引气天然浮石轻骨料混凝土性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在寒冷地区,研究混凝土材料的抗冻性问题是解决混凝土耐久性问题的一个重要方面。而引气已成为提高混凝土抗冻性的一项主要措施广泛应用于各种混凝土工程中,并取得了明显的经济效益和社会效益。本文以天然浮石作为粗骨料,设计了两种强度等级(LC25、LC30)的浮石轻骨料混凝土,主要研究了引气剂的加入对混凝土拌合物工作性、物理力学性能、抗冻耐久性、微观结构的影响,讨论了浮石轻骨料混凝土的抗冻预测模型。
     本文首先对浮石轻骨料混凝土拌合物工作性、物理力学性能进行了系统试验与研究,结果表明:随着含气量的增加,轻骨料混凝土拌和物坍落度逐渐增大,干表观密度、抗压强度逐渐减小,而且浮石轻骨料混凝土抗压强度下降速度比普通混凝土的要快。对于劈裂抗拉强度和抗折强度而言,随着含气量的增加,强度先增加后减小。试验还发现,轻骨料混凝土的破坏形态与普通混凝土存在差别,裂纹的扩展几乎不受轻骨料阻碍而贯穿轻骨料,致使轻骨料混凝土的破坏过程比较突然,表现出较强的脆性特征。但随着引气剂的加入,改变了浮石轻骨料混凝土的破坏形式,降低了脆性,有效地提高了轻骨料混凝土的韧性,即引气轻骨料混凝土的韧性大于非引气轻骨料混凝土。
     其次,通过对不同强度等级、不同含气量的混凝土进行冻融循环试验,测出其相应冻融循坏次数的动弹性模量和质量损失,判断其抗冻性,并观察破坏形态。对于LC25组混凝土,结果表明:虽然非引气浮石轻骨料混凝土的含气量较大,但其抗冻性仍然不理想,要想提高抗冻性,还需引气。而引气后的浮石轻骨料混凝土随着含气量的增加,质量损失的增长速度和动弹性模量的下降速度逐渐减慢,浮石轻骨料混凝土的抗冻性能逐步增强。对于LC30组混凝土,结果表明:随着含气量的增加,浮石轻骨料混凝土的抗冻耐久性是先降低后提高,抗冻性不仅与含气量有关,还与强度有关。因此,对于本试验的LC30浮石轻骨料混凝土,要想提高混凝土的抗冻耐久性,必须加入足够量的引气剂,这样才能保证在混凝土强度下降的同时,抗冻耐久性也能提高。另外,本文根据抗冻试验所得到的结果,结合已有的抗冻预测模型,建立了适用于浮石轻骨料混凝土的抗冻耐久性预测模型。
     最后,本文结合浮石轻骨料混凝土的立方体抗压试验,利用SEM和EDXA,对浮石轻骨料混凝土的水化产物、界面过渡区以及各种元素在界面过渡区的分布特征进行了研究。结果表明:在浮石轻骨料内水分的自养护作用下,水泥水化反应程度较高,生成的部分水化产物填充和弥补了轻骨料的原始缺陷,使轻骨料混凝土的受力性能得到改善;浮石轻骨料混凝土的破坏主要是在砂浆和轻骨料内部,而很少在它们的界面过渡区,浮石与水泥石界面过渡区,成了浮石轻骨料混凝土中强度较高的部分。
In cold areas, researching frost resistance of concrete material is an important aspect which solves the problem of the durability of concrete. As a main measure to improve the frost resistance of concrete,air-entrained concrete has been applied to many kinds of engineering and has got very clear financial and social effects. In this paper, two types strengthen level (LC25、LC30)of pumice lightweight aggregate concrete were designed which adopts natural pumice as coarse aggregate, mainly study the effect of air entraining agent on workability, physical and mechanical performance, frost resistance durability, microstructure of concrete. Discuss predicting model for frost resistance of pumice lightweight aggregate concrete.
     Firstly, this paper expounds the research on the workability、physical and mechanical performance. The results show that slump of lightweight aggregate concrete increases with the increase of air content, Oven dry density and compressive strength of lightweight aggregate concrete decreases with the increase of air content. The rate of compressive strength of lightweight aggregate concrete decreases is faster than ordinary concrete. To split tensile strength and flexural strength, with the increase of air content, strength increase firstly and then decrease. It is also discovered in experiments that failure form of lightweight aggregate concrete are different from common concrete. Those cracks run through the coarse aggregate instead of being blocked, causing the breaking abruptly and it shows a stronger brittleness characteristic. But the addition of air entraining agent changes the failure form of pumice lightweight aggregate concrete and could reduce its brittleness and improve its toughness effectively, the toughness of air-entrain lightweight aggregate concrete get better than ordinary lightweight aggregate concrete.
