混凝土衬砌渠道抗冻胀技术措施及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国东北永久性冻土地区和华北、西北季节性冻土地区,混凝土衬砌防渗渠道冻胀破坏分布广泛且损害严重,不但影响渠道的正常使用、浪费宝贵的水资源,而且缩短防渗渠道的使用寿命、增加工程修复次数和管理费用,严重地制约着工程效益的发挥。所以,如何防治混凝土衬砌渠道冻胀破坏已经成为一个非常现实的工程问题。
     针对混凝土衬砌渠道冻胀破坏,本文对渠道冻胀影响因素进行了探讨和研究,在此基础上对混凝土衬砌渠道抗冻胀技术措施进行了归类总结;针对设置不同纵缝措施、混凝土衬砌“适变断面”渠道和双层薄膜防渗衬砌渠道,本文利用有限元软件ADINA对其进行数值模拟,分别研究了三种抗冻胀技术措施的抗冻胀机理及削减冻胀效果。全文获得主要结论如下:
     (1)渠基土质、温度条件、水分条件及受力条件是影响渠道冻胀的四个主要因素。在此基础上,将混凝土衬砌渠道抗冻胀技术措施归类总结,可以有效地指导抗冻胀技术措施在实际工程中的应用。
     (2)抗冻胀综合措施就是对渠道冻胀影响因素中的两个或者两个以上因素进行改善,以达到更好的抗冻胀效果,其基本原理为:改善渠基土质+改善水分条件+改善温度条件+改善受力条件。该原理能够为现有抗冻胀措施的改进以及新型抗冻胀综合措施的开发提供科学的指导。
     (3)应用ADINA软件进行渠道冻胀数值模拟,其结果能够反映混凝土衬砌渠道冻胀变形及受力规律,且简洁通用,可用于渠道抗冻胀设计。通过对比分析表明:合理设置纵缝不仅能降低最大冻胀量61%,最大法向冻胀力45%,最大切向冻胀力32%,而且可使冻胀分布更加均匀,显著削减混凝土衬砌渠道的冻胀破坏;削减冻胀的显著性依次是1/3坡高处设纵缝、坡脚处设纵缝、不设纵缝;但针对坡板较短、底板较宽情况,在坡脚及底板中心处都设纵缝效果最好,降低最大冻胀量67%,最大法向冻胀力59%,最大切向冻胀力45%。
     (4)对比普通渠道,“适变断面”渠道抗冻胀效果明显,其衬砌板受力状态得到显著改善,且冻胀变形分布更加均匀,是一种较为理想的渠道抗冻胀技术措施。纵向伸缩缝周向压缩值总计为9.7㎝,相邻衬砌板间法向错位值总计为1.3㎝,揭示了混凝土衬砌“适变断面”渠道利用纵缝吸收衬砌板周向位移并释放法向冻胀变形来降低冻胀力、冻胀量并使其分布均匀化的抗冻胀机理。边坡系数i能够影响“适变断面”渠道的抗冻胀性能;当边坡系数i处在1:1.7~1:1.4之间时,渠道冻胀变形分布更为均匀,抗冻胀效果更好。
     (5)双层薄膜防渗衬砌渠道抗冻胀效果显著,不仅衬砌板自身受力状态得到显著改善,而且冻胀变形、冻胀力分布更加均匀。双层薄膜防渗衬砌渠道切向冻结力阴坡、渠底、阳坡极值及均方差降低幅度均大于法向冻胀力降低幅度,揭示了该种渠道通过削弱冻结约束来改善衬砌板冻胀受力及使冻胀量分布均匀的抗冻胀机理。弧底梯形作为双层薄膜防渗衬砌渠道适用断面,当渠坡板与弧底板发生较大冻胀错位时,由于冻结约束削弱、双层薄膜界面摩擦力不足,渠坡板可能发生滑动失稳。因此,在实际工程中应对弧底板和渠坡板之间的伸缩缝加强管理,或采用整体现浇式结构,以防止滑动失稳情况的发生。
In the area of permanently frozen soil in Northeast China and the seasonal in North China and Northwest, there exists massive and serious frost heaving damage of concrete lining canal. The damage leading to low project benefit has not only disturbed regular work and wasted precious water, but also decreased project service life and increased reparative frequency and management cost. Therefore, how to prevent the damage has became an actual project problem.
