改性聚丙烯纤维混凝土的工程性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先阐述了在混凝土工程中应用纤维以及开发研制新型合成纤维的必要性,总结了聚丙烯(PP)纤维混凝土的相关基础研究以及添加聚丙烯纤维的作用和优点,介绍了改性聚丙烯纤维在工程领域中的应用情况及其发展趋势,以及合成纤维工程应用发展状况和市场预测,简述了目前国内外改性纤维混凝土工程应用的最新进展以及纤维混凝土增强理论,为研制和开发改性纤维及其工程应用功能,解释改性纤维在混凝土工程应用中性能改善的机理提供参考依据
     论文通过在PP切片中加入添加剂,结合异型纺丝技术,研制出两种聚丙烯纤维即改性聚丙烯纤维和刚性聚丙烯纤维;描述了纤维在混凝土中所起到的关键作用和选用原则,并对改性聚丙烯纤维及纤维水泥进行了老化试验研究。论文探讨了纤维单丝拔出的力学模型,进行了改性PP纤维从混凝土基体中拔出试验,并分别研究了埋入长度、水灰比、龄期等因素对拔出强度的影响;分析探讨了纤维拔出理论依据及其破坏细观机理。
     针对路面混凝土的性能要求,论文重点对改性聚丙烯纤维混凝土进行了耐磨损及抗冲击试验,讨论了掺入改性聚丙烯纤维对混凝土抗冲击、耐磨损性能的影响;分析了改性聚丙烯纤维混凝土抗冲击性能,研究了龄期和纤维掺量对纤维混凝土材料耐磨性能的影响,探讨了纤维混凝土耐磨损机理;进行了纤维混凝土磨损表面的形态学分析,发现改性聚丙烯纤维混凝土具有优良的抗冲击、耐磨损性能,为聚丙烯纤维混凝土性能研究提供了参考依据。
     论文介绍了对改性聚丙烯纤维混凝土水工特性进行的室内试验研究情况,分析了其抗冲刷、抗渗透、抗冻融性能的细观机理。工程实践表明:改性聚丙烯纤维混凝土具有良好的抗冲耐磨能力、抗裂防渗及抗冻融破坏性能,采用改性聚丙烯纤维混凝土施工技术能够充分发挥纤维的工程效益。论文对改性聚丙烯纤维混凝土材料改性机理方面的研究和探索,对于纤维混凝土技术的推广和发展,提高混凝土的耐久性,解决冻土地区公路水泥路面的抗冻性和水害等问题具有实际应用价值。
     论文介绍了国外学术界混凝土韧性测试的几种标准和计算方法,并说明了各种标准的特点;对刚性聚丙烯纤维混凝土的弯曲韧性进行了试验研究,分析了纤维的掺入对混凝土强度和韧性的影响,研究了刚性聚丙烯纤维对混凝土弯曲韧性的改善,以及纤维体积掺量、形状、弹性模量等对混凝土弯曲韧性的影响,并与改性聚丙烯纤维混凝土进行了对比试验研究,可供纤维混凝土韧性试验研究及推广应用刚性聚丙烯纤维混凝土的相关工程设计借鉴。
     论文提出了采用刚性聚丙烯纤维来提高、改善透水混凝土的强度和耐久性,这既解决了钢纤维容易锈蚀而导致强度下降的缺点,又克服了柔性聚丙烯纤维使多孔混凝土透水功能减弱、对混凝土收缩变形限制不利的问题,还增强了透水混凝土抗压、抗弯强度,且有利于混凝土基体透水功能的提高。本文着重研究了不同纤维、添加物硅粉和聚合物、不同配合比设计等因素以及施工方法和搅拌工艺,对刚性聚丙烯纤维增强透水混凝土主要性能的影响,在此研究的基础上提出了对垂直立体绿化混凝土技术的应用研究探讨,并全面分析了透水混凝土技术体系的研究与应用前景,为今后的深入研究与应用提供了参考
     论文通过混凝土快速冻融循环试验,研究了冻融循环对纤维混凝土材料损伤特性的影响规律,分析了纤维混凝土冻融损伤破坏的细观机理,结合细观损伤力学的方法建立了纤维混凝土冻融损伤本构模型。利用超声波法对混凝土试件进行损伤参量的测试。研究分析和测试计算显示:纤维混凝土冻融损伤模型计算值与实测值基本吻合,本构模型预测的混凝土损伤特性符合试件实际冻融破坏情况,超声损伤参量的变化能够较好地反映纤维混凝土冻融损伤规律。聚丙烯纤维能够有效抑制混凝土的冻融损伤劣化程度,在一定强度范围内,改性聚丙烯纤维掺量为0.9kg/m3时混凝土抗冻性最佳
     通过实验研究和理论分析以及工程实践,在改性聚丙烯纤维和纤维混凝土的工程应用性能及其理论机理方面得到以下结论:
     1.关于聚丙烯纤维的研究:(a)多微孔改性PP纤维的掺入到混凝土中可有效地改善混凝土的早期收缩性能和提高混凝土抗压、抗弯强度,改性纤维可用于增强道路混凝土和水工混凝土。(b)成功地研制成适用于混凝土增韧的刚性聚丙烯纤维,可用于增强透水混凝土和需要增韧的混凝土。
