古尔班通古特沙漠地区雪面蒸发—凝结试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古尔班通古特沙漠是我国唯一在冬季存在稳定积雪的沙漠。研究该地区的雪面蒸发-凝结特征,是研究古尔班通古特沙漠地区水文过程的重要内容,是研究沙漠冬季降水的有效储存以及荒漠植物对春季融雪水利用的基础,对于深入理解干旱区冬季水循环特征以及降水资源的有效利用具有重要的意义,同时,可以为揭示古尔班通古特沙漠植被多样性和稳定性成因奠定基础。
     本文根据2007年11月-2008年3月在古尔班通古特沙漠南缘的野外实验观测资料,结合冬季气象资料及其他相关数据,分析了古尔班通古特沙漠地区雪面蒸发-凝结规律,雾凇凝结特性以及季节性冻土条件下融雪水的入渗特性,得出以下主要结论。
     (1)雪面蒸发-凝结方面。沙漠空地日均雪面蒸发率为0.015mm,绿洲区为0.02mm,观测期日蒸发为负值的天数占总观测日数的31.9%,主要分布在12月份和1月份;沙漠区积雪日最大蒸发率为0.3mm,绿洲区0.46mm,冬季沙漠区和绿洲区空地雪面蒸发总量分别为1.73mm和1.95mm,各占冬季降水量的6.51%和7.37%。沙漠垄间开阔地雪面蒸发比梭梭林内蒸发强,冬季12月~2月垄间林内总蒸发量为-0.41mm,开阔地蒸发量0.86mm。相关分析结果表明:影响古尔班通古特沙漠地区冬季雪面蒸发的主导因素为气温。与天山山地及世界其它干旱地区相比,沙漠地区冬季雪面蒸发是最小的,低温、多雾天气是低蒸发的重要原因。
     (2)植株冠层雾凇凝结方面。实测结果:古尔班通古特沙漠植株冠层雾凇凝结水量可达4.1mm(3.1- 8.8mm),约占冬季降水量的15.5%;冬季绿洲开阔地积雪表面水汽凝结总量约为3mm,冠层雾凇凝结量为5.2mm,占冬季降水量的19.6%,可见,植株雾凇凝结对古尔班通古特沙漠地区冬季水资源的增加作用明显。对雾凇形成的条件、雾凇与气象因子以及植株形状的相关分析结果表明:温度越低,雾凇形成要求的大气最小相对湿度越小;雾凇凝结量随离地高度呈指数函数增长、与枝条长度呈线性关系。
     (3)季节性冻结土壤入渗方面。沙漠地区季节性冻土具有较高的入渗能力,入渗能力随着土壤含水率的升高而减小。沙漠冻结砂土的稳渗率约为0.26-0.30mm/min,是非冻结砂土的1/10,是田间冻结壤土的10-20倍,可以保证融雪水及时入渗进入土壤,为融雪水的高效储存创造了有利条件,2007-2008年积雪期融雪水土壤入渗量约为冬季最大积雪量的92%。沙地土壤初始的低含水率、土壤大孔隙结构特征是沙地冻结土具有较高入渗能力的主要原因。
     (4)雪面蒸发、雾凇凝结以及沙地入渗实验研究结果表明,古尔班通古特沙漠冬季积雪的低蒸发、高凝结以及沙地的高渗透性为冬季降水的有效保存以及春季积雪集中融化后的有效储存创造了有利条件,植株凝结等隐匿降水对古尔班通古特沙漠地区局地水资源的增加作用明显。在准噶尔盆地荒漠植被恢复与重建过程中应充分考虑利用这一部分冬季天然水资源,从而减少对河川径流以及地下水资源的利用。
Gurbantonggut desert, which is located in northwest of China, is the only one desert that existence steady snow cover in winter. Snow evaporation-condensation characteristic researches are the important content of hydrological process, and the foundation of snow conservation efficiency and snowmelt utilization ratio of plants studies in desert. The studies are also of important values to further apprehend the water cycle characteristic and effective utilization of precipitation within winter period in arid-area. Furthermore, these studies provide a basis data for reveal the causes that plants have the characteristic features of diversity and stability in desert.
