掺合粉煤灰的复合水泥土力学性能及耐久性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以内蒙古河套地区粉质粘土为原材料,利用水泥固化土技术原理,通过在水泥土中掺加粉煤灰,再利用强碱激发粉煤灰水泥土,配制具有高强度及耐久性良好的新型材料,以便应用于工程实际中。本文主要的研究工作有:
     1、通过改变水泥土试验条件、改变水泥土成分,研究原材料对水泥土无侧限抗压强度的影响及掺加剂对水泥土强度的影响程度,总结水泥土强度变化规律。通过对水泥土、粉煤灰水泥土、复合水泥土进行渐进式的研究,设计配合比方案。
     2、通过改变掺加物质及掺加物的用量更新试验方案,来改善水泥土性能。以水泥土中掺加粉煤灰为基础,重点研究如何提高粉煤灰水泥土及激发粉煤灰活性以后的复合水泥土的抗压强度及耐久性。对水泥土各掺加剂进行权重分析、各因素用量水平分析及试验的误差分析,得出粉煤灰水泥土及复合水泥土的组成成分对水泥土性质的影响权重,并对权重分析结果进行试验验证,使复合水泥土配合比得到进一步优化,设计出具有高强度的新型复合材料。
     3、对三类水泥土进行渗透试验、冻融循环试验、抗冲刷试验研究,通过对三类水泥土养护不同龄期进行试验对比,得出不同水泥土,尤其是被激发后粉煤灰水泥土及改善后的复合水泥土的渗透性能及耐久性的变化规律。结合水泥土试验过程中的外观形态变化及对微观电镜照片进行分析,研究水泥土经过冻融破坏后,抗压强度退化机理及内部结构的变化规律。由于水泥土属于粘脆性材料,因此研究水泥土的渗透性及耐久性具有重要的工程实际意义。
     4、宏观上,对水泥土破坏的形态特征进行细致观察;微观上,利用扫描电镜技术及能谱分析技术,结合水泥土固化机理,深入分析标准养护后不同水泥土的生成物成分、数量、形态及结构的不同,找出不同水泥土无侧限抗压强度不同的内在原因。
     5、从力学机理分析复合水泥土的改良效果。对复合水泥土进行反复加卸载试验,研究复合水泥土的应力应变变化规律、弹性模量的变化规律,通过研究损伤度计算方法,研究其损伤退化规律,建立单轴受压状态下复合水泥土的弹塑性损伤模型。
     根据室内试验并对试验结果深入研究分析,得出如下成果:
     1、在用强碱激发粉煤灰水泥土的基础上,进行正交试验,得到复合水泥土的最优配合比为:土壤:水:水泥:粉煤灰:氢氧化钙:氢氧化钠:表面活性剂=60.7%:12.3%:10%:7.50%:9%:0.40%:0.10%。此试验方案得到标养28d水泥土无侧限抗压强度为11.04(MPa),结果非常理想,可用于实际工程中。各外掺剂因子的权重为:氢氧化钠为2.64、粉煤灰为2.62、氢氧化钙为1.47、表面活性剂为1.27,对试验数据进行方差分析,得出试验误差为0.57,偏差较小,结果可信度高。
     2、通过掺加石灰这种碱性物质,可以大大提高粉煤灰水泥土抗渗性能。以掺加15%的粉煤灰为例,加入石灰的粉煤灰水泥土的渗透系数为1.87×10-8cm/s,是不加石灰的粉煤灰水泥土渗透系数的33%。由于粉煤灰、石灰是工程常见材料,从而得到一种针对河套地区粉质粘土抗渗性能良好的材料配比:水:水泥:粉煤灰:石灰:粉质粘土=12%:10%:15%:3.75%:59.3%。复合水泥土方案8的配比与加石灰粉煤灰水泥土相比,28d龄期的复合水泥土的抗渗性能提高了45%。
     3、对复合水泥土不同试验方案进行了大量地冻融循环试验研究,得出不同冻融循环对水泥土抗压强度破坏的机理:冻融循环12次以后,水泥土强度损伤达到30%以上,循环20次以后,水泥土基本被完全破坏。结合复合水泥土冻融破坏的变形特征,得出了复合水泥土冻融破坏过程强度损失和质量损失的变化规律,对冻融后水泥土强度的变化规律进行拟合,得出拟合曲线方程。
     4、结合SEM试验照片和能谱分析,观察了粉煤灰水泥土及复合水泥土的微结构特点,分析了复合水泥材料的生成物类别和形态,进一步分析了粉煤灰水泥土及复合水泥土的固化机理,从本质上找出了复合水泥土抗压强度性能、抗渗性、耐久性优于水泥土的内在原因。
     5、通过对不同类别不同龄期的水泥土进行反复加卸载试验,并对试验数据进行采集,分析水泥土与复合水泥土的应力应变不同及变化规律,推导应力应变本构方程;根据试验数据,分析复合水泥土的细观损伤机制及其损伤演化规律,定义并得出复合水泥土这种新材料的损伤度,建立单轴压缩条件下的弹塑性损伤模型。
In this paper, we do experimental research and theory analysis using the InnerMongolia Hetao area silty clay as raw material. This paper concretes new type materials,in order to applied in engineering practice,which has properties of strength and durability,using cement stabilized soil technology principle, through adding different capacity ofdifferent material.The main research work are as follows:
     In the first place, the paper studies the properties of raw material and solidificationprinciple of cement-soil, through changing proportions of compounding soil-cement andchanging experiment conditions, for studing effect the factors and transformation rules ofunconfined compressive strength of cement-treated soil.