     In order to prevent frost heaving damage of concrete lining canal, this paper has explored influencing ingredients of canal frost heaving and furtherly provided a detailed classification and summary on anti-frost heave technical measures of concrete lining canal. Then, finite element software ADINA has been applied to simulate setting different longitudinal joints, self-adjusting lining canal and lining canal with double films and respectively studyed their mechanism and effect of anti-frost heave. Main conclusions gained can be expressed as follow:
     (1) On the basis of the fact that main influencing ingredients of canal frost heaving include soil, water, temperature and stress conditions, the paper provided a detailed classification and summary on anti-frost heave technical measures of concrete lining canal in order to guide application of these measures in actual projects effectively.
     (2) Comprehensive measure of anti-frost heave can be interpreted as the one that improves two or more influencing ingredients for the sake of achieving better anti-frost heave effect. Its basic principle is: to improve soil condition + to improve the water + to improve the temperature + to improve the stress, which could provide scientific guidance for improvement and invention of anti-frost heave technical measures.
     (3) Computer simulation of canal frost heaving with the application of ADINA can demonstrate rules of heaving deformation and frost heaving force distribution, so as to be used in anti-frost heave design of canal owing to its simplicity and generality. Comparative analysis indicated that: setting joints reasonably not only could reduce maximum heaving quantity 61%, maximum normal frost heaving force 45% and the tangential 32%, but also weaken frost heaving damage remarkably due to more uniform distribution of frost heaving force; listed descending order of the significance of anti-frost heave is: setting joints in the 1/3 slope, in the toe of slope and not; whereas for canals of shorter slope plate and wider base plate, setting joints both in the toe of slope and center of base plate can get the best effect, reducing maximum heaving quantity 67%, maximum normal force 59% and the tangential 45%.
     (4) Compared with the common, self-adjusting lining canal can achieve an excellent anti-frost heave effect, through making frost heaving distribution more uniform to reform stress states remarkably. The fact that total normal dislocation value between lining plates is 1.3㎝ and total circumferential compression value of longitudinal elastic joints 9.7㎝demonstrates anti-frost heave mechanism of self-adjusting lining canal which makes full use of the joints to release normal deformation and absorb the circumferential. Best anti-frost heave effect of self-adjusting lining canal can be achieved when setting slope ratio i between 1:1.7 and 1:1.4.
