针织染整废水深度处理与回用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国民经济重要支柱产业的纺织行业,是用水和产生有机污染废水的大户。染整废水不仅组分复杂、难降解物质多,难以用常规方法进行完全处理;而且该类废水的回用率极低,因此开发染整废水深度处理装置及其工艺,研究其相关基础理论,不但解决染整废水排放对环境造成的污染,缓解水资源的短缺,而且具有重要的学术意义与应用价值。
     本文首先以针织染整废水二级出水为研究对象,分别以两段式复合滤料曝气生物滤池和预涂动态膜技术进行深度处理,系统研究了深度净化染整废水的影响因素、工艺条件、运行特性及其反应动力学和净化机理;得到如下结论:
     1.系统研究了曝气生物滤池工艺参数,如气水比、水力负荷、HRT、温度、进水浓度、pH等对有机物去除效果的影响。结果表明:当气水比为2、水力负荷在0.39m~3/(m~2·h)左右、HRT为1 h、温度在25℃~30℃、pH值控制在7.0~8.5之间,曝气生物滤池对污染物的去除效率达到最佳。其中NH_4~+-N、COD_(Cr)、SS、浊度、色度的去除率分别达到89%、55%、87%、83%、75%以上,出水分别低于1.5 mg/L、50 mg/L、10 mg/L、5 NTU、20倍,满足生活杂用水回用水质标准,该工艺参数可为实际工程的设计和运行提供了有力的理论依据。
     2.探讨了曝气生物滤池净化机理及反应动力学。根据曝气生物滤池沿程对有机污染物质的去除,建立了一套进出水浓度随反应器高度变化的经验模型S=S_0exp{-3.8562HS_0~(0.1697)(Q/A)~(-0.1804)},通过一系列实验验证该模型的实用性,可为实际提供设计和运行依据。
     3.通过涂膜试验的结果显示,从处理二级出水水质的通量及其污染情况比较,6000目的高岭土作为涂膜材料,涂膜条件为错流速度0.5m/s的,跨膜压力0.2MPa和涂膜液浓度0.3g/L,涂膜15min时形成的动态膜较为稳定,可以作为最佳的涂膜条件。在此条件下进行涂膜,在操作压力0.1MPa,错流速度1m/s条件下运行,对染整废水二级出水进行深度处理后COD去除率在50%左右,浊度去除率接近100%,色度去除几乎不影响。通过涂膜与未涂膜比较研究,涂膜后对延缓通量衰减有明显作用;通过比较COD去除率可以看出,涂膜后的出水要优于末涂膜,这是由于在基膜上形成一层过滤层对污水起进一步过滤。
     4.从陶瓷支撑体的酸液浸出液的污染物元素分析,Ca、Mg元素是膜管内部无机污染物的主要部分,Fe和P为其次。而从从碱液浸出液的总有机碳的分析比较看,动态膜的支撑体内部污染程度远远没有微滤无机膜直接过滤严重,说明动态膜对膜管抗内部污染的性能较好。
     5.化学浸洗过程:碱洗(0.2/mg·L~(-1)NaOH)1小时—酸洗(0.1/mg·L~(-1)HCl)1小时的效果要好于酸洗(0.1/mg·L~(-1)HCl)1小时一碱洗(0.2/mg·L~(-1)NaOH)1小时。经过反复清洗,涂膜过滤经化学清洗后的膜管通量恢复稳定在90%左右,而未涂膜的膜管只能恢复到原来的60%左右,说明涂膜有效的阻止了膜内部的不可逆污染。从水力清洗的比较发现,涂膜后的膜管通量恢复率明显高于微滤无机膜的,而且每次都能恢复到原来的45~55%,说明预涂膜能提高了膜管再利用率,工程应用中可省略了化学清洗过程。
     最后以宁波海达针织染整厂排放的实际废水,提出“清污分流、分质供水”的方案,采用BAF和膜组合技术,以300t/d中试规模进行深度处理并回用。中试结果表明:
     (1)进水在一定范围波动时,出水水质稳定,出水CODcr<50mg/L,色度<2倍,浊度<1NTU,水质指标优于建设部生活杂用水水质标准(GB/T 18920-2002),其中CODcr、色度、浊度的平均去除率分别为91%、95%、96%以上。通过五个多月的生产实验表明,本套工艺对针织染整废水深度处理后出水满足该企业染整工艺对水质的要求。
     (3)由于目前国内没有染整废水回用水水质标准,企业应根据自身的情况筛选出影响染整工艺的水质指标:pH值和盐度。回用水生产实验表明,回用水pH值一般为6.5~8.5时,对织物的影响较小;采用合理的分流方案,回用系统的盐度控制在0.924g/L以下,回用水对织物的染色质量影响较小。
     (3)本工艺得到的回用水,适用于针织染整工艺中的煮练、漂白、染色、洗涤等工序,而对一些要求较高的产品,煮练和洗涤工序可考虑使用回用水,染色和最后一道洗涤工序使用自来水,这样可保证产品质量。
     该研究为发展完善纺织废水再生水回用的集成化技术奠定了理论基础,为提高纺织行业水的回用率提供了技术储备,并为其工业规模应用提供实际运行及设计参数。
The textile industry as a pillar industry of national economy not only demands a great deal of water but also generates large amount of organic wastewater.Dyeing and finishing wastewater characterized by complicated composition,a great number of nondegradable substances,is generally difficult to be effectively disposed using conventional methods, and such wastewater recovery rate is quite low.Therefore,it is very important to develop a technology of recovery and recycling of water coming from textile wastewater in order to reduce the pressure of water scarcity and impact on environment from discharged textile wastewater.