     In the second place, on the basis of the composition and change rules of unconfinedcompressive strength of cement-treated soil, this paper designs experiment plan toimprove soil properties. Based on ordinary cement-soil, this paper studies how toimprove the fly ash cement and compound cement-soil compressive strength anddurability. Adding agent all the soil weight analysis and error analysis of experiment, thispaper studies influence composition and experimental error of fly ash cement-soil andcomposite cement-soil. According to weight analysis results,this paper tests andoptimizes mix proportion.
     In the third place, Through different kinds of cement-soil curing differents age, thispaper tests the nature of the infiltration, freeze-thaw cycle and scour, and get the changedrules of test. Combining with the form of the appearance of the earth observation andmicro electron micrograph analysis, the paper researchs the nature of degradationmechanism of cement-soil after freezing and thawing destruction. Due to cement-soilbelong to glue and brittle material, so the permeability and the durability of cement-soiltest has vital significance.
     In the fourth place,combined water soil curing mechanism,this paper does adetailed observation of characteristic of the cement-soil on macro level,and analyses thedifferent products composition, quantity, form and structure of cement-soil usingscanning electron microscopy (sem). So that we find out the internal cause of the changeof the unconfined compressive strength.
     In the fifth place, This paper analysis the composite cement-soil improvementeffect from mechanics mechanism, and resurchs the stress of the composite cement-soil strain changes, the change of elastic modulus, by repeatedly loading and unloadingexperiments. this paper establish unconfined compression state of composite cement-soilelastoplastic damage model by calculating injury factor and studing the degradation rule.
     According to indoor test and the test results in-depth research and analysis, theresults obtained are as follows:
     Firstly, on the basis of strong alkali excitation fly ash cement-soil, this paper do zheorthogonal test, getting the optimal mixture ratio is: Soil,water,cement,fly ash, calciumhydroxide, sodium hydroxide, surfactant=60.7%:12.3%:10%:7.50%:9%:0.40%:0.10%, getting the unconfined compressive strength of28d is11.04(MPa). The weight ofoptimal mixture ratio’s factor is: the sodium hydroxide, fly ash, calcium hydroxide,surfactant, error was2.62to2.64to2.62to1.27to0.57. Test result of unconfinedcompressive strength is ideal using in practical engineering.