     Based on the data of field experimental observation and the weather data in the southern part of Gurbantunggut desert from November 2007 to March 2008, the snow evaporation-condensation, rime accumulations and the infiltration characteristics of seasonal frozen soils in desert were analyzed. Main results are concluded as follow:
     (1) Snow evaporation-condensation. The daily snow evaporation is 0.015mm for inter-dune clearing and 0.02mm for oases, the days of net condensation, which is mainly in February and January, represent 31.9% in total measured days. The maxest snow evaporation rate is 0.3mm/d for inter-dune and 0.46mm/d for oases; the total winter snow evaporation is 1.73mm and 1.95mm; this represents 6.51% and 7.37% of the winter precipitation, respectively. Snow evaporation in openings is higher than under H.ammodendron stands, there is a net condensation 0.41mm under stands and evaporation 0.86mm in openings during Dec.2007 to Feb.2008. The results of correlation analysis show that snow evaporation in the area of Gurbantunggut Desert mainly depends on the air temperature; the evaporation in desert is lower than in Tianshan Mountains and other arid-areas in the world, the reasons of lower snow evaporation are low air temperature and foggy weather conditions in desert.
     (2) Rime buildup on plant crowns. Field experimental observation indicated that water equivalent of rime caught on crowns is 4.1mm for desert; it represents 15.5% of the winter precipitation. Snow surface condensation at night is 3mm, rime accumulation on crowns is 5.2mm in winter in oases, and this represents 19.6% of the winter precipitation. It is obvious that the water equivalent of rime caught in entire winter is an important supplement to water input in the area. The conditions of riming, main meteorological elements in riming and the shape of plants were analyzed, results showed that the lower of air temperature, the lower humidity riming need; rime accumulations are grower with heights in power functions and have a positive linear correlation with branch lengths.
     (3) Infiltration characteristics of seasonal frozen soils. There was a higher infiltration capacity of seasonal frozen soils in desert district; results indicated that infiltration rate into seasonal frozen soil decreases along with increasing initial soil moisture content. The stable infiltration rate of frozen sandy soils in desert was about 0.26-0.30mm/min which is about 1/10 of unfrozen soil, but it is still 10-20 times for frozen loamy soil in farmland. Higher infiltration rate of frozen sandy soils ensure the snowmelt infiltration into soil layer rapidly and create favorable conditions for effective storage of snowmelt water. From November 2007 to March 2008, there is 92.1% of the snowfall water infiltrated into soils. The low initial moisture content and macropore texture of sandy soils are the major reasons for higher infiltration capacity of frozen sandy soils.
     (4) The experiment results of snow evaporation, rime accumulations and infiltration of sandy soils showed that the lower snow evaporation, more condensation and higher infiltration capacity of sangy soils in Gurbantonggut desert can provide advantage for effective conservation of winter precipitation and effective store of snowmelt in spring, occult precipition shch as rime is an important supplement to water input in local areas of desert. In Junggar basin desert vegetation rehabilitation and reconstruction process, we should take full account of this part of the winter natural water resources, and this can reduce the use of runoff and groundwater resources.
引文
[1]张立运,陈昌笃.论古尔班通古特沙漠植物多样性的一般特点[J].生态学报,2002, 22(1):1923-1932.
    [2]任美锷.中国自然地理纲要[M].北京:商务印书馆,2004:351.
    [3]朱岗崑.自然蒸发的理论及应用[M].北京:气象出版社, 2000.
    [4]ПП.库兹明著,李秀珍译.雪面蒸发计算方法[J].黑龙江水利科技,1996, 2 :128-133.
    [5] Sokratov SA, Golubev VN, Sato A. Change In Isotopic Content of Snow As A Result of Evaporation From The Snow Surface[A].EGS XXVII General Assembly, Nice, France[C]. April 2002.
    [6] Valeo C, Skone SH, Ho CLI, et al. Estimating snow evaporation with GPS derived perceptible water vapor [J].Journal of Hydrology, 2005, 307(1-4):196-203.
    [7]世界气象组织(WMO)编.水文实践指南,第一卷:资料收集和整理[M].陈道弘等译.北京:水利电力出版社,1987:42
    [8]杨大庆,张寅生.乌鲁木齐河流域山区冬季积雪蒸发观测的主要结果[J].冰川冻土,1992,14 (2):122-127.
    [9]康斯坦丁,帕普耶特.计算苏联西北部雪面蒸发的改进方法[J].程其畴译.干旱区地理, 1986, 9(1): 61-64.