     Secondly, through the freeze-thaw test to lightweight aggregate concrete of different strengthen level and different air content,the project tested the dynamic elasticity modulus and mass loss at the corresponding freeze-thaw cycle times, judging it's frost resistance and observing failure form. To concrete of LC25, the results show that the non-air-entrained pumice lightweight aggregate concrete has high air content, but the frost resistance is small. Therefore it is inevitable to entrain air to improve its frost resistance. In addition, the experiment of air-entrained ones indicated that increasing rate of mass loss and decreasing rate of dynamic elasticity modulus become more slowly with the increase of air content, and the frost resistance of pumice lightweight aggregate concrete gradually becomes strong. To concrete of LC30, the results show that frost resistance durability of pumice lightweight aggregate concrete decrease firstly and then increase with the increase of air content, frost resistance durability not only was related to air content, but also was related to strength. Therefore it is inevitable to add enough air entraining agent to improve its frost resistance durability for pumice lightweight aggregate concrete of LC30 in this experiment. In this way, frost resistance durability can be increased when strength decrease. In addition, on the basis of the frost resistance durability experimental results, combining with finished predicting model, a predicting model for frost resistance of pumice lightweight aggregate concrete was established.
     Finally, based on cubic compressive strength experiment of pumice lightweight aggregate concrete, hydration products of pumice lightweight aggregate concrete, interfacial transition zone and the distribution of certain element of interfacial transition zone were investigated by SEM and EDXA. The results show that under the action of internal curing of water inside pumice lightweight aggregate, hydration reaction of cement become higher, the part of hydration products filled in the micro defects and cracks of lightweight aggregate, therefore mechanical properties of lightweight aggregate concrete are eventually improved. The failure of pumice lightweight aggregate concrete happen to more in cement paste and interior of lightweight aggregate, than in its interfacial transition zone, strength of interfacial transition zone of pumice-cement paste become stronger.
引文
1吕志涛.新世纪我国土木工程活动与预应力技术的展望[J].东南大学学报, 2002,32(5): 457~459
    2 Aitcin P C. Cements of yesterday and today concrete of tomorrow [J]. Cement and Concrete Research, 2000,30:1349~1359。
    3过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    4刘国光,董志成.轻骨料混凝土综述[J].房材与应用, 2006,34(2):11~13
    5李书英,周文华.引气剂在混凝土中的应用[J].河北水利水电技术,2003,2:31~32.
    6黄士元,蒋家奋.近代混凝土技术[M].西安:陕西科学技术出版社,1998
    7 M.Pigeonand, R.Plean. Durability of Concrete in Cold climates[M]. Imprint of Chapman and Hall,1997.
    8蒋元炯,韩素芬.混凝土病害与修补加固[M].海洋出版社,1996.
    9龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社,1996
    10 Holm T A,Ries J P. Benefits of lightweight HPC[J]. HPC bridge views,2001,17:3
    11 FIP.FIP manual of lightweight aggregate concrete[M]. 2nd edition. London:Surrey University Press,1983
    12董金道.发展粉煤灰陶粒和粉煤灰陶粒混凝土势在必行[J].粉煤灰,1999,(6):6.