     Secondly, by adding alkali lime, the unconfined compressive strength of fly ashcement-soil can be greatly improved. As adding15%fly ash for an example, adding limecomposite cement-soil permeability coefficient is1.87×10-8cm/s, is33%permeabilitycoefficient of not adding lime composite cement-soil. This test gets a goodanti-permeability matching: water, cement, fly ash, lime, powder clay=12%:10%:15%:3.75%:59.3%. Because of the fly ash, lime is a common engineering materials, thissolution can be used in engineering. Contrasted with lime fly-ash cement-soil, thepermeability coefficient of composite cement-soil of scheme8increased by45%.
     Thirdly, this paper gets the conclusion that composite cement-soil is affectted todamage by freeze-thaw cycle test. It is studied that more than30%compressive strengthof composite cement-soil damaged after12times of freeze-thaw cycle; compositecement-soil completely destroyed after20times of freeze-thaw cycle. This paper analysischaracteristics of the composite cement-soil freeze-thaw damaged from the point ofmacroscopic and microscopic.
     Fourthly, using scanning electron microscope and chemical composition of spectralanalysis, this paper describes the microstructure characteristics of composite cement-soiland fly ash cement-soil and analysis categories and forms of composite cement-soil’smaterial products, on the basis of this, and analysis curing mechanism of compositecement-soil and fly ash cement-soil, and find immanent cause why compressive strengthand seepage resistance performance of composite cement-soil is superior to ordinarycement-soil.
     Fifth, through the repeated loading unloading test and collection the test data ofunconfined compressive strength, this paper analysis mesoscopic damage mechanism and damage evolution rule and get injury tolerance of composite cement-soil, and establishthe elastoplastic damage model under the condition of uniaxial compression.
引文
1肖林.《建筑材料水泥土》[M].北京:水利电力出版社,1987
    2郝巨涛.水泥土材料力学特性的探讨[J].岩土工程学报,1991,13(3):53-59
    3宁宝宽.环境侵蚀下水泥土的损伤破裂试验及其本构模型[D].沈阳:东北大学,2006
    4高国瑞,近代土质学[M],南京:东南大学出版社,1990
    5高国瑞,李俊才.水泥加固软上地基的研究[J].工程地质学报.1996,4(1):45-52
    6王景华.粘土固化浆液固结过程的SEM研究[[J].岩土工程学报,199921(1):34-40
    7陈善民,王立忠等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报,2000,34(4):398-403
    8储诚富,洪振舜,刘松玉.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学.2005.26(4):645-649
    9张家柱,程钊,余金煌.水泥土性能的试验研究[J].岩土工程技术,1999(3):38-40
    10周国钧等.深层搅拌法加固软粘土技术[J].岩土工程学报,1981,3(4):53-65
    11郑刚,姜忻良.水泥搅拌桩复合地基承载力研究[J].岩土力学,199920(3):46-50
    12宫必宁,李淞泉.软土地基水泥深层搅拌加固土物理力学特性研究[J].河海大学学报,2000,28(2):101-105
    13龚晓南.地基处理新技术[M].西安:陕西科学技术出版社,1997
    14周建民等.深层搅拌桩复合地基的有限元分析[J].岩土力学,1997,18(2):44-50
    15曾卫东,唐雪云,何泌洲.深层搅拌法在处理泥炭质土中的应用[J].地质灾害与环境保护,2002,13(2):67-69
    16刘焕存.夯实水泥土强度特性试验研究[J].岩土工程技术,1996,(3):16-25
    17刘焕存.夯实水泥土变形特性试验研究.岩土工程技术,1997,(1):19-27