    [10] Lundberg A, Halldin S. Evaporation of intercepted snow: analysis of governing factors [J]. Water Resources Research, 1994, 30(9), 2587-2598.
    [11] Meiman JR, Grant LO. Snow-air interactions and management of mountain watershed snowpack [A]. In: Completion Report No. 57, Environmental Resources Center, Colorado State University[C]. Fort Collins, Colorado. 1974.
    [12] Bengtsson L. Evaporation from a Snow Cover-Review and Discussion of Measurements [J]. Nordic Hydrology, 1980, 11(5):221-234.
    [13] Schmidt RA, Troendle CA, Meiman JR. Sublimation of snowpacks in subalpine conifer forests [J]. Canadian Journal of Forest Research, 1998, 28(4): 501-513.
    [14] Rolf B. Condensation upon and evaporation from a snow surface [J]. Monthly weather review, 1915, 9:466.
    [15] Baker FS. Snow field experiment on evaporation from snow surfaces [J]. Monthly weather review, 1917, 7:363-366.
    [16] Williams GP. Evaporation from snow covers in Easter Canada [M].National research council, division of building research, Ottawa research paper NO. 73. Jan. 1959.
    [17] Bergen JD, Swamson RH. Evaporation from a winter snow cover in the Rocky Mountain forest zone [A]. Proceeding 32nd. Western Snow Conference [C].1964:52–59.
    [18] Treidl RA. A case study of warm air over advection over a melting snow surface [J]. Boundary-lay meteorology, 1970, 1(2):155-162.
    [19] Hicks BB, Martin HC. Atmospheric turbulent fluxes over snow [J].Boundary-lay meteorology, 1972, 2(4): 496-502.
    [20] Quervain M. Zur Verdunstung der Schneedecke [J]. Theoretical and Applied Climatology. 1951, 3(1): 47-64.
    [21] Lemmela R. Measurements of evaporation-condensation and melting from a snow cover [A]. In: the Role of Snow and Ice in Hydrology (Proc. BanffSymp., August, 1972) [C].1973, 670-679. UNESCO-WMO-IAHS, VOL.Ⅰ.
    [22] Lemmela R, KuusistoE. Evaporation from snow cover [J]. Hydrological sciences bulletin. 1974, 19(4): 541-548.
    [23] Nyberg A. A study of the evaporation and the condensation at a snow surface [M]. Archives for geophysics, 1966, 4(6), Stockholm.
    [24] Kojima K. Evaporation rate of snow at the surface of a snow cover, observations in Sapporo and Moshiri, Hokkaido [J]. Low Temperature Science, 1985, 44: 49-62.
    [25] Masaki H, Tomoyoshi H, Yukiyoshi I, et al. Snowmelt Energy Balance and Its Relation to Foehn Events in Tokachi, Japan [J]. Journal of the meteorological society of Japan. 2005, 83(5): 783-798.
    [26] Delarov DA, Kalyuzhnyy IL, Shutov VA. Evaporation from snow by snow retention on fields of agricultural crops [J]. Meteorologiya i Gidrologiya. 1985, 9: 95-107.
    [27] Shutov VA, Kaljuzny IL. Snow Management in Agricultural Landscapes [OB/OL]. http://hydro.valday.com/snow_management.pdf.
    [28] Shutov VA. Snow cover in various relief and landscape conditions [A]. In: Kane DL (Eds.) Water Resources in Extreme Environment[C]. Proceeding of the American Water Resources Association, Spring Specialty Conference. Anchorage, Alaska, USA 1-3 May 2000, 19-24.
    [29] De Jong E, Dachanoski RG. The role of grasslands in hydrology [J]. Canada Bulletin of Fish and Aquatic Science, 1987, 215:213-241.
    [30] Williams GP. Thermal Methods of Control [A]. In: Gray DM, Male DH (Eds.), Handbook of Snow, Principles, Processes, Management and Use[C]. Pergamon Press, 1981, 613–629.
    [31] Ho CLI. Urban Snow Hydrology and Modelling [D]. MSc Thesis. Department of Geomatics Engineering, University of Calgary, Calgary, Alberta. 2002.
    [32]赵哈林,周瑞莲,赵悦.雪生态学研究进展.地球科学进展[J].2004, 19(2): 296-304.
