冻融循环对粉煤灰土动力特性影响的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对季冻土地区的公路冻害现象进行了调查与研究,明确了路基的不稳定性是产生冻害的主要因素。为减少冻害发生,经过试验研究,提出了用粉煤灰和粉质粘土按干重1:2混合作为路基填料,通过动三轴试验分析了路基填料的动力特性,其试验结果对于评价路基的动力指标更优于常规试验结果。本文还采用数值模拟方法对土体动力变形的影响因素进行了分析,证明了用数值模拟可以取代部分动三轴试验,从而可以减少试验工作量及材料用量。通过对两种路基填料多次冻融循环后试验结果分析,得出了粉煤灰土经过多次冻融循环后的动力特征参数的变化规律,创立了动强度衰减模型及动模量损失模型,从而可以减少了复杂的动三轴试验与冻融试验,并能快速确定季冻区公路路基设计的动力特征参数。同时引进了冻融损伤度的概念,建立了冻融损伤模型,此模型可以用来评估季冻区路基土的使用寿命。粉煤灰土经受多次冻融后的冻融损伤度远远小于粉质粘土,表明此混合料具有良好的抗冻性及稳定性,可以作为季冻区路基填料。
Experiment study to dynamic strength and dynamic properties of roadbed filling. In order to reduce and prevent occurring of the frost heave in seasonal forst region, this paper discusses the frozen process and cause of formation of highways through to investigate and monitor to roadbed deformation, especially freeze-thaw cycles, often cause severe problems from long-term frozen heaves and thaw settlements and physical and mechanical properties as well as mechanism damage of roadbed.
     In this thesis, the dynamic triaxial instrument of DTC-306 is used to make cyclic triaxial test of silty clay under dynamical loading by load control. The influence of vehicle cyclic load to the deformation of roadbed deformation is researched. On the basis of various parameters and data offered in the test, utilize common finite element procedure ABAQUS to set up the three-dimensional finite element model of the dynamic triaxial sample, simulate the dynamical deformation behavior of silty clay roadbed under cyclic load. Through a lot of contrast analysis to the cyclic triaxial test relation data, the reliability of the model is validated. Then the paper researched on the relationship between dynamic deformation and the influence factors such as cyclic load's magnitude, confining pressure, frequency, the number of cyclic load, different load wave and puts forwards to some suggestions to experiment of dynamic strength and dynamic properties of roadbed filling. Triaxial tests on composite material from easy liquefaction fly ash and easy freezing silty clay according to dry weight (1:2) are conducted to investigate the dynamic properties of fly ash soils and silty clay for roadbed filling. Fly ash soils potential for (l)underwater fills, (2)light weight structural fills, (3)higher stability, (4)frost resistance, (5)higher strength liquefaction resistance. Therefore, the present investigation describes the behaveioral aspect of soils mixed with fly ash to improve the load bearing capacity of soil. Silty clay is higher of dynamic strength than fly ash soils at range from 100KPa to 200KPa of confining pressure. The addition of fly ash played an important role in the development of shear strength parameters c andφof fly ash soils. Then since the dynamic strength of silty clayare low at relatively high confining stresses levels of 300KPa. The dynamic modulus of fly ash soils is higher than silty clay atε_d=5%, N_f =10 ,but maximumdynamic modulus of fly ash soils and silty clay is relatively stability.
     Triaxial tests were carried out on fly ash soils and silty clay samples after every freeze-thaw cycles, in order to analyze dynamic properties of its. The results of investigation show that dynamic strength of silty clay decreases ranges from 52% to 75% after 3 freeze-thaw cycles at confining pressure of 300KPa. The effects of parameters such as confining pressure cyclic stress ratio on dynamic strength of silty clay. Dynamic strength of fly ash soils is higher from about 40% to 60% than silty clay's subjected to 8 freeze-thaw cycles at confining pressure and deviator stress of fly ash soils also increased with an increase in confining pressure. Dynamic modulus of fly ash soils can be increased by 28.6% in comparison with silty clay's. Therefore, the gain in liquefaction and freeze-thaw resistance of fly ash soils(l :2) is more pronounced at confining pressure of 300KPa and fly ash addition in soil can also be effectively used as the base materials for the roads.