     (5) As a convincing anti-frost heave technical measure,lining canal with double films can not only reform stress states of lining plates remarkably, but also make frost heaving distribution and force more uniform. For mean square deviation and extremum of shady slope, bottom and sunny slope, the fact that their decreasing amplitude of tangential adfreezing force exceeds that of normal frost heaving force demonstrates anti-frost heave mechanism of lining canal with double films which can make frost heaving distribution uniform and reform stress states through weakening the constraint. Suitable section of lining canal with double films comes down to the trapezoidal with arc-bottom. For that section, sliding instability of plate on slope becomes to emerge due to weakening adfreezing constraint and decreasing interfacial friction between two films when serious dislocation between arc-bottom plate and that on slope occurs. According to that, joints between arc-bottom plate and that on slope should be managed elaborately or integral structure applied to avoid sliding instability in the actual project.
引文
蔡建峰. 2010.农业节水灌溉的层面和动力分析.节水灌溉, (3): 60-61
    曹永智,廖鉴萍. 2003.苯板保温法在防冻胀设计中的应用.中国农村水利水电, (6): 75-76
    陈轮,郭瑞平,李广信. 1996.土工加筋抗冻胀工作机制的研究.冰川冻土, 18(4): 297-305
    陈轮,郭瑞平,李广信. 1996.用土工加筋防治土冻胀的研究.水力学报, (3): 84-88
    陈涛,李永红. 2000.安西南干渠渍土地基的冻胀试验研究.防渗技术, 6(2): 13-15
    陈涛. 2004.砼衬砌渠道冻胀破坏力学模型及应用. [硕士学位论文].杨凌:西北农林科技大学
    陈肖柏,刘建坤,刘绪鸿,王雅卿. 2006.土的冻结作用与地基.北京:科学出版社: 117
    程满金,申利刚. 2003.大型灌区节水改造工程技术试验与实践.北京:中国水利水电出版社: 29, 36
    崔延军,李荣峰,冯民权,荣丰涛. 1997.北方地区渠道冻胀防治技术研究与应用综述.防渗技术, 3(1): 1-6
    董建伟,周洪军. 2002.铠甲式纤维混凝土复合渠道防渗卷材研究.吉林水利, (6): 1-5
    冯有亭. 2002.垂直铺塑防渗技术在渠道中的试验应用.宁夏农学院学报, 23(3): 37-39, 46
    冯有亭. 2003.宁夏灌区渠道衬砌工程防冻胀试验研究. [硕士学位论文].西安:西安理工大学
    高笑娟,谢镭,张萍. 2007.土参数对支盘桩承载力影响的有限元分析.建筑技术, 38(3): 193-195
    高渊,陈轮,周德源,步丰湖,李广信. 1996.土工合成材料加筋加筋挡土墙抗冻胀机制的研究. 吉林水利, (10): 11-13
    高渊,周德源,步丰湖,陈轮,李广信. 1995.土工织物加筋挡墙抗冻适应性研究.内蒙古水利,
    (3): 17-20
    葛树东. 2004.季节冻土区渠道防渗结构型式的研究. [硕士学位论文].南京:河海大学
    郭钟义. 1999.地球上还有多少水. http://www.gmw.cn/01gmrb/1999-03/22/GB/18003^GM5-2214.htm[2010-5-14]
    韩洪兵. 2007.浅谈水资源. http://www.lf.gov.cn/pub/htm/life/shuiwenxinxi/shuiziyuanxinxi/2007-12-04-24560.htm[2010-5-14]
    何光春,周世良. 2001.加筋土技术的应用及进展.重庆建筑大学学报, 23(5): 11-15
    何武全,邢义川,蔡明科,刘三虎. 2003.渠道防渗抗冻新材料与新技术.节水灌溉, (1): 4-5, 11
    洪国珍. 2010.水资源. http://www.zz69.cn/blog/userid/1530/893.html[2010-5-14]
    建功. 2002.我国渠道防渗工程的冻害及其防治措施.防渗技术, 8(3): 1-4
    李安国,陈瑞杰,杜应吉,谢志伟,郭兴民,常次勤. 2000.渠道冻胀模拟试验及衬砌结构受力分析.防渗技术, 6(1): 5-16
    李洪升,刘增利,梁承姬. 2001.冻土水热力耦合作用的数学模型及数值模拟.力学学报, 33(5): 621-629
    李甲林,王正中,杜成义. 2005.高地下水位区灌溉渠道滤透式刚柔耦合衬护结构试验研究.灌溉排水学报, 24(5): 63-66
    李俊喜. 2001.混凝土“适变断面”渠道防冻胀研究.甘肃水利水电技术, 37(4): 299-300