    18范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学.2005.26(8):1327-1334
    19邵玉芳,龚晓南,徐日庆.有机质对土壤固化剂加固效果影响的研究[J].农机化研究.2005(1):23-24
    20荀勇.有机质含量对水泥土强度的影响与对策[J].四川建筑科学研究,2000,26(3):58-60
    21潘永灿,蒋莹玉.水泥土强度受有机质含量影响试验研究[J].盐城工学院学报.2002,15(1):29-31
    22陈慧娥.有机质影响水泥加固软土效果的研究[D].吉林:吉林大学,2006
    23陈建奎.《混凝土外加剂原理与应用》[M].北京:中国计划出版社,2004
    24Vatsala A, Nova R, Srinivasa Murthy BR. Elasto-plastic model for cementedsoils[J].Journal of Geotechnical and Geoenvironmental Engineering,2001(8):679-687
    25Rolling R S. Sulfate attach on cement-stabilized sand [J].Journal of Geotechnicaland Geoenvironmental Engineering,1999,121(5):364-372
    26Masaki Kitazume,Kimihiko Okano and Shogo Miyajima.“Centrifuge model t ests onfailure envelope of column type deep mixing method improved ground”.SoilsAndFoundations,2000(1):43-55
    27Attom MF, Al-Sharif MM. Soil stabilization with burned olive waste. Appl Clay Sci1998;13:219-230
    28Ali FH. Stabilisation of a residual soil. Soil Foundation1992;32(4):178-185
    29J.WJU, and YZHANG, A thermo-mechanical model for airfield concrete pavementunder transient high temperature Loading. International journal ofdamage mechanics.1998,17(1)124-145
    30RE. Brown,B.S.Jindal, JD. Bulzan,Criticalr eviewo f thee ffectvieness ofstabilization and solidi?cation of hazardous organic wastes,ASTM Special TechnicalPublication1123,American Society forTesting and Materials, Philadelphia,1992
    31Kalinski ME, Bicudo JR. Predicting the strength of compacted fly ash cementmixtures for cattle feedlots. Energeia2004,15(2)114-116
    32Zhang MH, Lastra R, Malhotra VM. Rice husk ash paste and concrete: some aspectsof hydration and the microstructure of theinterfacial zone between the aggregateand paste. Cement Con-crete Res1996,26(6):963-977
    33Rahman MA. E?ect of cement–rice husk ash mixtures on geotechnical properties oflateritic soils. J Soil Foundation1987,27(2):61-65
    34MuntoharAS, HantoroG. Influenceof the ricehuskashandlime on engineering propertiesof clayey subgrade, Electron J Geotech Eng, vol.5Paper#019, USA: Oklahoma StateUniversity;2000
    35Fisher, K. P. Properties of an artif icially cemented-clay[J]. Canadian Geot,1978,15:25-37
    36Kawasaki, T.Deep mixing using cement hardening agent[C]. Proc.10th ICSMFE,1981,37(2):105-123
    37SJ.T.Pollard,DM. Montgomery,CJ..Sollars,R.Perry, Organic compounds in thecement-based stabilization/solidi?cation of hazardous mixed wastes mechanistic andprocess considerations,J.Hazard.Mater.28(1991)313 327
    38JR. Conner, SL. Hoeffner, A critical review of stabilization/solidificationtechnology,Environ.Sci.Technol.28(4)(1998)397 462
    39S. Horpibulsuk, N. Miura and T. S. Nagaraj. Assessment of strength development incement-admixed high water content clays with Abram's law as a basis. Geotechnique,2003,53(4):439-444
    40Helene Tremblay, Josee Duchesne, Jacques Locat, and Serge Leroueil. Influence ofthe nature of organic compounds on fine soil stabilization with cement. CanadaGeotech. J.2002,39:535-546