     Knitting dyeing and finishing wastewater was studied in this paper by two-stage biological aerated filter(BAF) and pre-coating dynamic membrane technology for advanced treatment,respectively.The influential factors such as operational conditions, reaction kinetics and purification mechanism were systematically explored,and the experimental results obtained are as follows:
     1.The effect of operational parameters of BAF on removal efficiency of organic matter, including gas water ratio,hydraulic load,hydraulic retention time,temperature,inlet concentration,pH value was studied in detail.The results showed that:air/water=2, hydraulic load=0.39 m~3/(m~2·h),HRT=1 h,temperatures=25℃~30℃,pH value= 7.0~8.5,the removal efficiency of NH_4~+-N,COD_(cr),SS,turbidity,color were above 89%, 55%,87%,83%and 75%,respectively.The effluent concentration under the above operational conditions are below 1.5 mg/L,50 mg/L,10 mg/L,5 NTU and 20 times, respectively,which can meet quality standards of municipal reuse water,and such parameters can be referenced for industrial scale application for textile wastewater advanced treatment and reclamation.
     2.The purification mechanism and reaction kinetics of BAF were analyzed.According the removal of organic pollutants along the way in BAF,a experiential model has been set up to correlate the effluent concentration of treated wastewater with height of reactor,as S=S_0exp{-3.8562HS_0~(-0.1697)(Q/A)~(-0.1804)},which were verified by a series of experiments.
     3.Based on the flux of secondary effluent treatment and membrane pollution,the pre-coating experiments showed that the more stable dynamic membrane was formed under the conditions of kaolin with 6000 mesh used as film materials,the crossflow velocity=0.5m/s,transmembrane pressure=0.2MPa,kaolin concentration=0.3g/L, time=15 min.Under the above conditions of pre-coated membrane,the operating pressure =0.1 MPa,cross-flow velocity=1m/s,removal efficiency of COD_(cr) and turbidity of secondary effluent treatment using dynamic membrane were 50%and nearly 100%, respectively,however,without the effect on color removal rate.By comparison of secondary effluent treatment between direct filtration and dynamic membrane filtration,it was found that pre-coating membrane played a significant role in reduction of flux,which also chieved better COD_(cr) removal than that of direct filtration,which can be explained that the film formed on base membrane acted as a additional filter to enhance the filtering for wastewater treatment.
     4.According to SEM and ICP element analysis of acid leachate from ceramics supporter, it was found that Ca,Mg were detected as the main composition of inorganic pollutants of the internal membrane,Fe and P were in the second abundance.While comparing the TOC contained in basic leachate,it indicated the pollution within supporter with dynamic membrane was not as serious as that without the micro-filtration inorganic membrane, which mean that dynamic membrane played better performance of anti-pollution inside ceramics dynamic membrane.
     5.Comparing the effect of different order of chemical washing method on membrane fouling it was indicated that alkaline washing(0.2/mg·L~(-1)NaOH) 1 h-acidic washing (0.1/mg·L~(-1)HCl) 1 h better than that of acidic washing(0.1/mg·L~(-1)HC1) 1 h-caustic washing(0.2/mg·L~(-1)NaOH) 1h.After repeated chemical washing experiments,the results showed that flux of pre-coating membrane restored with the capacity of 90%by chemical cleaning,however,it only restored into 60%of the original capacity for the filtration,which means pre-coating membrane can effectively prevent the non-reversible contamination inside membrane.It was indicated that recovery rate of MF for pre-coating membrane via tap water washing significantly higher than that of inorganic micro-membrane,namely,it was generally restored to the original capacity of 45~55%.It can be explained that the pre-coating film can increase the utilization efficiency of membrane,and that the chemical washing step was basically omitted in engineering application.
     Finally,the actual wastewater from Haida knitting& weaving company in Ningbo city was targeted in this study.The plan of technical process was proposed as:separate the clean flow from contaminated flow and supply the water in corresponding to the quality requirement of the manufacturing.In this case,the combined technology of BAF and membrane was applied into wastewater advanced treatment with a pilot scale of 300t/d, and the treated water was recycled and reused.The conclusions of the test were shown as follows:
     (1)The results showed that the average concentration of CODer,color and turbidity in the effluent were less than 50 mg/L,10 times,1NTU,respectively when influent-quality index fluctuated.Each quota of the treated water has the superiority over the gray water standards(GB/T 18920-2002).The average CODer,color,turbidity removal efficiencies were 91%,95%and 96%,respectively.The treated effluent quality satisfied the requirement of water quality for printing and dyeing process.
     (2)At present,there is no standard of water quality for reuse and reclamation of dyeing and finishing wastewater applied into production process in China.Therefore,the essential parameters of water quality affecting dyeing and finishing process should be selected in according to the native situations such as pH and salinity.The experimental results of dyeing and finishing process using reclaimed water showed that reused water,pH value of 6.5~8.5 and salinity within 0.924g/L,can satisfy the product quality requirement.