    13刘巽伯.轻骨料在高性能混凝土中应用的展望[J].房材与应用,1998,(5):3
    14李培基.轻集料混凝土[J].上海建材,2001,2:14~16
    15龚洛书.轻集料混凝土桥梁工程发展概况[J].施工技术,2002,31(9):1~3
    16雍本.特种混凝土设计与施工[M].北京:中国建筑工业出版社,1993
    17龚洛书.积极研究与开发高性能轻集料混凝土[J].混凝土,1999,3:8~12
    18 Holm T A,Bermner T W. State-of-the-art report on high-strength, high-durability structural low density concrete for applications in Severe marine environments. 2000:1~7
    19 Haug A K,Fjeld S. A floating concrete platform hull made of lightweight aggregate concrete[J]. Engineering Structures,1996,18(11):831~836
    20 Melby K,Jordet E A,Hansvold C. Long-span bridges in Norway constructed in high-strength LWAconcrete [J]. Engineering Structures,1996,18(11):845-849
    21龚洛书.高强陶粒和高性能轻集料混凝土[J].混凝土,2000,(2):7~8
    22中国建筑科学研究院建筑结构研究所.轻骨料混凝土的研究和应用文集[M].北京:中国建筑工业出版社,1981:1~8
    23龚洛书.轻集料混凝土技术的发展与展望[J].混凝土,2002,2:13~15
    24朱聘儒,邓景纹,高永孚.轻骨料混凝土工程实例简述[J].苏州科技学院学报,2003,3: 11-13
    25曹诚,杨玉强.高强轻骨料混凝土在桥梁工程中应用的效益和性能特点分析[J].混凝土, 2000,12:12~16
    26陈建奎.混凝土外加剂的原理与应用[M].北京:中国技术出版社,1997
    27杨钱荣,黄士元.引气混凝土的特性研究[J].混凝土,2008,5:3-7
    28黄士元.从日本预拌混凝土标准的一条规定说起[J].混凝土,2000,1:29~30
    29陈应软.引气剂的作用及高性能混凝土引气剂的研究[J].化学建材,2002,2:1~3
    30王超,杨全兵.水泥混凝土路面现场撒盐破坏试验研究[J].低温建筑技术,1999,3: 14~17
    31胡曙光,王发洲等.轻集料的吸水率与预处理时间对混凝土工作性的影响[J].华中科技大学报·城市科学版,2002,2:l~4
    32邓红卫.轻质高强粉煤灰陶粒及其混凝土性能的研究[D].哈尔滨建筑大学硕士学位论文, 2000,6
    33单旭辉,朱尔玉,韩玉莲.引气剂对混凝土性能的影响[J].南水北调与水利科技,2004,2(6): 47~51
    34李书英,周文华.引气剂在混凝土中的应用[J].河北水利水电技术,2003,2:31~32
    35张春林,李彦昌,杨荣俊.引气剂质量对混凝土性能的影响[J].市政技术,2004, 22(1): 53~54
    36尤启俊,丁修祥,李锦柱.引气剂对混凝土强度影响的认识误区[J].混凝土,2003, 6:28~29
    37聂鹏.混凝土含气量对其力学性能的影响[J].东北公路,2000,123(2):30~32
    38杨全兵,朱蓓蓉,黄士元.对混凝土引气剂的新认识[J].黑龙江交通科技,2000, 5:27~29
    39刘春生,米涵,李志国等.橡胶细集料水泥砂浆基本性能研究[J].混凝土,2005, 7:39~42
    40轻骨料混凝土技术性能专题协作组.轻骨料混凝土轴心抗压强度取值问题的探讨. 1988
    41 LUO X,Sun W,Chen Y N. Steel fiber reinforced high—performance concrete:A study on the mechanical properties and resistance against impact[J].Materials and Structures,2001,34(23):144~149
    42 H.S.Najm,A.E.Naaman. Prediction model for elastic modulus of high-performance fiber reinforced cement-based composites[J]. ACI Materials Journal,1995, 92(3):304~313
    43赵述智,王忠德.实用建筑材料试验手册[M].北京:中国建筑工业出版社,1998
    44徐家保.建筑材料学[M].广州:华南工学院出版社,1994
    45龚洛书.混凝土实用手册[M].北京:中国建筑工业出版社,1995
    46龚洛书,丁威.重新标定轻骨料混凝土弹性模量[J].混凝土,2002,3:13~15
    47刘巽伯,杨正宏.宜昌宝珠页岩陶粒混凝土基本力学性能试验研究报告[R].上海:同济大学材料科学与工程学院,2001
    48 Mehtapk著,祝永年等译.混凝土结构性能和材料[M].上海:同济大学出版社,1983
    49姜福田编著.混凝土力学性能与测定[M].北京:中国铁道出版社,1989
    50 A.M.内维尔著,李国伴等译.混凝土的性能[M].北京:中国建筑工业出版社,1983
    51刘德清,王建华,李玉坤.煤矸石混凝土劈裂抗拉强度的试验研究[J].房材与应用,1997, 1:38~46
    52张文平.新型混凝土引气剂和防冻剂研究[D].大连理工大学硕士学位论文,2006,12
    53曾志兴.钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D].天津大学博士学位论文,2002
    54傅智.道路混凝土掺引气剂的研究[J].公路,1998,2:2~9
    55黄兴隶.工程结构可靠性设计[M].北京:人民交通出版社,1989
    56李田,刘西拉.混凝土结构的耐久性设计[J].土木工程学报,1994,27(2):47~55
    57周履.关于混凝土耐久性的新观点[J].国外桥梁,1998,4:62~67
    58 Report of the National Materials Advisory Board. Concrete durability-A multibillion dollar opportunity,Publication No.NMAB-437,National Academy of Science Washington.D C,1987:94
    59吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    60蒋元驹,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996
    61金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    62邸小坛,周燕.旧建筑物的检测加固与维护[M].北京:地震出版社,1992
    63卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1~6