     2.关于聚丙烯纤维的拔出强度:(a)纤维的拔出强度随埋入长度的增加而增大,纤维的优选长度宜在9-13mm之间。(b)混凝土基体水灰比在0.28-0.44之间变化时,纤维的拔出强度基本保持不变。(c)纤维经过改性处理后可以提高纤维的拔出强度,这是由于经表面处理后,纤维表面粗糙程度的增大,有利于与混凝土基体间的界面粘结,故纤维拔出强度得到提高。(d)纤维的拔出强度随龄期的增加而增大,这是因为混凝土基体的强度随龄期的增加而增加,而且随着水泥水化的不断进行,界面处产生的水泥水化产物有助于纤维与基体的粘结,因此纤维的拔出强度显著提高。
     3.关于聚丙烯纤维混凝土的抗冲击耐磨损性能:混凝土的强度是决定其耐磨性的主要因素,从聚丙烯纤维混凝土不同龄期所表现出不同强度的耐磨状况可以看出,本研究所用表面改性的Ⅱ型聚丙烯纤维性能较好,它与水泥基体有较强粘结力,磨损过程中纤维从水泥基体中脱离需要消耗足够的能量,从而提高混凝土材料的耐磨损性能及抗冲击性能。总之,聚丙烯纤维的掺入使混凝土取得显著的增韧和阻裂效应,纤维不仅抑制了混凝土裂缝的引发和扩展,而且保证了混凝土基体内部的连续性和整体性,使得聚丙烯纤维混凝土即能抗冲击破坏又具有良好的耐磨损性能。
     4.关于聚丙烯纤维混凝土的水工特性:以聚丙烯纤维混凝土作为水工混凝土工程材料,能够达到抗裂防渗、抗高速水流冲刷、抵抗冻融剥蚀破坏的目的,该项研究为水工混凝土建筑物的修补和防护工程提供可借鉴的试验数据和参考资料。因此,聚丙烯纤维混凝土可应用于有抗冻融以及抗冲刷、抗渗透要求的工程中,使混凝土建筑物充分发挥工程效益。
     5.关于聚丙烯纤维混凝土的弯曲韧性:刚性聚丙烯纤维混凝土具有更加良好的韧性,纤维掺入混凝土中可使其弯曲韧性明显提高,纤维体积掺量的增大,混凝土的韧性和延性随之增加,而且混凝土应变范围较大,对抗压强度影响不大。与普通混凝土相比,刚性聚丙烯纤维混凝土的弯曲韧性提高96%,抗弯强度提高38%。这种弹性模量的刚性纤维即可作为非结构性补强材料来控制塑性收缩裂缝,也可在设计时考虑其作为结构性补强材料改善构件延性和承载力。在工程应用方面刚性聚丙烯纤维价格低廉,与基体的粘结力强,将其应用于喷射混凝土工程中,纤维分散均匀,混凝土回弹率降低,可使混凝土的力学性能及施工性能得到很大的改善。
     6.关于纤维增强透水混凝土技术:采用刚性聚丙烯纤维来提高透水混凝土材料的强度和耐久性,既解决了钢纤维容易锈蚀而导致的强度下降的缺点,又克服了柔性聚丙烯纤维弹性模量较低使多孔混凝土透水功能减弱、对混凝土干缩变形限制不利的问题,还增强了透水混凝土的抗压、抗弯强度,且有利于混凝土基体透水功能的提高,其研究成果有利于推动透水混凝土技术的发展,尤其是以这种透水基体为研究基础的垂直立体绿化混凝土技术体系的试验研究具有实用价值。
     7.关于聚丙烯纤维混凝土的冻融损伤模型:所建立的纤维混凝土冻融损伤模型计算值与实测值基本吻合,应用该模型预测的混凝土损伤特性与测试试件冻融破坏情况相符,可以用超声法来直接检测混凝土结构抵抗冻融破坏的状况,超声损伤参量的变化能够较好地反映纤维混凝土冻融损伤规律。聚丙烯纤维掺量为0.9kg/m3时,纤维混凝土的抗冻融性能最佳,混凝土的冻融损伤度最小,预期达到的冻融次数最大。聚丙烯纤维可使混凝土的拉应力显著提高,在一定范围内纤维掺量越大,混凝土抗拉强度增加越大,改性聚丙烯纤维能够有效抑制因冻融循环而引起的混凝土裂纹的形成、扩展及其冻融损伤劣化程度。
The necessity for the use of chemical fiber in concrete engineering was shown and the related fundamental research on polypropylene fiber concrete, advantages of adding polypropylene fiber and development trend of modified profiled polypropylene fiber in all engineering fields were summarized. Polypropylene fiber concrete properties and strengthening theory of fiber concrete were described, as references for further exploiting fiber concrete engineering function and the explanation of improvement mechanism at the beginning of the thesis.
