受冻融混凝土本构关系研究和冻融过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗冻融是混凝土结构耐久性的重要方面。寒冷地区的水工、海工、桥梁混凝土建筑物常因冻融循环造成表面剥落、内部疏松开裂,影响结构的正常使用。
     进行了冻融环境下素混凝土受压应力-应变全曲线试验研究。首先按照GBJ82-85规定的快速冻融试验方法,对三批共85个尺寸为100mm×100mm×300mm的混凝土棱柱体试件进行了冻融循环,试件的变化参数为混凝土立方体抗压强度和冻融循环次数。然后对试件进行了单轴抗压破坏试验。回归试验结果,提出了适用于立方体抗压强度为30MPa-50MPa的受冻融循环作用混凝土应力-应变全曲线方程及确定其参数的公式。可以应用于冻融循环环境下的混凝土结构、构件的非线性分析。
     为实现混凝土冻融过程的数值模拟,以热力学和孔隙弹性力学为基础,在已有数值模型的基础上,发展建立了一套混凝土冻融过程的控制方程。然后应用Comsol Multiphysics软件对4个模型进行了三维有限元模拟,预测出饱和砂浆试件在受冻过程中的变形、孔隙压力及温度分布。计算值与实验值吻合较好,说明了本文数值模拟方法的合理性。
     进行了冻融环境下箍筋约束混凝土应力-应变全曲线试验研究。按照快速冻融试验方法,对两批共54个尺寸为150mm×150mm×450mm、配箍特征值分别为0.317和0.145的混凝土棱柱体试件进行了冻融循环;对其中46个试件进行了轴心抗压破坏试验,得到试验应力-应变全曲线。回归试验结果,提出了本文试验的受冻融循环作用箍筋约束混凝土的应力-应变全曲线方程及确定其参数的公式。可以应用于寒冷地区受冻融作用的钢筋混凝土结构、构件的非线性分析。
     基于本文研究得到的冻融环境下混凝土应力-应变全曲线方程,用Response-2000软件,对3个冻融环境下的钢筋混凝土构件进行了截面计算,并分析了其抗冻性能。
Freeze-thaw resistance is an important aspect of durability of concrete structures. Hydraulic structures, offshore concrete structures and bridges in cold regions often suffer from surface scaling or internal cracking under freeze-thaw cycles.
     To study the complete compressive stress-strain curve of concrete subjected to freeze-thaw cycles, three groups of 85 concrete prism specimens with dimensions of 100mm×100mm×300mm were exposed to rapid freeze-thaw cycles in water according to the national standard GBJ 82-85. The parameters of the specimens were cubic strength of concrete and freeze-thaw cycle numbers. Then all specimens were tested under uni-axial compressive loading. Based on the test results the complete compressive stress-strain curve equations for frozen-thawed concrete with necessary parameters were suggested. The equations, which are suitable for concrete with cubic strength of 30MPa-50MPa, could be used for nonlinear analysis of concrete structural elements experienced to freezing-thawing cycles in cold regions.
     In order to simulate the physical processes involved in freezing and thawing of concrete, a mathematical model was developed based on thermodynamics and poroelastic theory. By using Comsol Multiphysics finite element program, the pore pressure, strain and temperature induced into saturated concrete specimens during freezing were predicted. The rationality of the numerical simulation was illustrated by comparing of the analytical results with available experimental data .
     The stress-strain relationship for stirrup-confined concrete after freez-thaw cycles was investigated. Two series of 54 concrete prism specimens with dimensions of 150mm×150mm×450mm and with stirrup characteristic value of 0.317 or 0.145 were exposed to rapid freeze-thaw cycles in water according to GBJ 82-85. The axial compressive loading tests of 46 specimens were carried out to obtain the complete stress-strain curves of confined concrete. Based on the test results, complete stress-strain curve equations for confined concrete subjected to freeze-thaw cycles were established. The equations could be used for nonlinear analysis of reinforced concrete structural elements experienced to freezing-thawing cycles in cold regions.
     Based on the stress-strain relationship of the frozen-thawed concrete, the sectional load-deformation response of three reinforced concrete elements subjected to freeze-thaw cycles were predicted by using Response-2000 program. The freeze-thaw resistance of these elements was analyzed .