     Although variable confining pressure dynamic triaxial tests are made on the two kinds of soils after 8 freeze-thaw cycles. The authors obtain that the variety law between the dynamic strength and the number of circular of dynamic load and the number of freeze-thaw cycles. Test results show the relationship curves of the dynamic stress-strain and the dynamic elastic modulus-elastic strain, the dynamic modulus and the number of freeze-thaw cycles. After 3 freeze-thaw cycles, its dynamic strength and dynamic modulus reach stability. The mathematics model of dynamic module damage in freeze-thaw cycles are also put forward. This model can predict the dynamic strength and the greatest dynamic module of fly ash soil after 8 freeze-thaw cycles. The numerically computational results demonstrate that the simulating values with this model can approach to experiment values where it ranges from -3.13% to 0.75% and from 0.117% to 2.5% in the case of dynamic strength, moreover ranges from 0.71% to -5.26% and from 0.417% to 5.01% in the case of dynamic module damage. This model can preferably evaluate the service life of fly ash soil roadbed subjected to freeze-thaw cycles. It can reduces numerous and complicated of the dynamic triaxial tests. It has laid a theoretical foundation for design of roadbed in seasonal frost region.
     The results of investigation show that the dynamic properties of fly ash soils(l :2) is better than silty clay after 3 freeze-thaw cycles. Based on the evidence, it is concluded that the fly ash soils has superiority as roadbed filling in season frost region. This study also benefits the effective use of fly ash and cost effective method for soil properties. The value of society and economy can be increased by the addition of fly ash in soils.
引文
[1] 杜兆成,张喜发,季节冻土区高速公路路基冻胀试验观测研究,公路,2004,01, 39-45.
    [2] 张冬青,张喜发,季节冻土区高速公路路基含水状况与冻害调查,公路, 2004,02,140-147.
    [3] 谢定义编.土动力学.西安:西安交通大学出版社.1988.
    [4] 魏海斌,刘寒冰等.中液限粉质粘土路基的动力特性试验研究[J].路基工程,2006,6(129)26-28.
    [5] 魏海斌,刘寒冰等.冻融循环对粉煤灰土动强度变化的试验研究[J].吉林大学学报(工学版),2007,2.329-333.
    [6] P. Viklander, Laboratory study of stone heave in till exposed to freezing and Thawing, Cold Regions Science and Technology 27_1998.141-152
    [7] Linell,K A.,K aplar,C., The factor of soil and material type in frost action. Highway Research Board Bulletin.N o.225,1959,pp.88-126
    [8] Parsons, Robert L. Use of cement kiln dust for the stabilization of soils, Geotechnical Special Publication, n 126 I, Geotechnical Engineering for Transportation Projects: Proceedings of Geo-Trans 2004, 2004, p 1124-1131
    [9] Arora, Sunil , Class F fly-ash-amended soils as highway base materials, Journal of Materials in Civil Engineering, v 17, n 6, November/December, 2005, p 640-649
    [10] simonesn E,Isacsson U.soil behavior during freezing and thawing using variable and confining pressure triaxial tests[J].Canadian geotechnical joumal,2001,38 (4):863-875.
    [11] Simonsen,E.,Ja noo,VC., 1999. Resilient properties of unbound road materials during seasonal frost conditions.ASCEJ.Cold Regions Eng.,submitted.
    [12] Berg,L.,Bigl,S.R.,Stark,JA.,Durel,GD., 1996. Resilient modulus testing of materials from Mn/ROAD,Phase 1.USA Cold Regions Research and Engineering Laboratory,CRREL Report.96-19.
    [13] Van Bochove, Eric, Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil, Soil Science Society of America Journal, v 64, n 5, Sep, 2000, p 1638-1643.
    [14] T.E. Sveistrup, Impact of land use and seasonal freezing on morphological and physical properties of silty Norwegian soils, Soil & Tillage Research 81 (2005) 39-56.
    [15] Podgorney, RobertK.;Bennett,J.E.Evaluating the long-term performance of geosynthetic clay liners exposed to freeze-thaw, Journal of Geotechnical and Geoenvironmental Engineering., v 132, n 2, February 2006, p 265-268.