    李书民. 2000.河北省渠道衬砌冻害调查及分析.防渗技术, 6(4): 28-31
    梁文泉,何真,李亚杰. 1995.土壤固化剂的性能及固化机制的研究.武汉水利电力大学学报, (6):675-679
    廖云,刘建军,陈少峰. 2008.混凝土渠道冻胀破坏机制与抗冻技术研究进展.岩土力学, 29(S1): 211-214
    刘雄,宁建国,马巍. 2005.冻土地区水渠的温度场和应力场数值分析.冰川冻土, 27(6): 932-938
    刘宗耀,杨灿文,郑玉琨. 1994.土工合成材料工程应用手册.北京:中国建筑工业出版社: 45
    芦琴,刘计良,王正中,陈立杰,韩彦宝,刘旭东. 2009.弧形坡脚梯形渠道砼衬砌冻胀破坏的力
    学模型研究.西北农林科技大学学报(自然科学版), 37(12): 213-217
    马秀媛,朱维申,李树忱. 2003.某抽水蓄能电站围堰渗流稳定性分析.山东大学学报(工学版), 33(1): 86-89
    孟海燕. 2006.垃圾填埋场防渗材料界面摩擦试验及坝体稳定性计算. [硕士学位论文].昆明:昆明理工大学
    山仑,张岁岐. 2006.能否实现大量节约灌溉用水?——我国节水农业现状与展望.自然杂志, 28(2): 71-74
    孙坤君,张慧莉,汪有科. 2007.新型混凝土渠道接缝材料抗冻性能研究.灌溉排水学报, 26(2): 33-36
    唐刚英,李寿宁,乔瑜,陈志鹏. 2003.关于防渗渠道防冻设计的设想.塔里木农垦大学学报, 15(4): 60-63
    万斌,王正中. 2003.石头河灌区北干渠渠道衬砌裂缝问题探讨.人民黄河, 25(10): 19-20
    汪恕诚. 2009.人与自然和谐相处——中国水资源问题及对策.北京师范大学学报(自然科学版), 45(5/6): 441-445
    王俊发,马旭. 2005.渠道防渗塑膜铺衬机的研究.农业机械学报, 36(4): 146, 150-151
    王庆,陈燕华. 2003.寒区混凝土衬砌冻害的受力分析与板厚计算.中国农村水利水电, (11): 67-68
    王振铎. 2006.土工合成材料在冻胀区渠道防渗中的应用研究.中国农村水利水电, (3): 86-88, 91
    王正中,陈立杰,牟声远,李甲林. 2009.聚合物涂层与沥青混凝土衬砌渠道冻胀模拟.辽宁工程技术大学学报(自然科学版), 28(6): 961-964
    王正中,李甲林,陈涛,郭利霞,姚汝方. 2008.弧底梯形渠道砼衬砌冻胀破坏的力学模型研究. 农业工程学报, 24(1): 18-23
    王正中,刘旭东,陈立杰,李甲林. 2009.刚性衬砌渠道不同纵缝削减冻胀效果的数值模拟.农业工程学报, 25(11): 1-7
    王正中,芦琴,郭利霞,杨成有,杨富元. 2009.基于昼夜温度变化的混凝土衬砌渠道冻胀有限元分析.农业工程学报, 25(7): 1-7
    王正中,沙际德,蒋允静,张长庆. 1999.正交各向异性冻土与建筑物相互作用的非线性有限元分析.土木工程学报, 32(3): 55-60
    王正中,万斌,姬红云,娄宗科,罗贵军. 2003混凝土渠道衬砌底板裂缝的计算与探讨.干旱地区农业研究, 21(3): 78-81
    王正中. 2004.梯形渠道砼衬砌冻胀破坏的力学模型研究.农业工程学报, 20(3): 24-29
    吴富萍. 1996.冻土区渠道防渗工程冻胀的防治措施.东北水利水电, (1): 15-18
    吴普特,冯浩,牛文全,赵西宁. 2007.现代节水农业技术发展趋势与未来研发重点.中国工程科学, 9(2): 12-18
    吴英,于海波,蒋俊丽. 2005.叶尔羌河灌区混凝土防渗渠冻胀破坏的观测研究.塔里木大学学报, 17(3): 70-73
    许强,彭功生,李南生,刘卓. 2005.土冻结过程中的水热力三场耦合数值分析.同济大学学报(自然科学版), 33(10): 1281-1285
    银英姿,王英浩,宋云驰. 2007.渠系水工建筑物保温措施的研究及计算机模拟.内蒙古科技大学学报, 26(2): 183-186
    余书超,欧阳辉,孙咏梅. 1999.渠道刚性衬砌受冻胀时的内力计算.中国农村水利水电, (10): 21-23
    余书超,宋玲,欧阳辉,马庆安,邢海峰. 2002.渠道刚性衬砌层(板)冻胀受力试验与防冻胀破坏研究.冰川冻土, 24(5): 639-641
    张广禹,李振灵. 2007.西霞院反调节水库复合土工膜摩擦系数研究.华北水利水电学院学报, 28(1): 32-35
    张慧莉,田堪良. 2001.关于复合土工膜等渠道防渗材料改性的意见.防渗技术, 7(4): 16-17, 24
    张慧莉,汪有科,孙坤君. 2006. PTN新型渠道接缝材料研制.灌溉排水学报, 25(1): 38-41
    张洁,徐伟,钟建驰. 2004.润扬长江大桥南锚碇超深基坑围护冻结法施工温度场全过程的数值模拟.建筑施工, 26(1): 15-17
    张令梅,李亚红. 2004.新技术在节水农业中的应用.水利科技与经济, 10(6): 349-351
    张茹,王正中,陈涛,李甲林,郭利霞. 2008.基于非对称冻胀破坏的大U形混凝土衬砌渠道力学模型.西北农林科技大学学报(自然科学版), 36(11): 217-223
    张茹,王正中. 2007.季节性冻土地区衬砌渠道冻胀防治技术研究进展.干旱地区农业研究, 25(3): 236-240
    张茹. 2007.大U形混凝土衬砌渠道冻胀破坏力学模型及数值模拟. [硕士学位论文].杨凌:西北农林科技大学
    钟翔,林文新. 2006.全球13亿人喝不到干净水. http://www.people.com.cn/GB/paper68/17127/1501752.html[2010-5-14]
    周军,王相佐,阚兴起,张玉太,李振. 2001.混凝土联锁板技术在天津市水利工程中的应用.水利水电技术, 32(8): 33-34
    朱强. 1996.我国渠道冻胀防治综述.防渗技术, 2(2): 7-17
    朱志武,宁建国,马巍. 2007.土体冻融过程中水、热、力三场耦合本构问题及数值分析.工程力学, 2007, 24(5): 138-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700