    41H.Shin,K.Jun,Cement based stabilization/solidification of organic contaminatedhazardous wastes using Na bentonite and silica fume,J.Environ. Sci.Health A30(3)(1995)651 668
    42Aydilek AH, Arora S. Fly ash amended soils as highway base materials, geotechnicalengineering for transportation projects,geotechnical special publication No.126-136American Society of Civil Engineers;2004:1032 1041
    43Clarke BG, Coombs R. Specifying and using pulverised fuel ash as an engineered fill.Waste Mgmt1996,16(1):101 108
    44Atis CD. High-volume fly ash concrete with high strength and low drying shrinkage.J Mater Civil Eng2003,15(2):153 156
    45Acosta Hector A.Stabilization of Soft Subgrade Soils Using Fly Ash[D]:Madison,Wisconsin, U. S. A. University of Wisconsin-Madison,2002
    46Shenbaga R.Kaniraj, Vasant G Havanagi. Compressive strength of cement stabilizedfly ash-soil mixtures[J].Cement and concrete research.1999(29):673-677
    47Gerald A. Miller, Shahriar Azad. Influence of soil type on stabilization with cementkiln dust[J]. Construction and Building Materials.2000(14):89-97
    48S. Kolias, V.Kasselouri-Rigopoulou, A.Karahalios Stabilisation of clayey soilswith high calcium fly ash and cement[J].Cement&ConcreteComposites.2005(27):301-313
    49G.M. Filz, D.K. Hodges, D. E. Weatherby, and W.A. Marr. Standardized definitionsand laboratory procedures for soil-cement specimens applicable to the wet methodof deep mixing.Innovations in Grouting and Soil Improvement.2005:1-13
    50Fook-Hou Lee, Yeong Lee, Soon-Hoe Chew, and Kwet-Yew Yong. Strength and modulusof marine clay-cement mixes.Journal of geotechnical and geoenvironmentalengineering.2005,131(2):178-186
    51Mostafa A. Ismail, Hackmet A. Joer, Wee H. Sim, and Mark F. Randolph. Effect ofcement type on shear behavior of cemented calcareous soil[J].Journal ofgeotechnical and geoenvironmental engineering.2002,128(6):520-529
    52Glen A.Lorenzo and DennesT.Bergado.Fundamental parameters ofcement-admixedclay-new approach. Journal of geotechnical and geoenvironmental engineering.2004,130(10):1042-1050
    53童小东,蒋永生,龚维明,龚晓南.石灰在水泥系深层搅拌法中的应用[J].工业建筑,2000,(30)1:21-26
    54侯永峰.循环荷载作用下水泥复合土变形性状试验研究[J].岩土工程学报.2001,23(3):30-33
    55张明,白晓红.粉煤灰在深层搅拌桩中应用[J].太原理工大学学报,2001,32(1):78-81
    56梁仁旺,张明,白晓红.水泥土的力学性能试验研究.岩土力学,2001,22(2):211-213
    57周承刚,高俊良.粉煤灰在搅拌地基处理时对水泥土强度的影响[J].河北建筑科技学院学报,2001,18(1):34-40
    58牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨[J].建筑材料学报,2002,5(l):84-89
    59蒲心诚,王勇威.高效活性矿物掺料与混凝土的高性能化[J].混凝土,2002,148(2):3-6
    60杨坪,彭振斌.硅粉在混凝土中的应用[J].混凝土,2002,148(1):34-36
    61田文玉.硅粉的研究及应用现状[J].重庆交通学院学报,1998,17(2):100-107
    62李新宇,方坤和.硅粉对水泥硬化浆体微结构影响的研究进展[J].硅酸盐学报,2003,(l):54-57
    63王爱勤,张承志,唐明述.火山灰质材料的填充作用,1995(5):19-21
    64季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003,161(3):13-14