     By putting the additive agent into PP, combining with profile and spinning technology, two kinds of polypropylene fiber were obtained, which are modified profiled polypropylene fiber and rigid-rod polypropylene fiber; The main function of the fiber in concrete and the selection principle of test fiber were described, and an experimental study on the weathering aging for the modified profiled polypropylene fiber was also made. The mechanical model for fiber filament pull-out was discussed by testing the pulling out of the modified profiled PP fiber from concrete, analyzing the effects of embedded length,water cement ratio, and ageing on pull-out strength. The theory for modified fiber pulled out and micro-mechanism for rupture were preliminary discussed.
     Regarding the performance requirements of the pavement concrete,the abrasion and impact tests of polypropylene fiber concrete were carried out. The effects of the adding of polypropylene fiber on impact and abrasion performance of concrete, the effects of ageing and fiber content on abrasion, abrasion mechanism,and the abrasion surface morphology of fiber concrete were studied. It was found that a high impact and abrasion performance could be achieved by adding certain amount of modified polypropylene fiber.
     The laboratory test on hydraulic characteristics of polypropylene fiber concrete demonstrated the relations between the micro mechanism and the performance of erosion, permeability and freeze-thaw resistant. The engineering practice showed that polypropylene fiber reinforced concrete possessed good impact and abrasion ability,impermeable crack and anti-freeze-thaw damage performance. The using of polypropylene fiber concrete could give construction projects full benefits of low cost and good mechanical properties. The related study was valuable in practice for the development of fiber reinforced concrete technology and to increase construction concrete durability, since the anti-freezing and water disaster difficulties of road cement pavements in frozen earth area could be overcome.
     The foreign standards,characteristics and calculation methods for concrete toughness test in academia were introduced. The bending toughness of modified profiled polypropylene fiber concrete was studied based on the experimental results. The effects on the strength and toughness of concrete as well as the improvement of concrete bending toughness with the addition of the modified profiled polypropylene fiber were analyzed. Furthermore, the effects of fiber contents, cross-section shape, and elastic modulus on concrete bending toughness were also studied. The comparative test with monofilament polypropylene fiber concrete was carried out, which may be used as reference in research of fiber concrete toughness test and in the related engineering design.
     In this paper rigid-rod polypropylene fiber is used to enhance the strength and to improve the durability of the water pervious concrete. It helps to overcome the shortcomings of steel fiber's strength deterioration caused by easily rusting and porous concrete's lower water permeability and lower effect on the restricting the concrete's shrinkage, but also to improve the concrete's matrix water permeability. The different main performances of the rigid-rod fiber enhanced water permeability concrete caused by using different kinds of fiber, additive silica powder and polymer, different proportions, different construction methods and different agitation technics are studied in the issue. Based on the study, it presents the investigation on the application of the vertical three-dimensional virescence concrete, comprehensive analysis of the pervious concrete technique system's research and application prospect, and reference for the further research and application.
     The law of the influence of freeze-thaw cycle on damage characteristics of fiber concrete material was also studied through the fast freeze-thaw cycle test of concrete. A constitutive model of freeze-thaw and damage of fiber concrete was established by analyzing the micro-mechanism of freeze-thaw damage of concrete and integrating with microscopic damage mechanics. The test, research and computation on damage parameters of concrete samples by ultrasonic wave method showed that the computed value from the model of freeze-thaw and damage of fiber concrete was basically consistent with the measured value.The predicted damage characteristics of concrete by constitutive model were well agreed with practical condition of freeze-thaw damage. The variation of ultrasonic damage parameters could be used to explain the law of freeze-thaw damage. The degree of inferiority of freeze-thaw damage of concrete could be effectively reduced by the adding of modified polypropylene fiber. To some strength extent, the anti-freezing performance of concrete would be optimal with 10 percent of fiber contents.