    [16] Hooper, Fred P. Freeze-thaw effects and gas permeability of utility line backfill...ASTM Special Technical Publication, n 1459, 2004, p 127-139.
    [17] Maria Hohmann-Porebska Microfabric effects in frozen clays in relation to geotechnical parameters Applied Clay Science 21 (2002) 77-87.
    [18] Rostami,Hossein;Solomon,Sally., High Performance Alkali Ash Material. Journal of Soild Waste Technology and Management.v30,n3,2004,p 125-135.
    [19] Tikalsky, Paul J. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete, Cement and Concrete Research, v 34, n 5, May, 2004, p 889-893.
    [20] Zhang, Peng, Experimental research on combined action of freeze-thaw cycles and carbonation for concrete structures, Jianzhu Jiegou Xuebao/Journal of Building Structures, v 27, n SUPPL., October, 2006, p 717-721.
    [21] Green, Mark F. Effect of freeze-thaw cycles on the bond durability between fibre reinforced polymer plate reinforcement and concrete, Canadian Journal of Civil Engineering, v 27, n 5, Oct, 2000, p 949-959.
    [22] Othman,M.A.,Benson,C.H., Efect of freeze-thaw on the hydraulic conductivity of three compacted clays from Wisconsin. Transportation Research Record, 1993. 1369:118-125.
    [23] Chamberlain,E.J.,an dB louin, S.E., 1977. Freeze-thaw enhancement of the drainage and consolidation of fine-grained dredged mterial in confined disposal areas. Cold Regions Research and Engineering Laboratory,Hanover,New Hampshire,U.S.A.,Octerber 1977,Report D-77-16.
    [24] Chen, Yao-Chung, Influence of Freezing on the Dynamic Properties of A Silty Sand, Proceedings of the International Offshore and Polar Engineering Conference, v 12, Proceedings of the 12th (2002) International Offshore and Polar Engineering Conference, 2002, p 604-609.
    [25] 程国栋,马巍,国际冻土工程研究进展,冰川冻土,2003,03,0303-06.
    [26] 戴惠民,季冻区公路路基土冻胀性的研究,中国公路学报,1994,7(2),1-8。
    [27] 杨平,张婷,人工冻融土物理力学性能研究,南京林业大学学报,2002,05,0665-03.
    [28] 马巍,徐学祖等.冻融循环对石灰粉土剪切强度特性的影响[J].岩土工程学报,1999,21(2):158-160.
    [29] 罗小刚 陈湘生,冻融对土工参数影响的试验研究,建井技术,2000(02),24-27.
    [30] 程红强,张雷顺等,冻融对混凝土强度的影响,河南科学,2003,02,0214-03
    [31] 潘钢华,秦鸿根等,粉煤灰混凝土冻融破坏机理研究,建筑材料学报,2002,01-0037-05.
    [32] Shang, Huai-Shuai, Experimental study on properties of concrete under triaxial compression after freeze-thaw cycles, Shuili Xuebao/Journal of Hydraulic Engineering, v 37, n 7, July, 2006, p 874-879+885.
    [33] 王述银:覃理利,Ⅰ级粉煤灰混凝土的抗冻融性能,科学研究,2003(05),14-17.
    [34] 刘昌忠,半刚性基层材料冻融循环强度变化分析,中南公路工程,2004,01,61-64.
    [35] J. Prabakar, Nitin Dendorkar, R.K. Morchhale, Influence of fly ash on strength behavior of typical soils, Construction and Building Materials 2004, 18, 263-267.
    [36] Parsons, Robert L.Engineering Behavior of Stabilized Soils, Transportation Research Record, n 1837, 2003, p 20-29.
    [37] Arora, Sunil, Class F fly-ash-amended soils as highway base materials, Journal of Materials in Civil Engineering, v 17, n 6, November/December, 2005, p 640-649.
    [38] Zia, N., Engineering properties of loess-fly ash mixtures for roadbase construction, Transportation Research Record, n 1714, 2000, p 49-56.