     (3)The reclaimed water obtained from combined technology of BAF and membrane treatment suits for the process of scouring,bleaching,dyeing,washing and etc.in dyeing and finishing process,what's more,the reclaimed water also can be applied into scouring and washing process.While for some products with higher requirement,tap water is only necessary for the final step of washing and dyeing to guarantee the product quality.
     The conclusions of this study have further not only improved the fundamental theory for integrated technology of reclaimed and recycled water from knitting dyeing and finishing wastewater,but also provide the technical support to upgrade the recovery rate for manufacturing water in such industry as well as the parameters for operation and design in industrial scale application.
引文
[1]贺伟程,世界水资源[M],中国水利大百科全书.水利,北京:中国水利大百科全书出版社,1992.
    [2]UNEP2000,Freshwater Pollution,World Environment UN.Water Development and Management.In:Proceeding of the UN water Conference 2000.Part 4.Oxford:Program Press,2000.
    [3]陈家琦,王浩,杨小柳.水资源学.科学出版社,2002:29-44.
    [4]陈志恺.中国水资源的可持续利用.中国水利.2000,(8):38-40.
    [5]刘昌明,何希吾.我国21世纪上半叶水资源供求分析.中国水利.2002,(1):19-22.
    [6]林宜狮.水的再生与回用.中国环境科学出版社,1989:31-39.
    [7]关于染整废水治理的几点思考http://www.chinaenvironment.com/urgl/2005-08/10/15886.htm
    [8]国家环境保护总局.《2002年中国环境状况公告》.
    [9]建设部,国家环保总局,科技部.城市污水处理与防治技术政策[M].2000.
    [10]Tekashi Asno.Waste Water Reclamation and Ruse[J].Water Quality Management Library Vol.10 USA:Technology Publishing Company,Inc.1998.
    [11]刘平波,卜义惠.城市污水资源化评述[J].北方环境,2002(1):6-10.
    [1]杨书铭,黄长盾.纺织染整工业废水治理技术.化学工业出版社,2002:1-7.
    [2]沈安京.我国纺织染整工业面临的挑战及其结构调整(一).染整,1999,2:50-52.
    [3]沈安京.我国纺织染整工业面临的挑战及其结构调整(二).染整,1999,3:35-39.
    [4]范雪荣主编 《纺织品染整工艺学》1999年6月,中国纺织出版社,北京.
    [5]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:74-75.
    [6]杨书铭,黄长盾.纺织染整工业废水治理技术[M].北京:化学工业出版社,2002:29-36.
    [7]朱虹,孙杰.印染废水处理技术[M].北京:中国纺织出版社,2004:15-18.
    [8]戴日成,张统,郭茜等.染整废水水质特征及处理技术综述[J].给水排水.2000,26(10):33-37.
    [9]Manu B,Sanjeev C.Anaerobic decolorisation of simulated textile wastewater containing azo dyes[J].Bioresource Technology.2002,82:225-231.
    [10]Joanne B,Jason J P,Chris A E A.Treatment and decolorisation of dyes in an anaerobic baffled reactor[J].Journal of Environmental Engineering.2000,10:1026-1032.
    [11]彭会清,许开.染整废水处理现状与进展.四川纺织科技,2003(2):11-14.
    [12]曲克明,陈民山,马绍赛,辛福言,3种工业废水对牙鲆胚胎的毒性效应.中国水产科学.2003(4):155-160.
    [13]马绍赛,曲克明.三种工业废水对中国对虾幼体及仔虾的急性效应.中国水产科学.2004,11(3):220-224.
    [14]国家环境保护总局.《2002年中国环境状况公告》.
    [15]Zhang Z X,Qian Y.Water Saving and waster water reuse and recycle in China.Water Science and Technology,1991,23:2135-2140.
    [16]张杰,曹开朗.城市污水深度处理与水资源可持续利用.中国给水排水,2001,17:20-21.
    [17]沈东升等.我国染整废水处理技术的现状和发展趋势.现场污染与防治,1996,18(1):26-28.
    [18]范洪波等.难降解染料废水处理方法的研究进展.江苏石油化工学院学报,2002,14(1):61-64.
    [19]Wang C R,Li J,Wang B Z,Zhang G Z.Development of an empirical model for domestic wastewater treatment by biological aerated filter.Process Biochemistry,2006,41:778-782.
    [20]Wearherley L.R.,et al.Acid dye removal from textile industry effluent using biologically active carbon adsorbent.Spec.Publ.-R.Soc.Chem.1996,56-68.
    [21]Pagga L.,et al.Development of a method for adsorption of dyestuffs on active sludge.Water Research,1994,5.
    [22]俞成丙.水中铜的去除方法.水处理信息报导,1998,2:46-49.
    [23]陈中兰.铜试剂螯合纤维素吸附性能研究.四川师范学院学报,1999,20(3):234-236.
    [24]虞承佳.染整废水回用研究.华北地质矿产杂志,1996,11(2):263-266.
    [25]王秀华.染整废水深度处理方法探讨.污染与防治,1987,12-18.
