas, P. B. Bamforth. Modelling chloride diffusion in concrete [J], Cement andConcrete Research,1999,(29):487-495
    [223] T. C. Powers. The air requirement of frost resistant concrete[J]. Portland CementAssociation Highway Research Board, Skokie,1949,29(3):184-211.
    [224] G. Litvan. Phase transitions of adsorbates-PartⅣ: Mechanism of frost action in hardenedcement paste[J]. Ceram, Soc.1972,55(1):38-42.
    [225] M. J. Setzer. A new approach to describe frost action in hardened cement paste andconcrete[R]. Proc. Conference on Hydraulic Cement Paste-Their Structure and Properties,Sheffield, UK, British Cement and Concrete Association,1976,313-325.
    [226] G. Fagerlund. Critical moisture contents at freezing of porous materials[R]. SecondCIBRILEM symposium on moisture problems in buildings, Bouwcentrum, buildings,Bouwcentrum, Rotterdam, The Netherlands,1974,1-17.
    [227] T. C. Powers. A working hypothesis for further studies of frost resistance of concrete[J]. ACIjournal,1945,41:245-272.
    [228]黄士元等.近代混凝土技术[M].陕西科学出版社.1998,76-83.
    [229] T. C. Powers, R. A. Helmuth. Theory of volume change in hardended Porland cement pasteduring freezing proceeding[J]. Highway research Board,1953,32:285-297.
    [230] Pigeon Metal. Critical air void spacing factors for concrete as submitted to slow freeze-thawcycle[J]. ACI Journal,1981,78(4):282-291.
    [231]唐明述.混凝土抗冻性[R].南京化工学院硅酸盐教研室,1984.
    [232]李天瑗.试论混凝土冻害机理-静水压与渗透压的作用[J].混凝土与水泥制品,1989,45(5):342-348.
    [233]黄士元,杨南如,周兆桐.近代混凝土技术[M].陕西科学出版社.1998,76-83.
    [234]严捍东,孙伟.大掺量粉煤灰水工混凝土气泡参数和抗冻性研究[J].工业建筑,2001,31(8):314-320.
    [235] G. Fagerlund. Equations for calculating the mean free distance between aggregates particlesor air pores in the concrete[J]. CBI Research,1977,(8):458-459.
    [236] G. Fagerlund. The significance of critical degree of saturations at freezing of pore and brittleMaterials[M]. American Concrete Institute,1975:423-441.
    [237]许丽萍,吴学礼,黄士元.抗冻混凝土设计[J].上海建筑学院学报,1993,6(2):97-112.
    [238] T. C. Powers. A working hypothesis for further studies of frost resistance of concrete[J].Journal of the American Concrete Institute,1945,16(4):245–272.
    [239]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海科学技术出版社.2003.104-117.
    [240]黄士元等.近代混凝土技术[M].陕西科学出版社.1998,74-83.
    [241]程红强,张雷顺,李平先.冻融对棍凝土强度的影响[J].河南科学,2003,21(2):214-216.
    [242]李金玉.混凝土抗冻安全性总结报告[R].1998,48-52.
    [243]范沈抚.掺引气剂程凝土性能的研究[J].混凝土与水泥制品,1991,25(1):11-23.
    [244]关英俊,范沈抚.提高水工混凝土抗冻耐久性技术措施[J].混凝土,1990,35(5):32-30.
    [245]范沈抚.硬化混凝土气泡结构性质的试验研究[J].混凝土与水泥制,1993,4(2):97-111.
    [246]宋拥军.含气量对混凝土抗冻耐久性能的影响[J].中国三峡建设,1999,11(1):45-47.
    [247]朱蓓蓉,吴学礼,黄土元.混凝土中气泡体系形成及其稳定性的影响因素[J].混凝土,1999,25(2):92-96.
    [248] R. M. Pigmon, Gagne, C. Foy. Critical air-void spacing factors for low water-cement ratiowith and without condensed silica fume[J]. Cement and concrete research,1987,17(6):896-906.
    [249] A. Osama, Mohamed. Factors affecting resistance of concrete to freezing and thawingDamage[J]. Journal of materials in civil engineering,2000,112(1):457-459.
    [250]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海科学技术出版社.2003.104-117
    [251]张誉,张伟平等.混凝土结构耐久性概论[M].上海科学技术出版社.2003.104-117
    [252]严捍东,孙伟.大掺量粉煤灰水工混凝土气泡参数和抗冻性研究[J].工业建筑,2001,31(8):314-320.
    [253]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士论文,1998,65-67.
    [254](DL/T5150-2001),水工混凝土试验规程[S].北京:中国电力出版社,2002.
    [255](GBJ82-85),混凝土长期性能和耐久性能试验方法[S].北京:中国建筑工业出版社,1997.
    [256](JTJ270-98),水运工程混凝土试验规程[S].北京:人民交通出版社,1999.
    [257](JTJ053-94),公路工程水泥混凝土试验规程[S].北京:人民交通出版社,1994.
    [258]贾耀东,谢永江,朱长华.国外混凝土抗冻性控制要求和试验方法综述[J].混凝土,2005,338(6):24-28.
    [259]中国土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.65-69.
    [260]施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997,30(4):35-42.
    [261](JGJ55-2001),普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001.
    [262]中华人们共和国国家标准,《混凝土结构设计规范))(0550010-2002)[s].北京:中国建筑工业出版社,2002
    [293]何世钦,贡金鑫.受腐蚀钢筋混凝土结构力学性能研究现状[J].海洋S:程,2003.02
    [264] Liu Y P, Weyers R E. Modeling the time to corrosion cracking in chloride contaminatedeinforced concrete structures[J]. AC1Materials Journal,1998,95(6)
    [265] Enright,M.P.,and FrangoPol,D.M. Maintenance Planning for Deteriorating ConcreteBridges[J]. Journal of Structural Engineering:Dce99,Vol.125Issue12:1407~1415
    [266] Frangopol,D.M.,and Estes,A.C.,Lifetime bridge maintenance strategies based on systemreliability[J].Struct. Engrg. Int.,1997,7(3):193~198.
    [267]中国地震灾害损失预测研究,地震出版社,1990
    [268]尹之潜等,单层工业厂房震害估计方法,地震工程与工程振动,vol.7,No.4,1987
    [269]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [270]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测[J].大连理工大学学报,2002,42(1):83~87
    [271]赵尚传,赵国藩.基于可靠性的在役混凝土结构剩余使用寿命预测[J].建筑科学,2001,17(5):19~22
    [272]牛荻涛.混凝土结构耐久性与寿命预测[M]北京:科学出版社,2003
    [273]何世钦,贡金鑫.受腐蚀钢筋混凝土结构力学性能研究现状[[J].海洋S:程,2003.02
    [274]孙伟.荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J].东南大学学报,2006.
    [275]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].博士学位论文.东南大学.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700