    [33] Beaty CB. Sublimation or melting: observations from the White Mountains, California and Nevada, USA [J]. Journal of Glaciology, 1975, 14(71): 275-286.
    [34] Rylov SP. Snow cover evaporation in the semi desert zone of Kazakhstan [J]. Soviet hydrology, 1969, 64-77.
    [35] Stichler W, Schotterer U, Fr?hlich K, et al. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes [J]. Journal of Geophysical Research, 2001, 106(D19): 22613-22620.
    [36] Golding DL. Calculated Snowpack Evaporation during Chinooks along the Eastern Slopes of the Rocky Mountains in Alberta [J].Journal of applied meteorology, 1978, 17(11):1647-1651.
    [37] Schulz O, De Jong C. Snowmelt and sublimation field experiments and modelling in the High Atlas Mountains of Morocco [J]. Hydrology and Earth System Sciences, 2004, 8(6):1076-1089.
    [38] Kaser G. Measurement of Evaporation from Snow [J].Meteorology and Atmospheric Physics. 1982, 30(4): 333-340.
    [39] Ueno K, Tanaka K, Tsutsui H, Li M. Snow Cover Conditions in the Tibetan Plateau Observed during the Winter of 2003/2004[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(1):152-164.
    [40]张寅生,蒲建辰.青藏高原中部地面蒸发量观测计算与特征分析[J].冰川冻土.1994, 16(2):166-172.
    [41]王积强,魏文寿.雪面蒸发(凝结)的观测实验[J].新疆气象, 1994, 17(3): 38-41.
    [42] Leydecker A, Melack JM.Evaporation from snow in the Central Sierra Nevada of California [J]. Nordic Hydrology, 1999, 30 (2):81–108.
    [43] Lauscher F. New analysis of snow evaporation measurements made by H. Koehler at the Haldde Observatory during the winter of 1920-1921[J]. Archives for Meteorology, Geophysics, and Bioclimatology, 1978, 26(2/3): 193-198.
    [44] Ohmura A, Calanca P, WildM, et al. Precipitation, accumulation, and mass balance of the Greenland ice sheet [J]. Zeit. Gletsch. Glazialgeol., 1999, 35(1):1-20.
    [45] Ohmura A. Evaporation from the Surface of the Arctic Tundra on Axel Heiberg Island [J]. Water Resources Research, 1982, 18(2):291-300.
    [46] Burford JE, Stewart RE. The sublimation of falling snow over the Mackenzie River Basin [J]. Atmospheric Research, 1998, 49(4): 289-313.
    [47] Liston GE. Sturm M. The role of winter sublimation in the Arctic moisture budget [J]. Nordic Hydrology, 2004, 35(4/5): 325-334.
    [48] King JC. Anderson PS. Mann GW. The seasonal cycle of sublimation at Halley, Antarctica [J]. Journal of Glaciology, 2001, 47(156): 1-8.
    [49] Zhang YS, Ohata T, Suzuki K. Observational Study on Sublimation from the Snow Surface in Northern Eurasia[C]. American Geophysical Union, Fall Meeting, 2004.
    [50] Postinikov An. Method for computing evaporation during the snow melting and flood period in the central chernozem regions of the European USSR [J]. Soviet hydrology 1974(1): 23-31. Translated from state hydrologic institute (Trudy Ggi), 1974, 214: 70-83.
    [51] Granger RJ, Male DH. Melting of a Prairie Snowpack [J]. Journal of applied meteorology, 1978, 17(12):1833-1842.
    [52] Wallen CC. Glacial-meteorological investigations on the Karsa Glacier in Swedish Lapland 1942-1948[J]. Geografisk Annaler, 1949, 30:451-672.
    [53] Gold LW, Williams GP. Energy Balance During the Snow Melt Period at an Ottawa Site[C]. International Association of Scientific Hydrology Publication, 1961, 54: 288-294.
    [54] Eaton E, Wendler G. The heat balance during the snow melt season for a permafrost watershed in Interior Alaska [J]. Archives for Meteorology, Geophysics, and Bioclimatology, 1982, 31(1-2):19-33
    [55] Kane DL, Bredthauer SR, Stein J. Sub arctic Snowmelt Runoff Generation [A]. In: Proceedings of the Specialty Conference on the Northern Community[C], Vinson TS (ed.), American Society Civil Engineers (ASCE): Seattle, Washington; 1981.591-601.