引文
[1]金伟良.混凝土结构耐久性设计方法与寿命预测研究进展.建筑结构学报,2007,28(1):7-13
    [2]覃维祖.混凝土结构耐久性的整体论.建筑技术,2003,34(1):19-22
    [3] British Transportation Ministry. Repaira and maintainence of midlands link express: Working Group 1988 Report. Concrete Journal, 1990:23-27
    [4]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2003
    [5]黄士元,杨全兵.我国寒冷地区混凝土路桥结构的耐久性问题.土建结构工程的安全性和耐久性,2001,11
    [6]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究[博士学位论文].北京:清华大学水利水电工程系,2006
    [7]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003
    [8] Mehta P K. Concrete durability-fifty years progress. Proc. Of 2nd inter. Conf. On concrete Durability. ACI SP 126-1. 1991:1-31
    [9]亢景富,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土.混凝土与水泥制品, 1997,8(4):4-10
    [10]宋恩来.东北地区大坝溢流面冻融和冻胀破坏.东北电力技术,2000,(3):22-26
    [11]葛勇.严寒地区热电厂冷却塔混凝土破坏状况调查与原因分析. //邢锋,明海燕.沿海地区混凝土结构耐久性及其设计方法.北京:人民交通出版社,2004:563-568
    [12]常传利,葛勇,于继寿,等.路桥水泥混凝土冻融破坏调查与分析.低温建筑技术,2006,(6):3-4
    [13] Pigeon M, Pleau R. Durability of concrete in cold climates. Taylor & Francis, 1995
    [14]龚洛书,柳春圃.混凝土的耐久性及其防护修补.北京:中国建筑工业出版设,1990
    [15] Powers T C. A Working hypothesis for further studies of frost resistance of concrete. ACI Journal, Proceedings, 1945, 16(4):245-272
    [16] Powers T C. The air requirement of frost-resistance concrete. Proceedings of Highway Research Board, 1949, 29:184-202
    [17] Willis T F. Discussion: Ref[16]. Proceedings of Highway Research Board, 1949, 29: 203-211
    [18] Gonnerman H F. Test of concrete containing air-entraining portland cements or air-entraining added to batch at mixer. Proceeding, American concerete Institute, 1944, 45: 149-150
    [19] American Society for Test and Material. C457-90. Standard test method for microscopical determination of parameters of the air-void system in hardened concrete. 1990
    [20] Power T C. Void spacing as a basis for producing air-entrained concrete. ACI Journal, Proceedings, 1954, 50(9): 741-760
    [21] Powers T C. Freezing effect in concrete. // Scholer C F. Durability of Concrete. Detroit: American Concrete Institute, 1975:1-11
    [22] Litvan G G, Powers T C. Discussion: Ref[21], ACI Journal, Proceedings, 1976:234-237
    [23] Moukwa M. Deterioration of concrete in cold sea waters. Cement and Concrete Research, 1990, 20: 439-446
    [24] Lee S K, Reddy D V, Hartt W H, et al. Marine Concrete durability- Concrete survey of certain tensile crack exposure beams at Treat Island, Marine, USA. // Malhotra V M. Durability of Concrete, Third International Conference. Detroit: American Concrete Institute, 1994: 371-388
    [25] Pigeon M, Lachance M. Critical air void spacing factor for concretes submitted to slow freeze-thaw cycle. ACI Journal, 1981,78(4): 282-291
    [26] Pigeon M. Freeze-thaw durability versus freezing rate. ACI Journal, 1985, 82: 684-692
    [27] Backstrom, James E. Origin, evolution, and effects of the air void system in concrete.Part2-Influence of type and amount of air-entraining agent. ACI Journal, 1958:261-272
    [28] Malhotra, V M. Mechanical properties and freezing and thawing resistance of non-air-entrained, air-entained, and air-entained superplasticized concrete using ASTM Test C666,Procedures A and B. Cement, Concrete, and Aggregates, 1982:3-23
    [29] Chatterji S. Aspect of the freezing process in a porous materials-water system Part I:freezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4):627-630
    [30] Chatterji S. Aspect of the freezing process in a porous materials-water system Part II:freezing and the properties of frozen porous materials. Cement and Concrete Research, 1999, 29(6): 781-784
    [31] Browne R D, Bamforth P B. The use of concrete for cryogenic storage: A summary of research, past and present. Proceeding of 1st international conference on cryogenic concrete. Newcastle upon Tyne, 1981: 135-162
    [32] Bager D H. Ice formation in hardened cement paste, part I-room temperature cured paste with variable moisture contents. Cement and Concrete Research, 1986, 16(5): 709-720