    [26]张志峰,何晨燕.染整废水的回用现状和技术发展.北方环境,2003,28(4):50-53.
    [27]耿土锁.染整废水深度处理的过滤技术试验研究.环境与开发,1995,10(4):10-15.
    [28]苗鸿等.过滤法深度处理洗毛废水的研究..污染与防治,2004,3-7.
    [29]穆瑞林等.利用生物过滤池对胶丝在染色废水进行深度处理.给水排水,2000,26(3):41-42.
    [30]Rccd B.E.,Matsumoto M.R.,Jensen J.N.,et al.Physico-chemical processes.Water Evironment Research,1998,70(4):449-473.
    [31]谭湘萍.载银 TiO_2半导体催化剂对染整废水的去除和研究.环境污染与防治,1994,16(5):5-7.
    [32]Tratnyek P.G.,Elovitz M.S.,Colverson P.Photoeffects of textile Dye wastes.Sensitization of singlet oxygen formation oxidation of phenols and toxicity to bacterial.Environmental Toxicity and Chemistry,1994,13:27-33.
    [33]Li X,Zhao Y.Advanced treatment of textile wastewater ozonation in fluidized and fixed activated carbon beds[J].Wat.Res.2000,34(3):763-772.
    [34]贾玉平等.活性炭纤维电极法处理染料废水机理初探.环境科学,1997,18(6):31-34.
    [35]Simonsson D.Electrochemistry for cleaner environment.Chemical Society Reviews,1997,26(3):181-190.
    [36]贾瑞宝.饮用水源微污染现状及其深度处理技术.山东环境,1999,5:42-43.
    [37]龚云峰,丁桓如,吴春华.给水处理工程中去除有机物的方法.工业水处理,2000,20(8):1-3.
    [38]魏宏斌,徐迪民.水中有机污染物物理、化学处理技术的现状及发展趋势.上海环境科学,1997,16(4):25-27.
    [39]Ellis T.G et al.Activated sludge and other suspend culture processes.Water Environment Research,1998,70(4):473-495.
    [40]Fills M.W.,et al.Biological Fixed-film systems.Water Environment Research,1998,70(4):495-518.
    [41]Hiroshi I.,Advanced Biotreatment ofwastewater.日本环境技术,2001,14-17.
    [42]魏文圆,张志刚.活性炭在染整废水脱色中的应用.工业水处理,1996,16(2):3-5.
    [43]胡静,张林生.生物活性炭技术在欧洲水处理中的应用研究与发展.环境技术,2002,2:33-37.
    [44]刘辉.生物活性炭处理微污染废水的机理探讨.污染与防治,1999,26-28.
    [45]汪新建.前夕给水深度处理技术-生物活性炭工艺,污染与防治,1996,10-12.
    [46]廖志民等.生物活性炭机理的实验研究及认证探讨.环境科学,1986,10(1):2-7.
    [47]耿士所.接触氧化—生物炭流化床在毛纺染整废水深度处理中的应用[J].环境与开发,1997,12(4):28-30.
    [48]肖玉南.加压曝气增氧生物炭滤池深度处理染整废水的特性研究[D].上海:东华大学,2005.
    [49]田晴,陈季华,奚旦立,张华.富氧生物炭法深度处理染整碱减量废水的研究.给水排水.2004,30(4):46-49.
    [50]Saito T.,et.al.Mechanism of anaerobic biological activated carbon process examined by using stable isotope.Water Science Technology,1996,34(5-6):429-435.
    [51]Walker G.M.,Weatherley L.R.Biological Activated Carbon Treatment of industrial wastewater in Stirred Tank Reactors.Chemical Engineering Joural,1999,75:201-206.
    [52]陈季华,姜佩华,刘振鸿.纺织工业废水深度处理及回用-生物炭动力学探讨.中国纺织大学学报,1994,20(1):10-16.
    [53]吴为中,王占生.水库水源水生物陶滤滤池预处理中试研究.环境科学研究,1999,12(1):10-14.
    [54]江萍,胡九成.国产轻质球型陶粒用于暴气生物滤池的研究.环境科学学报,2002,22(4):461-464.
    [55]贾建军等.生物陶粒滤池-纤维球过滤工艺用于回用水试验研究.山东科技大学学报,2002,21(1):111-128.
    [56]刘文君等.生产性生物陶粒滤池对微污源污水中氨氮的去除效果研究.给水排水,1995,10(1):8-10.
    [57]齐兵强,王占生,崔玉川.生物陶粒膨胀床处理微污染原水的试验研究.中国给水排水,2000,16(11):55-56.
    [58]黄晓平等.生物陶粒处理深圳水库水的试验研究.中国给水排水,2002,15(3):20-27.
    [59]李永和,王占生.生物陶粒反应器水源水处理工艺研究.青岛建筑工程学院学报,1994,15(4):24-29.
    [60]夏回清,高处耀,周增炎.受污染饮用水水源生物预处理技术.水污染防治,2000,285-287.
    [61]Pujol P.,Lemmel H.,Goudsilles M..A key point of nitrification in an upflow biofiltration reactor Water Science and Technology,1998,38(3):43-49.