    [56] Aizen VB, Aizen EM, Melack JM. Snow distribution and melt in central Tien Shan, Susamir Valley [J].Arctic and Alpine Research, 1997, 29(4): 403-413.
    [57] Shook K, Gray DM. Snowmelt resulting from advection [J]. Hydrological Processes, 1997, 11(13): 1725-1736.
    [58] Shiraiwa T, Taguchi.Y, Saito T, et al. Observations on the evaporation-condensation process and heat-balance during the austral summer at the snow surface of Dome Fuji Station, East Antarctica [A].Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, Tokyo, Japan[C], 1996, 10:150.
    [59] Henneken EAC, Meesters AGCA, Bink NJ, et al. Ablation near the equilibrium line on the Greenland ice sheet, southwest Greenland, July 1991[J]. Zeitschrift fur Gletscherkunde und Glazialgeologie, 1997, 33(2): 173-184.
    [60] Ohmura A, Konzelmann T, Rotach M, et al. Energy balance for the Greenland ice sheet by observation and model computation[A].In: IAHS Publishing, Snow and Ice Covers: Interaction With the Atmosphere and Ecosystems[C], edited by Jones H, Davies T, Ohmura A, and Morris E.1994,223, 85-94.
    [61] Singha P, Bengtsson L. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region [J]. Journal of Hydrology, 2005, 300(1-4):140-154.
    [62] Box JE, Steffen K. Sublimation on the Greenland ice sheet from automated weather station observations [J]. Journal of Geophysical Research, 2001, 106(D24): 33965-33982.
    [63] Bründl M. Snow interception and meltwater transport in subalpine forests [D]. Doctoral thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 1997.
    [64] Hansen EA, Ffolliott PF. Observations of snow accumulation and melt in demonstration cuttings of ponderosa pine in central Arizona [A]. U S Department of Agriculture, Forest Service Research Note RM-111[C], 1968, 1-12.
    [65] Golding DL, Swanson RH. Snow distribution patterns in clearing and adjacent forest [J]. Water Resources Research, 1986, 22(13): 1931-1940.
    [66] Harestad AS, Bunnell FL. Prediction of snow water equivalent in coniferous forests [J]. Canadian Journal of Forest Research, 1981, 11: 854-857.
    [67] West AJ. Snow evaporation from a forested watershed in the central Sierra Nevada [J]. Journal of Forestry, 1962, 60: 481-484.
    [68] Doty RD, Johnston RS. Comparison of gravimetric measurements and mass transfer computations of snow evaporation beneath selected vegetation canopies [A].Proceedings 37th annual meeting of western snow conference, Salt Lake City, Utah[C]. Printed by Colorado state university, Fort Collins.1969, 15-17.
    [69] Bernier PY, Swanson RH. The influence of opening size on snow evaporation in the forests of the Alberta Foothills [J].Canadian Journal of Forest Research, 1993, 23(2): 239-244.
    [70] Tabler RD. Evaporation losses of windblown snow, and the potential for recovery[C]. Proceedings of the 41st annual meeting of the western snow conference, April 17-19, 1973, Grand Junction, Colorado: Colorado state university, Fort Collins. 1973, 75-79.
    [71] Mcfadden JP, Liston GE, Sturm M, et al. Interactions of shrubs and snow in arctic tundra: measurements and model [A]. In: Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrological Models[C]. IAHS Scientific Assembly, Maastrecht, The Netherlands. 2001: 317-325.
    [72] Harlan WD. Snowpack evaporation in lodgepole pine [D]. Masters thesis, Colorado: Colorado State University, Fort Collins, 1974.
    [73] Croft AR. Evaporation from snow [J]. American Meteorological Society bulletin. 1944, 25: 334-337.
    [74] Avery CC, Dexter LR, Wier RR, et al. Where has all the snow gone? Snowpack sublimation in northern Arizona[C]. In: Proceedings of the 60th Western Snow Conference, Colorado: Colorado State University, Fort Collins, 1992: 84-93.
    [75] Rowe PB, Hendrix TM. Interception of rain and snow by second growth ponderosa pine [J]. Transactions American Geophysical Union. 1951, 32(6): 903-908.
    [76] Goodell BC. Management of forest stands in Western United States to influence the flow of snow-fed steams. International Association of Hydrological Sciences (IAHS) Publication, 1959, 48: 49-58.