    [39] Yamada, Mikio, Study on effect of improvement of roadbed using fly ash as preventive measures against mud-pumping, Doboku Gakkai Rombun-Hokokushu/ Proceedings of the Japan Society of Civil Engineers, n 486 pt 6-22, 1994, p05-114.
    [40] Li, Bei-Xing , Effect of fly ash on inhibiting alkali-silica reaction of sandstone and its mechanism, Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, v 28, n 5, May, 2006, p 40-44.
    [41] White, David J. Reclaimed hydrated fly ash as a geomaterial, Journal of Materials in Civil Engineering, v 18, n 2, March/April, 2006, p206-213.
    [42] Sumio Horiuchi, Effective use of fly ash slurry as fill material, Journal of Hazardous Materials 76 2000.301-337.
    [43] Tuncan, Ahmet, Use of petroleum-contaminated drilling wastes as sub-base material for road construction, Waste Management and Research, v 18, n 5, Oct, 2000, p 489-505.
    [44] Cokca, Erdal , Use of rubber and bentonite added fly ash as a liner material, Waste Management, v 24, n 2, 2004, p153-164.
    [45] 曹晓娟,改良土静强度试验及结果分析,工程地质学,2004/12(01)-0109-0
    [46] Seed H B, Chen C B and Monismith C L. Effects of Repeated Loading on the Strength and Deformation of Compacted Clay. HRB Proc.1955,34:541~558.
    [47] V.C. Xenaki*, G.A. Athanasopoulos. Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J].Soil Dynamics and Earthquake Engineering,(2003) 23183-194.
    [48] A. Boominathan, S. Hari. Liquefaction strength of fly ash reinforced with randomly distributed fibers, Soil Dynamics and Earthquake Engineering 22 (2002) 1027-1033.
    [49] J. Li, D.W. Ding, Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading, Soil Dynamics and Earthquake Engineering 22 (2002) 977-983.
    [50] Yan-guo Zhou, Yun-min Chen, Influence of seismic cyclic loading history on small strain shear modulus of saturated sands, Soil Dynamics and Earthquake Engineering 25 (2005) 341-353.
    [51] M.T. Yllmaz, Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazan, Turkey, Soil Dynamics and Earthquake Engineering 24 (2004) 497-507.
    [52] Estelle Delfosse-Ribay. Shear modulus and damping ratio of grouted sand Soil Dynamics and Earthquake Engineering 24 (2004) 461-471.
    [53] Patricia M.Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand, Soil Dynamics and Earthquake Engineering 22 (2002) 1017-1026.
    [54] 廖红建等,往返荷载下粘性土的强度及取值标准试验研究[J].岩土力学, 2001.22(1), 16-21
    [55] 张高宁,黄土动力参数的测定[J],路基工程,1999(04),11-14.
    [56] 李喜安,彭建兵,公路黄土路基动力学参数的影响因素及其规律研究,公路交通科技,2005,6,0087-05
    [57] 周卓强,裂土灰土动力特性试验研究[J],路基工程,1998(04),29-35
    [58] 李时亮,周全能.粉煤灰作为路堤填料的动力特性试验研究[J].岩土力学,2005,26(2):.311-04.
    [59] 秦红玉,刘汉龙等,粗粒料强度和变形的大型三轴试验研究[J].岩土力学,2004(10)1575-06.
    [60] 李永乐,陈宇等,粉煤灰的动力特性试验及震动液化研究[J],华北水利水电学院学报,2002,04-0064-04.
    [61] 张克绪,谢君斐著,土动力学[M]地质出版社,1989.
    [62] 周健,白冰,徐建平编著.土动力学理论与计算.中国建筑工业出版社,2001.
    [63] 邓学钧,黄晓明,沈伟新.弹性层状的动力响应分析.土木工程学报,1995,28(3):9~16.
    [64] 张兴强,阎澎旺,邓卫东.交通荷载作用下加筋道路机理分析.岩土工程学报,2001,23(1):94~98.
    [65] 侯芸,郭忠印等.动荷作用下沥青路面结构的变形响应分析.中国公路学报,2002,15(3):6~10.
    [66] 郝大力,王秉纲.路面结构动力响应分析.长安大学学报(自然科学版),2002,22(3):9~12.