    [62]Wijeyekoon S.,Mino T.,Satoh H.Fixed bed biological aerated filtration for secondary effuent polishing-effect of filtration rate on nitrifying biological activity distribution.Water Science and Technology,2000,41(1):187-195.
    [63]Seguret F.,Racault Y.Hydrodynamic behavior of a full-scale submerged biofilter and its possible influence on performances.Water Science and Technology,1998,38(8-9):249-256.
    [64]张杰,曹开朗.城市污水处理与资源可持续利用.中国给水排水,2001,17(3):20-21.
    [65]Ismail Serageldin.Water Resources Management.1995,20(1):15-21.
    [66]张杰等.曝气生物滤池的研究进展.中国给水排水,2002,18(8):26-28.
    [67]徐丽华,李亚新.一种好氧生物处理有机废水的新工艺设备-生物曝气滤池.给水排水,1999,25(11):1-4.
    [68]徐亚明,蒋彬.曝气生物滤池的原理及工艺.工业水处理,2002,22(6):1-5.
    [69]李汝琪,钱易.曝气生物滤池去除污染物的机理研究.环境科学,1999,20(6):49-52.
    [70]陈真贤,张朝升等.曝气生物滤池的研究进展.广东化工,2007,34(6):89-92.
    [71]徐丽华,李亚新.一种好氧生物处理有机废水的新工艺设备-生物曝气滤池.给水排水,1999,25(11):1-4.
    [72]鞠保轩,于青等.曝气生物滤池工艺在水处理中的应用艺.青岛建筑工程学院学报,2005,26(4):52-57.
    [73]刘艳娟,艾智,沈丽.曝气生物滤池处理有机废水试验研究.唐山学院学报,2007,20(2):47-48.
    [74]Panicl U.,et al.Biological filtration for Bom and particle remoal:a critical review.Filtration,1997,83-87.
    [75]Zhao X,Wang Y M,Ye Z F,et al.Oil field wastewater treatment in biological aerated filter by immobilized microorganisms.Process Biochemistry,2006,37:1-9.
    [76]李汝琪.污水处理新技术-BAF_S~R 曝气生物滤池.中国环境产业,1999,12:38-39.
    [77]谢曙光,张晓建,王占生.生物滤池系统内生化作用机理综合研究.环境科学学报,2002,22(5):557-561
    [78]邱立平,杜茂安,冯琪.二段曝气生物滤池处理生活污水的试验研究.环境工程,2001,19(2):22-24.
    [79]Woo Hang Kim,et al.Competitive removal of dissolved organic carbon by adsorption and bio-degradation on biological activated carbon.Water science and technology.1997,35(7):147-153.
    [80]聂军,王珊珊.第二代生物膜反应池 Biofor.给水排水,1998,24(10):26-27.
    [81]张忠波等.新型曝气生物滤池—Biostyr.给水排水,2000,26(6):15-18.
    [82]齐兵强,王占生.生物过滤氧化反应器处理生活污水中试研究.给水排水,2001,27(3):42-45
    [83]邹伟国,孙群等.新型 BioSMEDI 滤池开发研究.中国给水排水,2001,17(1):1-4
    [84]Tschui M,Boller M,Gujer W.,et al.Tertiary nitrification in aerated pilot biofilters.Water Science and Technology,1994,29(10-11):53-60
    [85]Chen J J,Muarty D,Slack D,et al.Full scale case studies of a simplified aerated filter(BAF) for organics and nitrogen removal.Water Science and Technology,2000,41(4-5):1-4
    [86]乔铁军,于鑫,张晓健.生物活性滤池中微生物的生长研究.重庆环境科学,2003,25(4):26-28.
    [87]Chen J J,Muarty D,Slack D,et al.Full scale case studies of a simplified aerated filter(BAF) for organics and nitrogen removal.Water Science and Technology,2000,41(4-5):1-4
    [88]Concalves R.F,DeAraujo V.L.,Bof V.S,Combining Upflow Anaerobic Sludge Blanket(UASB) Reactors Treatment.Wat.Sci.&Tech.1998,40(8):71-79.
    [89]黄晓东等.生物活性滤池的强化过滤研究.中国给水排水,2001,17(8):10-13.
    [1]徐亚明,蒋彬.曝气生物滤池的原理及工艺.工业水处理,2002,22(6):1-5.
    [2]谢曙光,张晓健,王占生.曝气生物滤池最新发展和运用.水处理技术,2004,30(1):4-7
    [3]张杰,曹相生,孟雪征.曝气生物滤池的研究进展.中国给水排水,2002,18(8):26-28.
    [4]Schmidt P.D.,Tobiason J.E.,Edzwald J.K.,et al.DAF treatment of a reservoir water supply:comparison with in-line direct filtration and control of organic matter.Water Science and Technology,1995,31(3-4):103-111.
    [5]Stevenson D.G...Flow and filtration through granular media-the effect of grain and particle size dispersion.Water Research,1997,31(2):310-322.
    [6]Tiller F.M.,Hsyung N.B..Theory of filtration of ceramics:Ⅱ,slip casting on radial surfaces.Journal of American Ceramic Society,1991,74(1):210-218.
    [7]Rebecca M.,Joanne Q.,Stepheson T...The effects of media size on the performance of biological aerated filters.Water Research,2004,33(4):2514-252
    [8]阮如新.滤料粒度对过滤的影响.给水排水,1997,23(11):15-17.