    [77] Miller DH. Meteorological influences on interception of falling snow[C]. In: American Meteorological Society 193rd National Meeting, with American Association for the Advancement of Science (AAAS), Davis, California. 1961.
    [78] Satterlund DR, Haupt HF. The deposition of snow caught by conifer crowns [J]. Water Resources Research, 1970, 6(2): 649-652.
    [79] Strobel T. Schnee interzeption in Fichenbest?nden in den Voralpen des Kantons Schwyz[C]. In: International Seminar Mountain Forests and Avalanches, September 25-28, 1978, Davos, 63-79. Swiss Federal Institute for Snow and Avalanche Research. Davos.
    [80] Schmidt RA. Sublimation of snow intercepted by an artificial conifer [J]. Agricultural and Forest Meteorology, 1991, 54: 1-27.
    [81] Schmidt RA, Gluns DR. Snowfall interception on branches of three conifer species [J]. Canadian Journal of Forest Research, 1991, 21(8):1262-1269.
    [82] Pomeroy JW. Gray DM. Snow cover: accumulation, relocation and management[C]. National Hydrology Research Institute (NHRI) Science report No. 7, Saskatoon, Canada. 1995.
    [83] Nakai Y, Sakamoto T, Terajima T, et al. Snow interception by forest canopies: weighing a conifer tree meteorological observation and analysis by the Penman-Monteith formula[C]. International Association of Hydrological Sciences, Wallingford, UK, IAHS Publication 1994, 223: 227-236.
    [84] Lundberg A. Interception evaporation: Processes and measurement techniques [D]. PH.D. Division of Water Resources Engineering Department of Environmental Planning and Design. Lulea University of Technology. 1996.
    [85] Pomeroy JW. Sublimation from Snow in Northern Environments [C]. American Geophysical Union, Fall Meeting, 2002.
    [86] Winkler RD, Spittlehouse DL, Golding DL. Measured differences in snow accumulation and melt among clearcut, juvenile and mature forests in southern British Columbia [J]. Hydrology Process, 2005, 19(1): 51-62.
    [87] Woods SW, Ahl R, Sappington J, et al. Snow accumulation in thinned lodgepole pine stands, Montana, USA [J]. Forest Ecology and Management, 2006, 235 (1-3):202–211.
    [88] Stegman SV. Snowpack changes resulting from timber harvest: interception, redistribution and evaporation [J]. Water resources bulletin, 1996, 32(6): 1353-1360.
    [89]刘文杰,曾觉民,王昌命等.森林与雾露水关系研究进展[J].自然资源学报, 2001, 161 (6): 571-575.
    [90]刘文杰,张克映,张光明等.西双版纳热带雨林干季林冠雾露水资源效应研究[J].资源科学,2001, 23(2):75-80.
    [91] Scholl MA, Gingerich SB, Tribble GW. The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii [J]. Journal of Hydrology, 2002, 264(1-4):170-184.
    [92] Cereceda P, Larrain H, Osses P, et al. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile [J]. Atmospheric research, 2008, 87(3-4): 312-323.
    [93] Schemenauer RS, Cereceda P.干旱地区利用雾补给地下水的研究[J].李冬田译.河海科技进展,1994, 14(1):111-114.
    [94] Kidron G J. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highland, Israel [J]. Atmospheric Research, 2000, 55 (3-4): 257-270.
    [95]庄艳丽,赵文智.干旱区凝结水研究进展[J].地球科学进展, 2008, 23(1): 31-38.
    [96] Agam N, Berliner PR. Dew formation and water vapor adsorption in semi-arid environments-A review [J]. Journal of Arid Environments, 2006, 65(4): 572-590.
    [97]谢运华.三峡地区导线覆冰与气象要素的关系[J].中国电力, 2005, 38(3): 35-39.
    [98] Fu P, Farzaneh M, Bouchard G. Two-dimensional modeling of the ice accretion process on transmission line wires and conductors [J]. Cold Regions Science and Technology, 2006, 46: 132- 146.
    [99] Maissan JF, P eng. Wind power development in sub-arctic conditions with severe rime icing[C]. Circumpolar Climate Change Summit and Exposition, Whitehorse, Yukon, Canada, March 19-21, 2001.