     The conclusions on the engineering application properties and mechanism of modified polypropylene fiber as well as concrete through the study in test, theory and practice were as follwings:
     1.The development of polypropylene fiber:(a)The early-age shrinkage property, bending and compressing strength of concrete could be effectively improved with the addition of multiple micro-voids PP fiber, and the strength of the pavement concrete and hydraulic concrete could be enhanced with the modified profiled polypropylene fiber; (b) A rigid-rod polypropylene fiber that can improve the toughness of concrete was developed, with which the strength of the water pervious concrete and other kinds of concrete that requiring additional toughness could be enhanced.
     2. About the pull-out strength of the polypropylene fiber:(a) The pull-out strength of the fiber was improved with the increase of embedded length. The selective preference length of the fiber is better from 9 to 13mm. (b) The pull-out strength of fiber was almost the same with the water cement ratio of concrete in the range of 0.28-0.44. (c) The pull-out strength of the fiber could be improved by fiber modification, because the roughness of the fiber surface was increased after the surface modification, which is good for the interfacial adhesive property between concrete matrix and fiber would be strengthened. (d) The pull-out strength of fiber could be increased with the increase of the age. This was because the strength of the concrete was improved with the increase of the age, and the hydration product at interface was helpful to the cementation between the fiber and the cement with the continuous progress of cement hydration.
     3.Impact and abrasion property of polypropylene fiber concrete:The main factor controlling the abrasion was the strength of concrete. An improved impact and abrasion properties of modified polypropylene fiber with surface modifying was comparatively good because of a good cementation with cement matrix. Since the breakaway of fiber from cement matrix in abrasion needed the consuming of considerable energy, it could therefore promote the performance of abrasion and impact of concrete materials. In brief, the adding of polypropylene fiber would provide concrete remarkable toughness and anti-crack ability. Modified polypropylene fiber could not only restrain the development of concrete cracks, but also maintain the internal continuity and integrity of concrete matrix therefore improved abrasion and anti-impact of polypropylene fiber concrete could be achieved.
     4.Hydraulic property of polypropylene fiber concrete:The modified polypropylene fiber reinforced concrete could be used as a kind of functional materials for anti-crack, seepage, eroding, freeze-thaw and denudation. The results provided the references for the repair and protection engineering of hydraulic concrete buildings. Therefore the polypropylene fiber concrete could be used in projects with above requirements, and could also give a full play for concrete buildings many advantages.
     5.Bending toughness of polypropylene fiber concrete:There was a better toughness for profiled modified polypropylene fiber concrete. The adding of fiber to concrete could substantially increase the bending toughness, and the ductility and toughness of concrete were obviously increased with the increase of fiber amount to certain extent.As the concrete strain range was comparatively larger, it could make little effect on anti-compression strength. Bending toughness with modified polypropylene fiber concrete was imcreased by 96%, and bending strength was increased by 38%. The profiled fiber with suitable elasticity module could be used to control the contraction cracks of plasticity as non-structural strength improving material. It could also be considered as structural strength improving material in design to improve ductility and bearing-capacity of the component. In engineering applications, modified polypropylene fiber could be used for spray concrete too, for its low price and good cementation with matrix. The fiber would be distributed uniformly in concrete matrix and resulted in an improved performance both in mechanics and in construction applications.
     6.The rigid-rod polypropylene fiber can be used to enhance the strength and to improve the durability of the water pervious concrete. It helps to overcome the shortcomings of steel fiber's strength deterioration caused by easily rusting and porous concrete's lower water permeability and lower effect on the restricting the concrete's shrinkage, but also to improve the bending and compressing strength of the water pervious concrete and the concrete's matrix water permeability. The research results can develop the pervious concrete technology. The study on the vertical three-dimensional virescence concrete technology system which based on the permeable matrix research has practical value.
     7.Freeze-thaw and damage model of polypropylene fiber-concrete: The calculated results with the built freeze-thaw and damage model of fiber concrete was in basic well agreed with experimental data. The damage property of concrete predicted by the model was also in agreement with test results. The supersonic method was used to directly testing of concrete structure against freeze-thaw damage, and the change of ultrasonic damage content could well reflect the law of freeze-thaw damage. The property of freeze-thaw of fiber concrete was optimal at 0.9kg/m3 polypropylene fiber, with smallest freeze-thaw damage extent and largest predicted freeze-thaw times. The tensile strength and strain of concrete could also be remarkably increased by the adding of modified polypropylene fiber. More polypropylene fiber in a certain extent could increase the strength of the concrete's anti-stretching more effectively. Modificative polypropylene fiber could effectively restrain the formation, development and freeze thaw deterioration degree of damage of the cracks in concrete caused by freeze-thaw cycle.