    [33] Bager D H. Ice formation in hardened cement paste, part II-drying and resaturation on room temperature cured paste. Cement and Concrete Research, 1986, 16(5): 835-844
    [34] Dhir R K, Shangha C M, Munday J G L. Relationships between strength, deformation andage of automgenously healed concretes. Quarry Management and Products, 1974, 1(3): 93-99
    [35] Nordstrom K, Fagerlund G. Effect of water storage time on frost resistance of concrete. Proceedings of the eighth international conference on durability, 1999:212-221
    [36] Jacobsen S. Self healing of high strength concrete after deterioration by freeze/thaw. Cement and Concrete Research, 1996, 26(1): 55-62
    [37] Jacobsen S, Marchand J, Hornain H. SEM observations of the microstructure of frost deteriorated and self-healed concretes. Cement and Concrete Research, 1995, 25(8): 1781-1790
    [38] Ausloos M, Salmon E, Vandewalle N. Water invasion, freezing, and thawing in cementitious materials. Cement and Concrete Research, 1999, 29(2): 209-213
    [39] Setzer M J. Basis of testing the freeze-thaw resistance: surface and internal deterioration. // Setzer M J and Auberg R. Frost Resistance of Concrete. London: E&FN Spon, 1997: 157-172
    [40] Katsura O, Kamada E. A mechanism of frost damage of concrete under supercooling. // Setzer M J and Auberg R. Frost Resistance of Concrete. London: E&FN Spon, 1997: 202-211
    [41] Panchenko A I. Frost failure and rapid test method of concrete frost resistance. // Setzer M J, Auberg R. Frost Resistance of Concrete. London: E&FN Spon, 1997: 299-306
    [42] Besson F, Huet C. Numerical simulation for the study of crack propagation in concrete during freezing. // Jassen J, Setzer M J, Snyder M B. Frost Damage in Concrete. Minneapolis: RILEM Publications S.A.R.L, 1999:65-74
    [43] Olsen M P J. Mathematical modeling of the freezing process of concrete and aggregates. Cement and Concrete Research, 1984, 14: 113-122
    [44] Bazant Z P. Mathematical model for freeze-thaw durability of concrete. J.Am.Ceram.Soc.1988,71(9): 776-783
    [45] Penttala V. Freezing-induced strains and pressures in wet porous materials and especially in concrete mortar. Advanced Cement Based Material, 1998, 7: 8-19
    [46] Penttala V. Stress and strain state of concrete during freezing and thawing cycles. Cement and Concrete Research, 2002, 32: 1407-1420
    [47] Jacobsen S. Calculating liquid transport into high-performance concrete during wet freeze/thaw. Cement and Concrete Research, 2005, 35: 213-219
    [48] Coussy O, Detournay E, Dormieux L. From mixture theories to Biot’s theory. International Journal of Solids and Structures, 1998, 35: 4619-4635
    [49] Coussy O. Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1689-1718
    [50] Coussy O, Monteiro P J M. Poroelastic model for concrete exposed to freezing temperatures. Cement and Concrete Research, 2008, 38:40-48
    [51] Zuber B, Machand J. Modeling the deterioration of hydrated cement systems exposed to frost action Part1: Description of the mathematical model. Cement and Concrete Research, 2000, 30: 1920-1939
    [52] Zuber B, Machand J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria. Matrials and structures, 2004, 37: 257-270
    [53] Powers T C, Helmuth R A. Theory of volume changes in hardened Portland cement paste. Proceedings of the Highway Reseach Boad, 1953, 32: 285-297
    [54]施士升.冻融循环对混凝土力学性能的影响.土木工程学报,1997,30(4):35-42
    [55]程红强.冻融循环对混凝土力学性能的影响.河南科学,2003,21(2):214-216
    [56]卫军,李斌,赵霄龙.混凝土冻融耐久性的试验研究.湖南城市学院学报,2003,24(6): 1-5
    [57]商怀帅,宋玉普,覃丽坤.冻融循环对混凝土力学性能的影响.混凝土与水泥制品,2005,(2):9-11
    [58] Shang H S, Song Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles. Cement and Concrete Research, 2006, 36(10):1857-1864
    [59]覃丽坤,宋玉普,陈浩然,等.双轴拉压混凝土在冻融循环后的力学性能及破坏准则.岩石力学与工程学报,2005,24(10):1740-1745
    [60]覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究[博士学位论文].大连:大连理工大学土木建筑工程系,2004.