    [67] Toshlkazu Hanazato.Three-dimensional analysis of traffic-induced ground vibrations[J].J Geotech Eng ASCE, 1991,117(8): 1413~1434.
    [68] 李军世,李克训.高速铁路路基动力反应的有限元分析.铁道学报,1995, 17(1):66~75.
    [69] 孙璐,邓学钧.车辆-路面相互作用产生的动荷载.东南大学学报,1996,26(5):143~145.
    [70] 邓学钧.车辆-地面结构系统动力学研究,东南大学学报(自然科学版),2002,32(3):1~6.
    [71] 凌建明.行车荷载作用下湿软路基残余变形的研究.同济大学学报(自然科学版),2002(11).
    [72] 钱家欢,殷宗泽,土工原理与计算[M].北京:中国水利出版社,1996,
    [73] 洪毓康主编.土质学与土力学.人民交通出版社,2003.
    [74] 南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.157-175.
    [75] 王绍博,土动力参数对土层动力反应的影响,地震工程与工程振动,2001,21(01)0105—04
    [76] 汤连生等,路基土动荷载下力学行为研究进展,地质科技情报[J],2006.3.25.2,104-112
    [77] 曾长女等,粉土动力特性研究综述,防灾减灾工程学报,2005,3,25,3,0099-06
    [78] 贺建清等,石灰土填料动力特性试验研究,湖南科技大学学报(自然科学版),2005,Vol.20 No.4,0058-06.
    [79] 钟辉虹等,循环荷载作用下软黏土变形特性研究,岩土工程学报,2002,05-0629-04
    [80] 周建等,循环荷载作用下饱和软粘土应变软化研究,土木工程学报,2000,33(5)75-82
    [81] 梁波,丁立,粉煤灰作为填料的水稳性试验研究,岩土工程学报,2002-01-0112-03
    [82] 李振,动扭剪荷载作用下粉煤灰动力特性试验研究,岩石力学与工程学报,2006,增1-3080-07
    [83] 赵少强,粉煤灰改良黄土填料的试验研究,岩土工程,2006-03-0047-04
    [84] 徐万金,粉煤灰在公路路基填筑中的应用,山西建筑,(2003)11-0111-02
    [85] 胡珊,栾海.季节性重冰冻地区高等级公路粉煤灰路基冻稳定性的研究[J].公路,2002(05):53-57.
    [86] Yunsheng, Zhang, Fly ash based geopolymer concrete, Indian Concrete Journal, v 80, n 1, January, 2006, p 20-24.
    [87] Rostami, Hossein , High performance Alkali Ash Material , Journal of Solid Waste Technology and Management, v 30, n 3, August, 2004, p125-135.
    [88] 杨作升,杨少丽,超级有限元分析软件abaqus.CAD/CAM与制造业信息化,2004(3).
    [89] 庄茁.有限元软件ABAQUS6.4版入门指南[M].清华大学出版社,2004.
    [90] 在ABAQUS中开发实现Duncan-Chang本购模型[J],岩土力,2004,07,1032-05
    [91] 朱向荣,王金昌.ABAQUS软件中部分土模型简介及其工程应用.岩土力学,2004(增)0144-05.
    [92] Matsui T, et al.Cyclic stress-strain history and shear characteristics of clay, Journal of the Geotechnical Engineering Division,ASCE,106(10),1980,p01-20.
    [93] 周健,屠洪权等.动力荷载作用下软粘土的残余变形计算模式.岩土力学,1996,17(1),P54~60.
    [94] Kolisoja, Pauli, Laboratory testing of suction and deformation properties of base course aggregates, Transportation Research Record, n 1787, 2002, p83-89.
    [95] H.A.崔托维奇著.冻土力学[M].北京,科学出版社,1985.241-247
    [96] 齐吉琳,程国栋等.冻融作用对土工程性质影响的研究现状[J].地球科学 进展,2005,20(8):0887-08
    [97] 陈湘生,冻土力学之研究[J],煤炭学报,1998,23(1),53-57
    [98] 刘永智等,青藏高原多年冻土地区公路路基变形,冰川冻土,2002,01,0010-06
    [99] 李宁,程国栋,徐学祖等,冻土力学的研究进展与思考,力学进展,2001,31(1):95-302
    [100] 王铁行,胡长顺,冻土路基水份迁移数值模型,中国公路学报,2001(04),5-9
    [101] 郑秀清,樊贵盛,邢述彦箸.水分在季节性非冻融土壤中的运动[M].北京,地质出版社,2002..67-69.