    [9]江萍,胡九成.国产轻质球型陶粒用于曝气生物滤池的研究.环境科学学报,2002,22(4):459-463.
    [10]Ginn T.M.,Amirtharajah A.,and Karr P.R..Effects of particle detachment in granular-media filtration.Journal AWWA,1992,66-75.
    [11]Qi S.Y...Expression for critical suspended particle size in granular media filtration processes.Water Research,1998,32(9):2856-2859.
    [12]刘辉.生物活性炭处理微污染废水的机理探讨.污染与防治,1999,26-28.
    [13]秦永生,孙长虹,武江津.生物活性炭工艺用于废水深度处理的设计.中国给水排水,2003,19(9):88-91.
    [14]魏文圃,张志刚.活性炭在染整废水脱色中的应用.工业水处理,2004,16(2):3-5.
    [15]Kim W.H.,Nishijima W.,Shoto E.,et al.Competitive removal of dissolved organic carbon by adsorption and biodegradation on biological activated carbon.Water Science and Technology,1997,35(7):147-153.
    [16]Walker G.M.,Weatherley L.R.Backterial regeneration in biological activated carbon systems.Trans IChemE,part B,1998,76:177-182.
    [17]Ghosh U.,Weber A.S.,Jensen J.N.,et al.Granular activated carbon and biological activated carbon treatment of dissolved and sorbed polychlorinated biphenyls.Water Environment Research,1999,71(2):232-239.
    [18]田晴,陈季华.富氧生物活性炭、生物陶粒法预处理微污染源水的初步比较研究.环境工程,2000,68-71.
    [19]李永秋,王占生.生物陶粒反应器水源水处理工艺的研究.青岛建筑工程学院学报,1994,15(4):14-29.
    [20]周春生,李永秋,王占生等.陶粒柱反应器生物膜特性的研究.中国环境科学,1995,15(5):351-355.
    [21]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究.环境科学研究,1999,12(1):19-23.
    [22]潘登,刘军,王斌,汪苹.废水处理中的非传统途径.城市环境与城市生态,2003,16(6):18-20.
    [23]赵颖,杨凤林,张兴文.新型填料在曝气生物滤池中的应用研究进展.工程建设与设计,2004,12:36-37.
    [24]Dussert,B.W.The Biological Activated Carbon Process for water Purification.Wat.Eng.Manage.1994,141(12):22 -24.PA95-4417.
    [25]Daiel Urfer,Petet M Huch.Biological Filtration for Bom and Particle Removal:Article review.J.AWWA,1997,89(12):83-98.
    [26]Vander Hoek et al.The use of Vaccuum Deaeration in Biological Nitrate Removal Process,AQUA,1994,43(2):PA9S-226.
    [27]张朝生,宋金璞,李德强.大梯度磁滤处理微污染水麓湖水的研究.中国给水排水.2000,16(8):59-60.
    [28]田文华,文湘华,崔燕平等.滤料粒径对曝气生物滤池硝化性能的影响.中国给水排水,2003,19(5):48-50.
    [29]水和废水监测分析方法(第三版).北京:中国环境科学出版社,1989,134-168.
    [30]陈洪斌.受污染源水的生物接触氧化预处理研究.同济大学博士论文,1999,58-98.
    [31]王冠平,谢曙光,施汉昌,等.预处理生物滤池挂膜的影响因素.中国给水排水[J].2003,13(19):41-43.
    [32]梅翔等.微污染水源水生物接触氧化处理工艺的启动与运行工况的调节.给水排水,1999,25(4):8-11.
    [33]梅翔,高廷耀.水源水生物处理系统启动与再启动过程的硝化性能.重庆环境科学,2000,22(5):34-37.
    [34]Theodore G.Cleveland,Frank M.Tiller,Jae-Bok Lee.Theory of filtration of highly compactable biosolids.Water Science and Technology,1999,34(3-4):299-306.
    [35]陆少鸣,方平,杜敬,刘姣.曝气生物滤池挂膜的中试实验.水处理技术.2006,32(8):67-70.
    [36]俞辉群,全浩.水环境净化及污水处理微生物学.北京:中国建筑工业出版社,1989.
    [37]俞毓馨等.环境工程微生物检测手册.北京:环境科学出版社,1990,15-40.
    [38]Satoshi O.,et al.Significance of the Spatial Distribution of Microbial Species in Mixed-Population Biofilms.Biofouling,1997,11(2):119-136.
    [39]邱立平,马军.曝气生物滤池的生物膜及其微生物种群特征.中国环境科学,2005,25(2):214-217.
    [40]徐亚同.生物膜系统的微生物特征和运行管理.上海环境科学,1997,16(3):20-23.
    [41]Khristanovich S.A.Fundamentals of filtration theory.Rock Mechanics and Mine Pressure,2001,1-15.
    [42]张东,许建华,刘辉.微污染原水的生物接触氧化预处理研究.中国给水排水,2000,16(12):6-9.
    [43]汤利华,许建华.生物接触氧化预处理微污染原水所需气水比探讨.给水排水1995,6:9-11.
    [44]刘旭东,杨正松,张键.A/O 一体式曝气生物滤池处理生活污水.工业安全与环保.2002.28(5):14-17.