引文
[1]赵国藩,彭少民,黄承逵编著.钢纤维混凝土结构.[M].北京:中国建筑工业出版社.1999
    [2]黄承逵编著.纤维混凝土结构.[M].北京:机械工业出版社.2004
    [3]Yimin Wang etc. Study on the Interfacial Behavior of Polypropylene Fiber Reinforced Cement. Proceeding of the Second ACCM-2000.Korea
    [4]王依民,倪建华,潘湘庆.混凝土防裂用改性聚丙烯纤维工艺研究.化学建材.1997.(4):172-175
    [5]佐佐木神治,本田让,后藤荣三.混凝土的补强纤维.日本东丽株式会社.专利申请号:CN01813408.4.优先权项:2000-7-28 JP 228508/00.2003
    [6]吴科如,张雄.土木工程材料.上海:同济大学出版社.2003
    [7]C.S.Poon, Z.H.Shui, L.Lam. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research.34(2004):2215-2222
    [8]Faris Ali, Ali Nadjai, Gordon Silcock, Abid Abu-Tair. Outcomes of a major research on fire resistance of concrete columns. Fire Safety Journal.39(2004):433-445
    [9]廖宪廷,何元,杨序纲等.PP纤维水泥复合材料的界面行为—断裂面的观察与形态研究.建筑材料学报.2000.2(1):64-67
    [10]廖宪廷,何元,王依民等.PP纤维水泥复合材料的界面行为—耐磨性能研究.建筑材料学报.1999.2(4):324-328
    [11]何元.改性PP纤维水泥基复合材料性能研究.[硕士学位论文].上海:东华大学.1998.7
    [12]郭乃胜,赵颖华.聚酯纤维沥青混凝土的静动态性能研究.大连海事大学博士学位论文.2007.3
    [13]Naaman A E, Wongtanakitcharoen T, Hauser G. Influence of Different Fibers on Plastic Shrinkage Cracking of Concrete [J].ACI Materials Journal.2005.102(1):49-58
    [14]Altoubat S A,Roesler J R,Lange D A,et al.Simplified method for concrete pavement design with discrete structural fibers. Construction and Building Materials.2008.28(3):384-393
    [15]黄学辉,曹雪枫.聚丙烯纤维增强水泥基吸声材料的研制.武汉理工大学学报2004.(4):71-73
    [16]杨序纲,袁象恺.模型氧化法单纤维复合材料的界面应力传递.复合材料界面科学.哈尔滨工业大学出版社.1997.P194-199
    [17]王震鸣.复合材料和复合结构力学.北京:机械工业出版社.1991
    [18]王璋水.纤维混凝土研究应用现状与前景.中国建材报2007.(2):1-5
    [19]杨桂丽.纤维混凝土应用研究现状初探.广东建材2007.(8):20-21
    [20]汪洋等.聚丙烯纤维混凝土的研究现状及趋势.混凝土.2004.(1):24-27
    [21]罗兆辉.我国聚丙烯纤维混凝土工程的研究与应用进展.天津城市建设学院学报.2004.(3):7-9
    [22]沈荣熹,史小兴.聚烯烃纤维在混凝土中应用的进展.新型建筑材料(增刊).2008.(13):1-8
    [23]沈荣熹,王璋水,崔玉忠.纤维增强水泥与纤维增强混凝土.北京:化学工业出版社.2006
    [24]Jianzhuang Xiao, H.Falkner. On residual strength of high-performance concrete with and without polypropylene fibers at elevated temperatures. Fire Safety Journal.2006.41 (2):115-121
    [25]Khoury G. A, Willoughby B. Polypropylene fibres in heated concrete:Part Ⅰ:Molecular structure and materials behaviour. Magazine of Concrete Research.2008.60(2):123-125
    [26]Ridout, Andrew. The use of macro synthetic fibre reinforcement in underground civil construction. Cincrete.2007.41 (3):37-39
    [27]L.T. Mo, M. Huurman, S.P. Wu, A.A.A. Molenaar.2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elements in Analysis and Design.2008.172(44):186-196
    [28]M.Etxeberria, A.R.Mal', E.Va'zquez. Recycled aggregate concrete as structural material. Materials and Structures.2007.40(11):529-541
    [29]P. Chindaprasirt, S. Hatanaka, T. Chareerat, N. Mishima, Y. Yuasa. Cement paste characteristics and porous concrete properties [J].Construction and Building Materials.2007.241(81):1-8
    [30]徐清,吴培关,宋万明.透水性聚丙烯纤维增强混凝土试验研究.新型建筑材料.2006.(8):53-55