    64赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究[D].哈尔滨工业大学博士学位论文,2001
    65 M.G.Alexander,B.J.Magee. Durability performance of concrete containing condensed silica fume[J]. Cement and Concrete Research,1999,29:917-922
    66 Y.Maltais,E.Samson,J. Marchand. Predicting the durability of portland cement systems in aggressive environments-laboratory validation[J]. Cement and Concrete Research,2004,34:1579~1589
    67陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(5):328~333
    68金伟良,赵羽习.混凝土结构耐久性研究的同顾与展望[J].浙江大学学报(工学版), 2002, 36(4):371~380
    69 P.C.Aitcin. The durability characteristics of high performance concrete: a review[J]. Cement & Concrete Composites,2003,25:409~420
    70 W.W.J.Chan,C.M.L.Wu. Durability of concrete with high cement replacement. Cement and Concrete Research,2000,30:865~879
    71 M.N.Haque,H.Al-Khaiat,O.Kayak. Strength and durability of lightweight concrete[J].Cement & Concrete Composites,2004,26:307~314
    72 Jan Deja. Freezing and deicing salt resistance of blast furnace slag concretes[J]. Cement & ConcreteComposites,2003,25:357~361
    73亢景富,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土[J].混凝土与水泥制品, 1997,8(4):4~10
    74张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海科学技术出版社,2003
    75王林科.钢筋混凝土腐蚀构件的可靠性分析[D].西安建筑科技大学硕士学位论文,1994
    76赵宏延.一般大气条件下钢筋混凝土构件剩余寿命预测[D].清华大学硕士学位论文,1993
    77范沈抚.掺引气剂混凝土性能的研究[J].混凝土与水泥制品,1991,1:11~13
    78程红强等.冻融对混凝土强度的影响[J].河南科学,2003,21(2):214~216
    79李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[[J].水利学报,1999,1: 41~49
    80 Powers T C. A work hypothesis for further studies of frost resistance of concrete[J]. ACI Journal,1945,16(4):245~272
    81 Powers T C,Helmuth R A. Theory of volume change in hardened Portland cement paste during freezing[J]. Proceedings,Highway Research Board,l953,32:285~297
    82 Fagerlund G. Prediction of the service life of concrete exposed to frost action Study on concrete technology[C]. Swedish,Cement and Concrete ResearchInstitute, 1979.
    83 Fagerlund G. The critical degree of saturation method of assessing the freeze/thaw durability of concrete[J]. Materials and Structures,1977,10(10):58
    84赵铁军.混凝土的渗透性[M].北京:科学出版社,2006
    85 Pigeon M. Critical air void spacing factors for concrete as submitted to slow freeze-thaw cycle[J]. ACI Journal,1981,78(4):282~291
    86龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990
    87 Steven H.kosmatka,Beatrix Kerkhoff,William C.Panarese,钱觉时等译.混凝土设计与控制[M].重庆:重庆大学出版社,2005
    88邓正刚,李金玉,曹建国等.安全抗冻混凝土技术条件国内外概况综述[C].重点工程混凝土耐久性研究与工程应用,北京:中国建材工业出版社,2000
    89李田著.混凝土结构耐久性分析与设计[M].北京:建筑工业出版社,1999
    90 H.索默编,冯乃谦,丁建彤等译.高性能混凝十的耐久性[M].北京:科学出版社,1998
    91蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学博士学位论文,1998
    92刘丽芳.轻集料混凝土匀质性的研究[D].哈尔滨工业大学硕士学位论文,2006
    93陈飞.冻融条件下引气混凝土多轴强度的试验研究[D].大连理工大学硕士学位论文, 2005,12
    94覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究[D].大连理工大学博士学位论文,2003
    95商怀帅.引气混凝土冻融循环后多轴强度的试验研究[D].大连理工大学博士学位论文, 2006.9。
    96 Kaplan M F. Crack Propagation and the Fracture of Concrete[J]. The American Concrete Institute,1961,56(5):591~610
    97 A.Hillerborg,M.Modeer,F.E.Petersson. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements[J]. Cement and Concrete Research,1976,6(6):773~782
    98 Jenq Y S,Shah S P. Two parameter fracture model for concrete[J]. Journal Engineering Mechanical,ASCE,1985,111(10):1227~1241