    [61]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究.水利学报,1999,(1):41–49
    [62]方璟.混凝土在试验室条件下冻融破坏的特点.混凝土与水泥制品,2003,(4):18-20
    [63]杜天玲.提高混凝土抗冻耐久性技术的研究综述.宁夏农学院学报,2002,23(2):80-83
    [64]范沈抚.掺引气剂混凝土性能的研究.混凝土与水泥制品,1991,(1):11-13
    [65]范沈抚.硬化混凝土气泡结构性质的实验研究.混凝土与水泥制品,1993,4(2):26-29
    [66]宋拥军.含气量对混凝土抗冻耐久性能的影响.中国三峡建设,1999(11) :45 -47
    [67]丁雁飞,孙景进.硅粉混凝土抗冻性研究.混凝土,1991,6(3):41-45
    [68]游有鲲,缪昌文,慕儒,等.粉煤灰高性能混凝土的研究.混凝土与水泥制品,2000,10(5):14-15
    [69]张海燕.混凝土的抗冻融破坏试验研究.西北水资源与水工程,2001,12(1):49-52
    [70]李玉顺,柳俊哲.抗冻融混凝土耐久性设计方法.混凝土,2001,(1):32-34
    [71]朱蓓蓉,黄士元.除冰盐对混凝土化学侵蚀机理研究.低温建筑技术,2000,(1):3-6
    [72]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土的盐冻剥蚀破坏.黑龙江交通科技,2000: 2-9
    [73]杨全兵,黄士元.受冻地区混凝土的盐冻破坏.黑龙江交通科技,2000年增刊:7-9
    [74]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[博士学位论文].南京:东南大学材料科学与工程系,2000
    [75]严安,李启令,吴科如.高性能混凝土在荷载作用下的冻融性能及其可靠性分析.混凝土与水泥制品,2000,(3):3-6
    [76]黄鹏飞,姚燕,包亦望,等.盐冻、钢锈与弯曲应力协同作用下钢筋混凝土耐久性评估方法. //邢锋,明海燕.沿海地区混凝土结构耐久性及其设计方法.北京:人民交通出版社,2004:315-320
    [77]王素瑞,潘兆平,金钦华.碱_骨料反应和冻融循环对混凝土的协同破坏效应研究.江苏建材,1999(3):3-8
    [78]慕晓方,许仲梓,唐明述.混凝土中碱骨料反应与冻融破坏的特征判据.低温建筑技术,1995,(3):6-8
    [79] Attiogbe E K. Predicting freeze-thaw durability of concrete—a new approach. ACI Materials Journal, 1996, 93(5):457-46
    [80]吴学礼,杨全兵,朱蓓蓉,等.混凝土抗冻性的评估.混凝土,1999(6):9-12
    [81] American Society for Testing and Materials. C666-92. Standard test method for resistance of concrete to rapid freezing and thawing. 1995
    [82] Fagerlund G. Modeling the service life of concrete exposed to frost. American ceramic society, 2001:195-204
    [83] Nordstrom K , Fagerlund G. Effect of water storage time on frost resistance of concrete. // Lacasse M A, Vanier D J. Durability of Building Materials and Components 8. Ottawa: NRC Research, 1999: 212-221
    [84] Fagerlund G. The future structural stability of concrete exposed to frost. // Bathia N, Sakai K, Gjorv O E. Proceedings Third international conference on concrete under severe conditions. Vancouver: The University of British Columbia, 2001:851-860
    [85]蔡昊.混凝土抗冻耐久性预测模型[博士学位论文].北京:清华大学土木工程系,1998
    [86]罗昕,朱锦章,卫军,等.冻融条件下混凝土破坏的无损判断. //邢锋,明海燕.沿海地区混凝土结构耐久性及其设计方法.北京:人民交通出版社,2004:164-168
    [87] Fagerlund G. Sevice life with regard to frost attack-a probabilistic approach. // Lacasse MA, Vanier D J. Durability of Building Materials and Components 8. Ottawa: NRC Research Press, 1999:1268-1279
    [88]邹超英,赵娟,梁锋,等.冻融环境下混凝土应力-应变关系的试验研究.哈尔滨工业大学学报,2007,39(2):229-231
    [89] Hasan M, Okuyama H, Sato Y, et al. Stress-strain model of concrete damaged by freezing and thawing cycles. Journal of advanced concrete Technology, 2004, 2(1): 89-99
    [90] Hasan M, Ueda T, Sato Y. Stress-Strain relationship of frost-damaged concrete subjected to fatigue loading. Journal of Materials in Civil Engineering, 2008, 20 (1): 37-45