    [31]王金晶,刘志奇.透水性混凝土中掺聚丙烯纤维的可行性试验.混凝土与水泥制品.2009.(4):41-44
    [32]王娇娜,张洪清.透水性聚丙烯纤维混凝土试验研究.河北工程大学硕士学位论文.2008.4
    [33]Bing Chen, Juanyu Liu. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cement and Concrete Research.2005.35(5):913-917
    [34]John S.Lawler, Davide Zampini, Surendra P.Shah. Microfiber and Macrofiber Hybrid Fiber-Reinforced Concrete[J].Journal of Materials in Civil Engineering.2005.17(5):595-604
    [49]Kitchen, Andrew. Micro polypropylene fibres for external concrete slabs and hardstandings.Concrete.2007.41(9):29-31
    [50]董香军,黄承逵,丁一宁.纤维高性能混凝土高温、明火力学与防爆性能研究.大连理工大学博士论文.2006.8
    [51]Bing Chen, Juanyu Liu. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research.2004.34(6):1065-1069
    [52]Rami H.Haddad, Raed M.Abendeh. Effect of the thermal cycling on bond between reinforcement and fiber reinforced concrete. Cement and Concrete Composites.2004.26(2):743-752
    [53]尹机会,丁一宁.钢—合成纤维混凝土强度与韧性的试验研究.大连理工大学硕士学位论文.2006.12
    [54]Banthia.N,Mohamad.S.Flexural Response of Hybrid Fiber-reinforced Cementitious Composites[J].ACI Materials Journal.2005.102(6):382-389
    [55]D.J.汉南特著.纤维水泥与纤维混凝土.陆建业译.北京:中国建筑工业出版社.1986
    [56]Cheon-Goo Han, Yin-Seong Hwang, Seong-Hwan Yang. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cement and Concrete Research. 2005.(35):1747-1753
    [57]小林一辅.纤维补强混凝土.蒋之峰译.[M].北京:中国铁道出版社.1995
    [58]周正亚,马良海.混凝土用聚丙烯纤维的应用现状及研究进展.现代塑料加工与应用.2006.18(1):62-63
    [59]刘喜田, 徐恒珍.水泥增强用纤维的前景分析.济南纺织化纤科技.2004.(1):31-33
    [1]王依民等.混凝土防裂用改性聚丙烯纤维工艺研究.化学建材.1997.(4):172-175
    [2]王依民,廖宪廷等.PP纤维水泥复合材料的界面行为—单纤维拉出试验初探.中国纺织大学学报.2000.26(3):87-89
    [9]高德川,倪建华.等离子体处理优化PP纤维水泥复合材料的界面.建筑材料学报.2001.(1):41-43
    [10]郭海洋,刘建树,赵明等.改性异型聚丙烯(PP)增强水泥混凝土抗裂性研究.山东纺织科技.2001.21(5):11-13
    [11]杨萌,黄承逵.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究.大连理工大学博士学位论文.2006.1
    [12]小林一辅.纤维补强混凝土.蒋之峰译.[M].北京:中国铁道出版社.1995
    [13]赵国藩,黄承逵.纤维混凝土的研究与应用.大连理工大学出版社.1992
    [14]张佚伦,钱晓倩,詹树林.聚丙烯纤维混凝土早期收缩与抗裂性能试验研究.浙江大学硕士学位论文.2006.3
    [15]李赫,徐世娘.纤维编织网增强混凝土力学性能实验研究及理论分析.大连理工大学博士学位论文.2005.9
    [16]李杰,高向玲,艾晓秋.纤维增韧混凝土与钢筋的粘结性能研究.建筑材料学报.2004.25(2):41-43
    [1]刘卫东,王依民.聚丙烯纤维混凝土的耐磨损及抗冲击性能研究.混凝土.2005.(1):43-45
    [2]廖宪廷,何元,王依民.PP纤维水泥复合材料的界面行为—耐磨性能研究.建筑材料学报.1999.2(4):324-328
    [5]秦鸿根,孙伟.钢纤维混凝土耐磨特性及机理分析.混凝土与水泥制品.1993.(4):10-13
    [6]张雪华,姜正平,陈飚.机场跑道耐冲刷磨蚀混凝土的研究.南京航空航天大学学报.2002.34(2):114-120
    [7]唐志平.冲击加载下纤维增强水泥的动态损伤和失效特性研究.宁波大学学报.2003.(4):51-54
    [8]杨庆国.柔性纤维水泥混凝土冲击性能研究.重庆交通学院学报.2004.(3):9-11
    [9]徐松林,唐志平.聚丙烯短微纤维增强水泥冲击特性研究.爆炸与冲击.2004.(3):39-42
    [10]单俊鸿,周明凯.高性能桥面铺装混凝土的研究与应用.武汉理工大学博士学位论文.2006.4
    [11]孙道胜,唐明述,邓敏.聚丙烯纤维增强膨胀混凝土及其在道面工程中的应用.南京工业大学博士学位论文.2004.8
    [12]廖宪廷,王依民.PP纤维水泥复合材料的界面行为—断裂面的观察与形态研究.建筑材料学报.2000.2(1):64-67
    [1]冯乃谦.混凝土的抗冻性.施工技术.1995.(12):7-11
    [2]孙伟.钢纤维对混凝土冻融损伤抑制能力的研究.东南大学学报.2000.(12):87-90
    [3]建设部中国建筑科学研究院.GBJ82-85.混凝土长期性能和耐久性性能试验方法[S].2005.