    65李文斌.从水泥土强度增长机理分析看增强措施[J].甘肃水利水电技术,1994,2(2):63-71
    66黄殿英,张可能,曾样熹.sF对水泥土的影响初探[J].大地构造与成矿学,1995,19(3):284-287
    67王立峰.纳米硅水泥土工程特性及本构模型研究[D].杭州:浙江大学,2003
    68王立峰,朱向荣,丁同福.纳米硅水泥土工程特性的试验研究[J].岩土工程技术,2003,23(4):187-192
    69王文军,朱向荣.纳米硅粉水泥土的工程特性及固化机理初探[J].地质与勘探,2003,39(增刊):101-104
    70王文军.纳米矿粉水泥土固化机理及损伤特性研究[D].杭州:浙江大学,2004
    71林振荣,张程博,杨友全.掺加矿渣的土聚水泥的研究.[J].21世纪建筑材料,2009,5(1):17-18
    72黄春香,简文彬.软土特性与水泥-水玻璃加固土效应的试验[J].福州大学学报自然科学版,2001,29(3):109-112
    73黄新,胡同安.水泥一废石石膏加固软土的试验研究[J].岩土工程学报,1998,20(5):72-74
    74黄新,杨晓刚,胡同安.硫酸盐介质对水泥加固土强度的影响[J].工业建筑,1994,24(9):19-23
    75宁宝宽,陈四利,郑楠.硫酸盐对水泥土的侵蚀作用研究[J].第九届全国岩石力学与工程学术大会论文集,717-721
    76裴向军,杨国春.防治海水对水泥土侵蚀的试验研究[J].长春工程学院学报,2000(1):12-14
    77郭印.淤泥质土的固化及力学特性的研究[D].杭州:浙江大学,2007
    78朱志铎.粉土路基稳定理论与工程应用技术研究[D].南京:东南大学,2006
    79张春雷.淤泥固化土力学性质及固化机理研究[D].南京:河海大学,2003
    80张登良.《加固土原理》[M].北京:人民交通出版社,1990
    81张士乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D].杭州:浙江大学,1992
    82童小东.水泥土添加剂及其损伤模型试验研究[D].杭州.浙江大学.1998
    83童小东,龚晓南,蒋永生.水泥土的弹塑性损伤试验研究[J].土木工程学报,2002,35(4):82-85
    84童小东,龚晓南,蒋永生.水泥土的弹塑性损伤模型[J].工程力学,2002,19(6):33-38
    85王立峰,朱向荣.水泥土的损伤模型的试脸研究[J].科技通报,2003,19(2):136-139
    86沈为.损伤力学[M].武汉:华中理工大学出版社,1995
    87J.勒迈特.损伤力学教程[M].陶春虎译.北京:科学出版社,1996
    88余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    89Kachanov L M. On the time to failure under creep condition[J]. Izv, Akad, Nauk,USSR, Otd. Tekhn Nauk.1958,8:26-31
    90Kachanov L M. Introduction to continuum damage mechanics[M]. Martinus NijhoffPublishers. Dordrecht, The Netherlands.1986
    91Rabotnov Y N. On the equations of state for creep[C]. In: Progress in AppliedMechanics.1963,307-315
    92Rabotnov Y N. Creep ruptures[C]. In:Hetenyi M, et al.ed. Applied Mechanics.Processing of the12th International Congress of Applied Mechanix.Standford-Springer-Verlag, Berlin,1969,342-349
    93Lemaitre J. Local approach of fracture[J]. Eng. Frac. Mech.,1986:25(5/6)
    94Lemaitre J, Chaboche J L. Mechanics of Solid Materials[M]. Cambridge UniversityPress,1990
    95Chaboche J L. Continuum damage mechanics-a tool to describe phenomena before crackinitiation[J]. Num, Eng. Design,1981,64:233-247
    96Rousselier G.Finite deformation constitutive relations including ductile fracturedamage.In:Nematnasser S,ed.Proceedings of the IUTAM Symposium on three DimensionalConstitutiveRelationsand ductile fracture.North-Holland Pub.Company,1980.331-355
    97Kyoya T, Icikawa Y,Kawamoto T. Adamage mechanics theory for discontinuous rockmass[C].5th International Conference on Numerical Methods in GeomechanicsNagoya,1985
    98Kawamoto T,Ichikawa Y, Kyoya T. Deformation and fracturing behavior ofdiscontinuous rock mass and damage mechanics theory[J], Int. J. for Numerical andAnalysis Methods in Geomechanics.1988,12:1-30
    99Ichikawa Y,Kyoya T, Kawamoto T. Incremental theory of plasticity for rock[C]. Proc.5th Int. Conf. Num. Meth. In Geomech. Nagoya,1985.Vol.1,451-462