    [45]夏四清,高廷耀,周增炎.受污染饮用水水源预处理技术.上海环境科 学,2000,19(8):285-287.
    [46]刘文君.生物预处理对受有机污染物源水中 Zeta 电位影响的研究.中国给水排水,1991,7(2):17-21.
    [47]张东,许建华,刘辉.污染原水的生物接触氧化预处理研究研究.中国给水排水,2000,16(12):6-9.
    [48]孙建平,李文红,马放等.固定化微生物对饮用水净化效能的研究.中国给水排水,2000,16(2):58-60.
    [49]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工厂实例.北京:化学工业出版社,2002,52-68.
    [50]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社,2003,38-56.
    [51]刘文君等.生产性生物陶粒滤池对微污染源水中氨氮的去除效果研究.给水排水,1995,10:8-10.
    [52]王春荣,王宝贞,王琳.曝气生物滤池内的自养反硝化作用.中国环境科学,2004,24(6):746-749.
    [53]Rittman B.E,McCarty P.L.Modle of steady-state-biofilm kinetics.Biotechnology and Bioengineering,1990,22:2243-2357.
    [54]Takasaki M.,Harada M.,Sato A.Evaluation of the NH_4~+- N and DOC Removal Efficiency by Submerged Biofilm Process in Tap.Water Science and Technology,1998,38(5):207-211.
    [55]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999,152-170.
    [56]刘雨,赵庆良.生物膜反应器进出水底物浓度相关性研究.环境科学,1996,17(4):28-30.
    [57]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工厂实例.北京:化学工业出版社,2002,52-68.
    [58]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社,2003.38-56.
    [59]刘文君等.生产性生物陶粒滤池对微污染源水中氨氮的去除效果研究.给水排水, 1995,10:8-10.
    [60]王春荣,王宝贞,王琳.曝气生物滤池内的自养反硝化作用.中国环境科学,2004,24(6):746-749.
    [61]郑元景,沈光范,邬扬善.生物膜法处理污水.中国建筑工业出版社,1986:91-96.
    [62]祝廷成,钟章成,李建东.植物生态学.高等教育出版社,1988:293-295.
    [63]Sinkoff M D,Porges R,Mcdermott G H.Mean Residence Time of a Liquid in a Trickling Filter.J.San.Eng.Div.Am.Soc.Civil.Engrs.1959,85(SA6):51-60.
    [64]Mann A,Fitzpatrick C S,Stephenson T.A Comparison of Floating and Sunken Media Biological Aerated Filters Using Tracer Study Techniques.Transaction of Institution Chemical Engineers Part B.1995,73:137-143.
    [65]Mann A T,Stephenson T.Modelling Biological Aerated Filter for Wastewater Treatment.Water Research,1997.31(10):2443-2448.
    [1]郑领英,袁权.展望21世纪的膜分离技术.水处理技术.1995.21(3):125-131.
    [2]乔森,张捍民,张兴文等.动态膜技术的研究进展.中国给水排水,2003,19(12):29-31.
    [3]Liu L N,Xu Z Z.Dynamically formed poly(vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristic.J Membr Sci.2000,169(1):17-28.
    [4]Knyazhokova T V,Kavitskaya A A.Improved performance of reverse osmosis with dynamic layers onto membrane in separation of concemtrated salt solution.Desalination.2000,131(1-3):129-136.
    [5]Kiso Y,Jung Y,et al.Wastewater treatment performance of a filtration bioreactor equipped with a mesh as a filter material.Water Res,2000,34(17):4143-4150.
    [6]Noor M J,Ahmadum F R,et al.Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater.Desalination,2002,147(1-3):263-268.
    [7]Li X Z,Hess H Influence of operating parameters on precoat layers built up under crossflow condition.Sep Pur Technol,2003,31(3):269-280.
    [8]熊丽,濮文虹,杨昌柱.动态膜生物反应器处理生活污水的特性.化学也生物工程,2005,(1):31-33.
    [9]高松,周增,高廷耀.自生动态膜在污泥截留中的应用研究.净水技术,2005,24(1):14-17.
    [10]Marcinkowsky A E.Hyperfiltration studies(Ⅳ) salt rejection by dynamically formed hydrous oxide membrane.Journal of chemical Social.1966,88:5744.
    [11]Spencer G.,Thomas R.Fouling,cleaning,rejuvenationof formed-in -place membrane.Food technology,1991,45:98-99.
    [12]许莉.陶瓷膜的应用及动态过滤性能研究.液体机械,1996,24(2):11-14.
    [13]Xu X T,Gaddis J L,Sencer H G.Dynamic formation of a self-formed membrane by Nan filtration of a high-formula-weight dye.Desalination.2002,129:237-245.
    [14]Altman M,Semiat R,Hasson D.Removal of organic foulants from feed waters by dynamic membranes.Desalination,1999,125:65-75.
    [15]Tannny G B,Dynamic membranes in ultrafiltration and reverse osmosis.Journal Separation& Purification Methothod,1978,7:183-220.
    [16]王锦,王晓昌.超滤动态膜的类型及其数学模型.西安建筑科技大学学报,2001,33(2):236-240.