    [100] Kokenakis A, Dexter L. The rime river[C], ISSW’98 Proceedings: 1998 International Snow Science Workshop, Sunriver, Oregon, Sep.27-Oct.1, 1998, 544-550.
    [101] Berndt HW; Fowler W b. Rime and hoarfrost in upper-slope forests of eastern Washington [J]. Journal of forestry, 1969, 67(2): 92-95.
    [102]林之光.地形降水气候学[M].北京:科学出版社,1995.
    [103] Gary, Howard L. Rime Contributes to Water Balance in High-Elevation Aspen Forests [J].Journal of forestry, 1972, 70(2): 93-97.
    [104] Ryerson CC. Rime meteorology in the Green Mountains[C]. US Army Cold Regions Research and Engineering Laboratory(CRREL)Report: 87-1.1987: 54.
    [105] Edward E, Hindman R, Olph D. Hydro meteorological significance of rime ice deposits in the Colorado Rockies [J].Journal of the American Water Resources Association. 1983, 19 (4), 619–624
    [106] Berg NH. Mountain-Top Riming at Sites in California and Nevada, USA [J]. Arctic and Alpine Research, 1988, 20(4): 429-447.
    [107] Miga?a K, Liebersbach J, Sobik M. Rime in the Giant Mts. (The Sudetes, Poland) [J]. Atmospheric Research, 2002, 64(1-4):63-73.
    [108] Lasse Makkonen. Estimating Intensity of Atmospheric Ice Accretion on Stationary Structures [J]. Journal of Applied Meteorology, 1981, 20(5): 595-600.
    [109]黄光荣.山地水平降水[J].贵州气象, 1991, 5: 22-24.
    [110] Puxbaum H, Tscherwenka W. Relationships of major ions in snow fall and rime at Sonnblick Observatory (SBO, 3106 m) and implications for scavenging processes in mixed clouds [J]. Atmospheric Environment, 1998, 32(23):4011- 4020.
    [111] Berg N, Dunnt P, Fenn Mark. Spatial and temporal variability of rime ice and snow chemistry at five sites in California [J]. Atmospheric Environment, 1991, 25A, (5-6): 915-926.
    [112]杨针娘,曾群柱.冰川水文学[M].重庆:重庆出版社,2001.
    [113] Zhao L, Gray DM. Estimating snowmelt infiltration into frozen soils [J]. Hydrological Process, 1999, 13(12-13): 1827-1842.
    [114] Gray DM, Toth B, Zhao L, Pomeroy JW, Granger RJ. Estimating areal snowmelt infiltration into frozen soils [J]. Hydrological. Process, 2001, 15(16): 3095–3111.
    [115] Hinkel, K.M., Paetzold, F., Nelson, F.E., Bockheim, J.G. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999[J]. Global and Planetary Change, 2001, 29(3-4): 293–309.
    [116] Leenders, E.E., Woo, M. Modeling a two-layer flow system at the subarctic, subalpine tree line during snowmelt [J]. Water Resource. Research. 2002, 38 (10): 201–208.
    [117] Stadler D, Wunderli H, Auckenthaler A, Flühler H. Measurement of frost-induced snowmelt runoff in a forest soil [J]. Hydrological Processes 1996, 10(10): 1293-1304.
    [118] Dunne T, Black RD. Runoff processes during snowmelt [J]. Water Resources Research, 1971, 7(5): 1160-1172.
    [119] Baker JM, Spaans EJA. Mechanics of meltwater above and within frozen soil[C]. USA Cold RegionsResearch and Engineering Laboratory. CRREL Special Report. 79-10, 1997:31-36.
    [120] Stadler D, Flühler H, Jansson PE. Modelling vertical and lateral water flow in frozen and sloped forest soil plots [J]. Cold Regions Science and Technology, 1997, 26 (3), 181-194.
    [121] Black PB, Miller RD. Hydraulic conductivity and unfrozen water content of air-free frozen silt [J].Water Resource Research, 1990, 26(2):323-329.
    [122] Stadler D, St?hli M, Aeby P, et al. Dye tracing and image analysis for quantifying water infiltration into frozen soils [J]. Soil Science. Society of American Journal, 2000, 64(2): 505–516.
    [123] Seyfried MS, Murdock MD. Use of air permeability to estimate infiltrability of frozen soil [J]. Journal of Hydrology, 1997, 202(1-4): 95-107.