    100Tirosh J, Miller. A, Damage evolution and rupture in creeping of porousmaterials[J]. Int.J. Solids structures.1988,24(6)
    101李兆霞,脆性材料损伤应变率效应及其本构模拟[J].固体力学学报,1998,19(4):110-118
    102谢和平,鞠杨等.经典损伤定义中的强性模量法探讨[J].力学与实践,1997(2):1-5
    103鞠杨.钢纤维(增强)混凝土疲劳损伤行为及其累积损伤理论和疲劳寿命估算方法研究[D].哈尔滨:建筑大学,1995
    104谢里阳等.两级载荷作用下疲劳损伤状态的试验研究[J].机械强度,1994(3)52-54
    105张盛东.混凝土损伤本构关系的研究[D].哈尔滨:建筑大学,1997
    106谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    107周苏波.混凝土损伤定量分析[D].南京:河海大学,1998
    108黄古智,徐秉业主编,固体力学发展趋势[M].北京:北京理工大学出版社,1995
    109何明,符晓陵,徐道远.混凝土的损伤模型[J].福州大学学报,1994,22(4):109-114
    110何思明.双标量描述土的损伤模型及其应用.岩土力学,2002,23(3):333-340
    111Loland, K.E., Continuous damage model for load-response estimation of concrete[J]. Cement and concrete research,1980,10:395-402
    112Mazars J. Application de la mecanique de lendommagement an comportment nonlinearde structure, These de doctorat d’Etat. Univ. Paris, ENSET, Mai1984
    113余天庆.混凝土的分段线性损伤模型[[J].岩石、混凝土断裂与强度,1985(2):140-160
    114吴澎.节理岩体的损伤模型及非纯属有限元分析[J].岩石力学与工程学报,1988,7(3):193-202
    115周维垣等.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1998,20(5):54-57
    116周维垣,杨延毅.节理岩体损伤断裂模型与验证[J].岩石力学与工程学报,1991,10(1):43-54
    117孙卫军,周维垣.裂隙岩体弹塑性损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119
    118凌建明等.非贯通裂隙岩体力学特性的损伤分析[J].岩石力学与工程学报,1992,11(4):373-383
    119李长春.考虑温度效应的岩石损伤内时本构关系[J].岩土力学.1991,(3):1-10
    120肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理研究[J].岩石力学与工程学报,1999,18(6):623-626
    121余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    122葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    123杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998
    124沈珠江,章为民.损伤力学在土力学中的应用.第一届全国计算岩土力学研讨会论文集,1987
    125沈珠江、章为民.损伤力学在土力学中应用[J].第二届全国岩土工程数值分析解析方法论文集,1988
    126孙红,赵锡宏.结构性软土的损伤及其对地基沉降的影响.岩土力学,1999,20(l):19-21
    127孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,199920(3):7-12
    128孙红.软土的各向异性损伤模型及其在土力学中的应用[D].上海:同济大学,1999
    129赵锡宏,孙红,损伤土力学[M].上海:同济大学出版社,2002
    130周丽萍.寒区复合水泥加固土的力学性质及损伤特性研究:[D].内蒙古:内蒙古农业大学水利与建筑工程学院,2009
    131温永钦.浮石粉水泥复合土的固化机理及其力学性能试验研究[D].内蒙古农业大学,2011
    132郭宏峰,有机质对水泥土强度影响的机理研究[D].上海:同济大学,2008
    133北京农业大学土壤教研组,土壤学.[M].北京:北京农业大学出版社,1987
    134肖林.《建筑材料水泥土》[M].北京:水利电力出版社,1987
    135地基处理手册(第二版)[M].北京:中国建筑工业出版社,2000
    136张登良.《加固土原理》[M].北京:人民交通出版社,1990
    137王宝勋,李夕兵,杜东菊,杨爱武.应用碱性水泥外掺剂固化天津海积软土的试验研究[J].工程地质学报,200917(3):426-432
    138范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学,2005,26(8),1327-1330
    139陈慧娥,王清.水泥加固不同地区软土的试验研究[J].岩土力学,2007,28(2):423-426
    140陈甦,宋少华,沈剑林等.水泥粉喷桩桩体水泥黑土力学性质试验研究[J].岩土工程学报,2001,23(3):302-306
    141余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.10
    142唐雪松,郑建龙,蒋驰平.连续损伤理论与应用[M].北京:人民交通出版社,2006.8
    143刘红岩,王根旺,刘国振.以损伤变量为特征的岩石损伤理论研究进展[J].爆破器材,2004,33(6):25-29
    144余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    145葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700