    99 Karigaloo B L,Nallathambi P. Effective crack for the determination of fracture toughness of concrete[J]. Engineering Fracture Mechanics,1990,35(4/5):637~645
    100 Xu Shilang,Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fraxture,PartⅢ:Compact tension specimens and wedge splitting specimens[J].International Journal of Fracture,1990,(98): 179~193
    101 Rabotnov Y.N. On the equations of State for Creep[C]. Progress in Applied mechanics, 1963,307~315
    102 Lemaitre J. Evaluation of Dissipation and Damage in Metals Submitted to dynamic Loading[C]. Proceedings of ICM-1,Kyoto,1971
    103 Janson J,Hult J. Fracture Mechanics and damage Mechanics, a Combined Approach [J]. J.de Mech.Appl.1997,1(1):59~64
    104于海祥,武建华,李强.混凝土损伤本构模型研究评述[J].重庆建筑大学学报,2007, 4: 68~72
    105李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    106余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    107蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999
    108 Loland K E. Continuous damage model for load response estimation of concrete[J]. Cement and Concrete Research,1980,10:392~492
    109 J. Mazars. Continuous Damage Theory---Application to Concrete[J]. J.Eng.Mech. 1980,115(2):345~365
    110余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,2:14~16
    111钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报,1989,3:40~47
    112 Jan G.M. Influence of Damage Orientation Distribution on The Multiaxial StressStrain Behaviors of Concrete[J]. Cement and Concrete Research,1980,15:849~862
    113 Supartono F,Sidoroff F. Anisotropic damage modeling for brittle elastic materials[C]. Symposium of Franc-Poland,1984
    114 D.Krajcinovic,G.U.Fonseka. The Continuous Damage Theory of Brittle Materials[J]. Journal of Applied Mechanics,ASME,1981,48:809~815
    115余天庆,钱济成.损伤理论及其应用[M].北京:国防工业大学出版社,1993
    116过镇海.混凝土的强度和变形[M].北京:清华大学出版社,1997
    117董毓利,谢和平,赵鹏.循环受压砼全过程声发射实验及其本构关系[J].实验力学, 1996, 11(2):216~221
    118 Hsieh S S. A plash-Fracture Model for Concrete [J]. Int. J. Solids Struclures, 1982,18(3):181~197
    119董毓利,谢和平,李世平.不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3):265~270
    120李杰,吴建营.混凝土弹塑性损伤本构模型研究[J].土木工程学报,2005, 38(9):14~27
    121李杰.混凝土随机损伤力学的初步研究[J].同济大学学报,2004,32(10): 1270~1277
    122吴兴昊.受冻融循环作用混凝土耐久性劣化过程的研究[D].华中科技大学硕士学位论文,2002
    123 Bazant Z P. Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society,1998,71(9):776~783.
    124许丽萍,吴学礼,黄士元.抗冻混凝土的设计[J].上海建材学院学报,1993 6(2): 112~123
    125李金玉,邓正刚,曹建国等.混凝土抗冻性的定量化设计[C].重点工程混凝土耐久性研究与工程应用,北京:中国建材工业出版社,2001
    126赵霄龙.混凝土冻融损伤演化律研究[D].华中科技大学博士后研究工作报告,2003
    127罗昕,卫军.冻融条件下混凝土劣化陡劣点的探讨[J].混凝土,2005,12:14~16
    128赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化的评价指标对比[J].华中科技大学报, 2003,31(2):103~105
    129关宇刚,孙伟,缪昌文.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版),2001,11:5~26
    130刘志勇.高强混凝土的抗冻性与寿命预测模型[J].工业建筑,2005,35:10~14
    131李明德,邓国柱,刘敏.硅酸盐岩相分析在建材行业中的重要性[J].云南建材,1995, 3: 6~8
    132刘爱平,崔云龙.混凝土材料显微组构及其性能的研究现状[J].建材工业信息,2003, 1: 38~40
    133吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    134高建明,董祥,朱亚菲.高性能轻集料混凝土界面微观结构的研究[J].混凝土与水泥制品, 2004增刊:61~65
    135廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    136《胶凝材料学》编写组.胶凝材料学[M].北京:中国建筑工业出版社,1980
    137商博明.粉煤灰结构及粉煤灰胶凝材料水化的微观研究[D].西安建筑科技大学硕士论文, 2006
    138张勇,丁庆军,于发洲等.轻集料混凝土的界面结构研究[J].混凝土,2002,10:29~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700