    [4]刘卫东,王依民.聚丙烯纤维混凝土的水工特性试验研究.混凝土与水泥制品.2004.(1):35-37
    [5]刘卫东,王依民.聚丙烯纤维混凝土的冻融损伤模型研究.建筑结构学报.2006.28(10):85-89
    [6]Weidong Liu, Yimin Wang. Experimental Study on Freezing and Thawing Resistance Properties of Acrylate Copolymer Latex Modified Cement Mortar. ACS-226.2003(89):692-693(included by ISTP)
    [10]马晓华,吴智敏,丁一宁.混杂纤维高性能混凝土抗裂和抗冻融性能研究.大连理工大学硕士学位论文.2006.12
    [11]姜雪洁,王书祥.纤维混凝土抗冻融性能试验及机理分析.建筑技术.2006.37(2):135-137
    [12]姜雪洁,王书祥.改性聚丙烯纤维混凝土抗渗性能的试验研究.建筑技术开发.2004.11
    [13]卢安琪,李克亮.聚丙烯纤维混凝土抗冲耐磨试验研究.水利水电技 术.2002.(4):30-33
    [14]杨春光,王正中.水工混凝土抗冲刷磨蚀机理及特性研究.西北农林科技大学硕士学位论文.2006.6
    [15]钟秉章,倪建华.聚丙烯纤维混凝土在水利水电工程上应用探讨.红水河.2002.21(4):21-24
    [16]葛其荣,郑子祥,高翔等.宁波白溪水库二期面板聚丙烯纤维混凝土试验研究.建筑结构.2001.31(9):63-66
    [17]郭荣卿,劳俭翁.聚丙烯纤维混凝土在白溪水库Ⅱ期面板的应用.水利水电施工.2002.(2):50-52
    [18]郑子祥,郑芝芬.聚丙烯纤维混凝土在白溪水库面板堆石坝中的应用.水力发电.2002.(1]):11-14
    [1]黄承逵.纤维混凝土结构[M].北京:机械工业出版社.2004
    [2]赵国藩,黄承逵.纤维混凝土的研究与应用.大连:大连理工大学出版社.1992
    [3]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社.1999
    [8]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准.建筑材料学报.2005.8(6):660-664
    [9]董香军,黄承逵,丁一宁.纤维高性能混凝土高温、明火力学与防爆性能研究.大连理工大学博士论文.2006.8
    [10]董香军,丁一宁.纤维高性能混凝土工作度、强度和弯曲韧性的试验研究.混凝土与水泥制品.2006.(4):41-44
    [11]马晓华,吴智敏,丁一宁.混杂纤维高性能混凝土抗裂和抗冻融性能研究.大连理工大学硕士学位论文.2006.12
    [12]Yimin Wang etc. Study on the Interfacial Behavior of Polypropylene Fiber Reinforced Cement,Proceeding of the Second ACCM-2000.Korea
    [13]刘卫东, 王依民.异型聚丙烯纤维混凝土的韧性研究.建筑结构.2005.35(4):63-64
    [14]姚武, 蔡江宁, 吴科如.钢纤维混凝土的抗弯韧性研究.混凝土.2002.(6):54-56
    [15]戴建国,宋玉普,赵国藩.低弹性模量纤维混凝土剩余弯曲强度的力学意义.混凝土与水泥制品.1999.(1):7-10
    [17]王璋水.钢纤维高强混凝土及其配筋梁的韧性.水利学报.2002.(11):67-69
    [18]李杰,高向玲,艾晓秋.纤维增韧混凝土与钢筋的粘结性能研究.建筑材料学报.2004.25(2):99-103
    [19]王瑞兴,钱春香.聚丙烯纤维对混凝土性能的改善研究.混凝土与水泥制品.2004.(1):34-36
    [21]尹机会,丁一宁.钢-合成纤维混凝土强度与韧性的试验研究.大连理工大学硕士学位论文.2006.12
    [1]陈志山.大孔混凝土的透水性及其测定方法.混凝土与水泥制品.2001.(1):19-20
    [2]T.Y.Lo, H.Z.Cui. Effect of porous lightweight aggregate on strength of concrete. Materials Letters.2004.23(58):916-919
    [3]L.T. Mo, M. Huurman, S.P. Wu, A.A.A. Molenaar.2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elements in Analysis and Design.2008.172(44):186-196