    [124] Bayard D, St?hli M, Parriaux A, The influence of seasonally frozen soil on the snowmelt runoff at two Alpine sites in southern Switzerland [J]. Journal of Hydrology, 2005, 309(1-4): 66-84.
    [125] Nyberg L, St?hli M. Mellander PE, et al. Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations [J]. Hydrological Process, 2001, 15(6): 909-926.
    [126] St?hli M, Jansson PE, Lundin LC. Soil moisture redistribution and infiltration in frozen sandy soils [J]. Water Resource Research, 1999, 35 (1):95-103.
    [127] Sutinen R. H?nninen P. Ven?l?inen A. Effect of mild winter events on soil water content beneath snowpack [J]. Cold Regions Science and Technology, 2008, 51(1): 56-67.
    [128] Harlan RL. Analysis of coupled heat fluid transport in partially frozen soil [J]. Water Resources Research, 1973, 9(5): 1314-1323.
    [129] Zhao L, Gray DM, Male DH. Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground [J]. Journal of Hydrology, 1997, 200(1-4): 345-363.
    [130]张家宝.新疆短期天气预报指导手册[M].乌鲁木齐:新疆人民出版社,1986.
    [131]世界气象组织仪器和观测方法委员会.气象仪器和观测方法指南[M].国家气象局气候监测应用管理司译,北京:气象出版社, 1993:152.
    [132]张学文,张家宝.新疆气象手册[M].北京:气象出版社, 2006:151.
    [133]李江风.新疆气象[M].北京:气象出版社, 1991:195.
    [134] Ferrier RC, Jenkins A, Elston DA. The composition of rime ice as an indicator of the quality of winter deposition [J]. Environment pollution, 1995, 87(3):259-266.
    [135] Bezrukova NA, Jeck RK, Khalili MF, et al. Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations [J]. Atmospheric Research, 2006, 82(1-2):203–221.
    [136]胡毅,李萍,杨建功等.应用气象学[M].北京:气象出版社, 2005: 251-255.
    [137]王秋香,李红军,魏荣庆等. 1961-2002年新疆季节冻土多年变化及突变分析[J].冰川冻土, 2005, 27(6): 820-826.
    [138]周石硚,中尾正义,桥本重将等.积雪最低含水饱和度的野外测定[J].水利学报, 2004, 2: 29-33.
    [139]王雪芹,蒋进,雷加强,等.短命植物分布与沙垄表层土壤水分的关系-以古尔班通古特沙漠为例[J].应用生态学报, 2004, 15(4): 556-560.
    [140]邢述彦.灌溉水温对冻融土入渗规律的影响[J].农业工程学报, 2002,18(2):41- 44.
    [141]樊贵盛,郑秀清,贾宏骥.季节性冻融土壤的冻融特点和减渗特性的研究[J].土壤学报, 2002, 37(1): 24-32.
    [142]郑秀清,樊贵盛.土壤含水率对季节性冻土入渗特性影响的试验研究[J].农业工程学报, 2000, 16(6):52-55.
    [143]樊贵盛,贾宏骥,李海燕.影响冻融土壤水分入渗特性主要因素的试验研究[J].农业工程学报, 1999, 15(4): 88–94.
    [144]钱亦兵,张立运,唐自华,等.古尔班通古特沙漠88°E沿线风沙土理化性状的纵向分异[J].干旱区地理, 2006, 29(6):784–789.
    [145]刘新平,张铜会,何玉惠,等.不同粒径沙土水分扩散率[J].干旱区地理, 2008, 31(2): 249-253.
    [146]郭占荣,荆恩春,聂振龙,等.冻结期和冻融期土壤水分运移特征分析[J].水科学进展, 2002, 13(3): 298-302.
    [147] French H, Binley A. Snowmelt Infiltration: Monitoring temporal and spatial variability using time-lapse electrical resistivity [J]. Journal of Hydrology, 2004, 297(1-4):174-186.
    [148]陈军锋,郑秀清,邢述彦,等.地表覆膜对季节性冻融土壤入渗规律的影响[J].农业工程学报, 2006, 22(7): 18-21.
    [149]杨维康,蒋慧萍,乔建芳.放牧对准噶尔荒漠植物群落及土壤特性的影响[J].干旱区地理, 2008, 31(5): 659-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700