    [102] 和礼红,中国科学院武汉岩土力学研究所博士学位论文,2004
    [103] 汪仁和,张世银,秦国秀,冻融土工程特性的试验研究,淮南工业学院学报(2001) 04-0035-03
    [104] T. Sahaphol, S. Miura, Shear moduli of volcanic soils, Soil Dynamics and Earthquake Engineering 25 (2005) 157-165
    [105] Simonsen, Erik,。Resilient properties of unbound road materials during seasonal frost conditions, Journal of Cold Regions Engineering, v16, n1, March, 2002, p28-50.
    [106] 马巍,围压对冻土强度特性的影响,岩土工程学报,1995(05)-7-11
    [107] 王伟,何昌荣,高围压下粉煤灰的应力~应变特性,水电站设计,2005,02,0063-03
    [108] 张德思,成秀珍,粉煤灰混凝土抗冻融耐久性的研究,西北工业大学学报,2000,5(02)-0175-04
    [109] Gokhan Baykal, Highway embankment construction using fly ash in cold regions, Resources, Conservation and Recycling 42 (2004) 209-222.
    [110] C. Ferreira, Possible applications for municipal solid waste fly ash, Journal of Hazardous Materials B96 (2003) 201-216.
    [111] Xie, You-jun, Study on mechanical properties and durability of selfcompacting high performance concrete, Jianzhu Cailiao Xuebao/Journal of Building Materials, v 3, n 2, Jun, 2000, p118-123.
    [112] 刘加军,季节性冻土地区铁路路基冻害及防治措施研究,石家庄铁道学院学报,2003,S1-0114-03
    [113] 刘志勇,马立国,高强混凝土的抗冻性与寿命预测模型[J].工业建筑,2005,35(1):11-14.
    [114] 王铁行,胡长顺, 冻土路基应力变形数值模型,岩土工程学报,2002,02, 0193-05
    [115] Fagerlund G.The Critical Degree of Saturation Method of Assessing the Freeze/Thaw Durability of Concrete. Materials and Structure, 1977(10).
    [116] 李平先,受冻融损伤混凝土与新混凝土的粘结剪切性能试验研究,建筑结构学报,2004(05)-0111-07
    [117] 冯海宁,杨有海,龚晓南.粉煤灰工程特性的试验研究[J].岩土力学,2002,23(5):579-583.
    [118] Zhang, Haobo, Study on the freezing resistance of high performance concrete subjected to Qinghai-Tiber plateau, Jianzhu Jiegou Xuebao/Journal of Building Structures, v 27, n SUPPL., October, 2006, p 748-751.
    [119] 李洪升,张斌.一维冻结土体冻胀量的水热力耦合计算[J].大连理工大学学报,1999,39(5):621-624.
    [120] Shoop, Sally, Cap plasticity model for thawing soil, Geotechnical Special Publication, n 130-142, Geo-Frontiers 2005, 2005, p 2605-2615
    [121] 李述训,南卓铜,等.冻融作用对系统与环境间能量交换的影响[J].冰川 冻土,2002,2,24(2):109-115.
    [122] D.S. Liyanapathirana, A numerical model for dynamic soil liquefaction analysis, Soil Dynamics and Earthquake Engineering 22 (2002) 1007-1015.
    [123] Khoury, N.N. Environmental effects on durability of aggregates stabilized with cementitious materials, Journal of Materials in Civil Engineering, v 19, n 1, January, 2007, p 41-48.
    [124] LIU Han-Bing, WEI Hai-Bin, EXPERIMENTAL RESEARCH ON DYNAMIC PROPERTIES OF FLY ASH SOIL AND SILTY CLAY AFTER FREEZE-THAW CYCLING, The First International Conference of Transportation Engineering. ASCE, 2007, 4。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700