    [4]徐清,吴培关,宋万明.透水性聚丙烯纤维增强混凝土试验研究.新型建筑材料.2006.(8):53-55
    [5]Seung Bum Park, Dae Seuk Seo, Jun Lee. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio [J]. Cement and Concrete Research.2005.319(35):46-54
    [6]王金晶,刘志奇.透水性混凝土中掺聚丙烯纤维的可行性试验.混凝土与水泥制品.2009.(4):41-44
    [7]蒋正武,孙振平,王培铭.若干因素对多孔透水混凝土性能的影响.建筑材料学报.2005.8(5):513-519
    [8]M.Etxeberria, A.R.Marl', E.Va'zquez. Recycled aggregate concrete as structural material. Materials and Structures.2007.40(11):529-541
    [9]P. Chindaprasirt, S. Hatanaka, T. Chareerat, N. Mishima, Y. Yuasa. Cement paste characteristics and porous concrete properties [J].Construction and Building Materials.2007.241(81):1-8
    [10]王娇娜,张洪清.透水性聚丙烯纤维混凝土试验研究.河北工程大学硕士学位论文.2008.4
    [1]刘卫东,苏文悌,王依民.冻融循环条件下纤维混凝土的损伤本构模型研究.建筑结构学报.2008.29(1):124-128
    [2]李金玉,曹建国,徐文雨,林莉,关逾时.混凝土冻融破坏机理的研究.水利学报.1999.(1):41-49
    [3]冯乃谦.混凝土的抗冻性.施工技术.1995.12
    [6]孙伟.钢纤维对混凝土冻融损伤抑制能力的研究.东南大学学报.2000.12(5):35-37
    [7]赵鲁光,李思寿.钢纤维混凝土的耐久性研究.大连理工大学出版社.1992
    [8]刘西拉,唐光普.现场环境下混凝土冻融耐久性预测方法研究.岩石力学与工程学报.2007.26(12):2412-2419
    [9]施士升.冻融循环对混凝土力学性能的影响.土木工程学报1997.30(4):35-42
    [10]R.琼斯,I.弗格瓦洛.混凝土非破损试验法.[M].北京:中国建筑工业出版社.1982
    [11]刘卫东,王依民等.混凝土结构抗冻性超声检测的方法研究.水利学报.2003.(3):125-128
    [12]建设部中国建筑科学研究院.GBJ82-85.混凝土长期性能和耐久性性能试验方法[S].2005
    [13]蔡四维.纤维混凝土的损伤理论.合肥工业大学学报.2000.23(1):2-4
    [14]李兆霞编著.损伤力学及其应用[M].北京:科学出版社.2002 論文報告集.2000.580(41):239-243
    [17]王书详等.改性聚丙烯纤维混凝土的抗冻融性能试验及其影响机理.延边大学学报.2004.(4):23-25
    [19]刘卫东.钢纤维硅粉混凝土的水工特性试验研究.水利学报.1998.(4):63-65
    [20]Weidong Liu, Yimin Wang. Experimental Study on Hydraulic Properties of Acrylate Copolymer Latex Modified Cement Mortar. ICAFPM-2005.(10): 584-589
    [21]龚晓南,叶黔元编著.工程材料本构方程[M].北京中国建筑工业出版社.1995
    [22]刘卫东,王依民.聚丙烯纤维混凝土的冻融损伤模型研究.建筑结构学报.2006.28(10):85-89
    [23]唐春安,朱万成.混凝土损伤与断裂数值试验[M].北京:科学出版社.2003
    [24]杨更社,蒲毅彬,马巍.寒区冻融环境条件下岩石损伤扩展研究探讨.实验力学.2002.17(2):43-45
    [25]宋玉普,冀晓东.混凝土冻融损伤可靠度分析及剩余寿命预测.水利学报.2006.37(3):258-263
    [26]唐光普,刘西拉,施士升.冻融条件下混凝土破坏面演化模型研究.岩石力学与工程学报.2006.25(12):2572-2578
    [27]关宇刚,孙伟等.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证与应用.硅酸盐学报.2001.29(6):67-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700