    [91] Petersen L, Lohaus L, Polak M A. Influence fo freezing-and-thawing damage on behavior of reinforced concrete elements. ACI Materials Journal, 2007, 104(4): 369-378
    [92]赵娟,邹超英,王文博,等.冻融作用后钢筋与混凝土之间粘结性能研究.沈阳建筑大学学报:自然科学版, 2007, 23(5):719-722
    [93]中国建筑科学研究院混凝土研究所.中华人民共和国国家标准.普通混凝土长期性能和耐久性能试验方法(GBJ82-85)北京:中国建筑工业出版社,1997
    [94]过镇海,张秀琴.单调荷载下的混凝土应力-应变全曲线试验研究. //清华大学抗爆抗暴研究室.科学研究报告集第三集钢筋混凝土结构的抗震性能.北京:清华大学出版社,1981:1-18
    [95]中国建筑科学研究室. GB 50010-2002混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [96]混凝土基本力学性能研究组.混凝土的几个基本力学指标. //国家建委建筑科学研究室.钢筋混凝土结构研究报告集.北京:中国建筑工业出版社,1997:21-36
    [97]王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985
    [98]叶列平.混凝土结构(上).北京:清华大学出版社,2002:18-19
    [99]曾强.降温速率对水泥基多孔材料冻融变形与损伤影响的研究[硕士学位论文].清华大学土木系,2007
    [100] Setzer M J. Micro ice lens formation and frost damage. Proceedings of the International RILEM workshop, Minneapolis: S.A.R.L.,1999,1~15
    [101] Fagerlund G. Determination of pore-size distribution from freezing-point depression. Material and Structure, 1973,(6):215-225
    [102]秦允豪.热学.北京:高等教育出版社,2004
    [103] Coussy O. Poromechanics. John Wiley and Sons, 2004
    [104]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2002
    [105]周春华.软岩体冻融过程中水热迁移规律及数值模拟分析[硕士学位论文].西安:西安科技大学,2005
    [106] Comsolab. Comsol Multiphysics Version 3.3 Reference Manual. August, 2006
    [107]曾强,李克非.冻融情况下降温速率对水泥基材料变形和损伤的影响,清华大学学报:自然科学版,2008,48(9):1390-1394
    [108] Powers T C, Brownyard T L. Studies of the physical properties of hardened portland cement paste. Journal of the American Concrete Institute, 1947, 18(8):933~969
    [109]过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究.建筑结构学报,1982,3(1):1-12
    [110] Sargin M. Stress-strain relationship for concrete and analysis of structural concrete sections. Study No.4[M], Solid Mechanics Division, Ontario: University of Waterlo, 1971
    [111] Carslaw H S, Jaeger J C. Conduction of Heat in Solid. London: Oxford University Press, 1959:50-133
    [112]张洪济.热传导.北京:高等教育出版社,1992
    [113]章熙民,任泽霈,梅飞鸣.传热学.北京:中国建筑工业出版社,1993
    [114] Bentz E C. Response-2000 user manual[EB/OL]. Toronto,Canada:Bentz E, 2001[2009-01-06]. http://www.ecf.utoronto.ca/~bentz/r2k.htm.
    [115] Bentz E C, Vecchio F G , Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI structural Journal. 2006, (3):614-624
    [116] Vecchio F J, Collins M P. Compression response of cracked reinforced cocnrete. ASCE Journal of Structural Engineering, 1993, 119(12):3590-3610
    [117]刘西拉,唐光普.现场环境下混凝土冻融耐久性预测方法研究.岩石力学与工程学报,2007, 26(12):2412-2419
    [118]彭涛,李金玉,曹建国.十三陵蓄能电站上水库面板质量检测和抗冻性评估.水利发电,2003, 29(1):65-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700