    [17]Kishihara S,Tamaki H.Clarification of sugar solution through a dynamic membrane formed on a porous ceramic membrane tube,Journal membrane science.1984,41:103-114.
    [18]Ohtani T,Watanabe A.Rejection properties of dynamic membrane of ultrafiltration,1987,27:295-305.
    [19]Jiraratananaon R,Uttapap D,Tangamornsuksun C.Self-forming dynamic membrane for ultrafiltration of pineapple juice.Journal membrane Science,1997,129:135-143.
    [20]武小鹰,郑平,徐红亮.动态膜技术及其在环境工程中的应用.膜科学与技术,2003,23(3):49-53.
    [21]Megat johari Mdgat Mohd Noor,Fakhrul R A,Thamer Ahmad Mohamed,Suleyman Aremu Muyibi.Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater.Desalination,2002,147:263-268.
    [22]Elkebir A A.Application crossflow filtration for biomass retention in aeration tanks,PHD.Thesis,University of Newcaster upon Tyne,UK,1991.
    [23]Holdich R G.,Zhang G M,Boston J.Microfiltration using a dynamically formed membrane.Filtration Seprarion,1990,28:192-218.
    [24]Galjaard G.,Buijs P.Pre-coated(EPCE) UF membrane for direct treatmentof surface water.Desalination,2001,139:305-316.
    [25]Marc A,Raphasel S,David H,Removal of organic foulants from feed waters by dynamic membranes.Desalination,1999,125:65-75.
    [26]Al-Malack M H,Anderson G.K.Use of MnO_2 as a dynamic membrane with crossflow microfiltration:slow membrane technique.Desalination,1997,109:15-24.
    [27]Al-Malack M H,Anderson G K.Coagulation-crossflow microfiltration of domestic wastewater.Journal Membrane Science,1996,121:59-70.
    [28]Al-Malack M H,Anderson G K,Almasi A.Treatment of anoxic pond effluent using crossflow microfiltration.Water Research,1998,32:11-14.
    [29]Al-Malack M H,Anderson G K.Crossflow mcrofiltration with dynamic membranes.Wat.Res.,1997,31(8):1969-1979.
    [30]Al-Malack M H,Anderson G K.Cleaning techniques of dynamic membranes Separation & Purification Technology,1997,12:25-33.
    [31]徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京,化学工业出版社,2003:101-102.
    [32]Czekaj P,Lopez F,Guell C.Membrane fouling during microfiltration of Femented Beverageds.J.Membr.Sci,2000,16(2):199-212.
    [33]Chang D J,Huang S J.Unsteady-state permeates flux of cross flow microfiltration.Sep.Sci.Technol,1994,29(12):1593-1608.
    [34]Elmalch S,Vera L.Dimensional analysis of steady state flux for microfiltration and ultrafiltration membranes.J.Membr.Sci.1998,139:37-45.
    [35]Elkebir A.A.,Application of crossflow filtration for biomass retention in aeration tanks,PH.D.Thesis,University of Newcastle Upon Tyne,UK,1991
    [36]卓琳芸,李俊,陈季华,李方.高岭土动态膜的制备.膜科学与技术.2006,26(3):37-40.
    [37]吴俊印钞废水处理方法的实验研究,硕士学位论文,南京化工大学,2001.
    [38]Nazim Cicek,Long term performance and characterization of a membrane bioreactor in the treatment of wastewater containing high molecular weight compounds,PHD thesis,University of Cincinnati,US,1998.
    [39]Al-Malack M.H,Bukhari A.A,Abuzaid N.S.Crossflow microfiltration of electrocoagulated kaolin suspension fouling mechanism.Journal of Membrane Sceince,2004,243:143-153.
    [40]卓琳芸.动态膜及其分体式膜生物反应器中应用研究.硕士学位论文.东华大学.2005.
    [41]吴秋林,吴邦明.微孔膜结构与抗堵性能研究.膜科学与技术,1993,13(4):48-53.
    [42]李方.预涂动态膜在错流过滤中的机理研究及其在膜生物反应器中应用.博士 学位论文.东华大学.2006.
    [1]Xi D L,Chen J H.Sub-filter treatment method and equipment of contaminative liquid.CN 1308024A,2000(in Chinese).
    [2]郑俊,吴浩汀.曝气生物滤池工艺理论与工程应用[M].北京:化学工业出版社,2005.
    [3]许保玖,安鼎年.给水处理理论与设计.中国建筑工业出版社,1992:304-305.
    [4]程伟.给水厂净水工艺的发展及工艺比较.沿海企业与科技,2005;67(9):62-63.
    [5]狄平宽,单忠健.无机电解质和有机高分子絮凝剂对高岭土表面的 Zeta 电位的影响.水处理技术,1991,17:394-398.
    [6]Al-Malack M H,Anderson G K.Coagulation-crossflow microfiltration of domestic wastewater.J.Membr.Sci.,1996,121:59-70.
    [7]Al-Malack M H,Anderson G K,Almasi A.Treatment of anoxic pond effluent using crossflow microfiltration.Water Res.,1998,32(6):3738-3746.
    [8]冯家乐,陈季华,奚旦立.染整回用水水质对织物染色质量的影响.印染.2007,33(21):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700