用户名: 密码: 验证码:
黄土类土对铬、砷的净化机理及地下水防污安全埋深的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是黄土地区重要的水资源。在人类农事活动和水事活动日益增强的情况下,如何利用包括土壤层在内的黄土地层自身的净水作用,保护地下水不受污染,具有重大的理论和实际价值,这是本论文的立项依据。作者在论文中依次研究了如下问题,并得出了相应的结论:
     (1)通过论证黄土的物理化学性质与结构特性,得出利用广布而深厚的黄土地层净化污水,以保证地下水的供给安全,这在黄土地区是可行的,并具有重大意义。
     (2)分析了由于农事和水事活动所发生的土层入渗水中的污染元素,确定了毒性强、数量大、易迁移的铬、砷作为主要研究对象,研究其在黄土类土中的行为作用有代表性意义。
     (3)开展试验从静态角度揭示土壤对铬、砷的净化机制、净化能力及影响因素。结果表明:
     ①黄土类土中Cr(Ⅲ)被净化主要是Cr(Ⅲ)形成Cr(OH)_3的沉淀作用;
     ②黄土类土对Cr(Ⅵ)和As(Ⅴ)的吸附主要为专性吸附,Cr(Ⅵ)被吸附的形态是HCrO_4~-;
     ③根据测得的土壤吸附量利用朗格谬方程计算出整个黄土土层对Cr(Ⅵ)的平均最大吸附量为162μg/g,As(Ⅴ)为552μg/g;
     ④黄土中Cr(Ⅵ)被净化,是吸附作用和还原作用的综合表现。对As(Ⅴ)的净化机制不只限于吸附作用,还包括沉淀等其他理化作用;
     ⑤影响黄土对Cr(Ⅵ)、As(Ⅴ)起净化作用的主要因素有pH、有机质、铁、铝、钙化合物、土壤粘粒含量等。
     (4)通过土柱淋滤试验,从动态角度研究得出铬、砷在黄土中具有以下迁移规律及特点:
     ①Cr(Ⅵ)、As(Ⅴ)在黄土中的吸附和迁移与土壤中的粘粒含量有关。迁移速度顺序为Cr(Ⅵ)>As(Ⅴ)。黄土对As(Ⅴ)的净化能力比净化Cr(Ⅵ)强;
     ②Cr(Ⅵ)在黄土中的迁移形式为CrO_4~(2-),As(Ⅴ)的迁移形式为HAsO_4~(2-);
     ③当一定深度的土壤层达到吸附饱和状态时,如果持续增加污水淋入量时,则吸附饱和状态的界限就会向深部移动,淋出液中的Cr(Ⅵ)、As(Ⅴ)亦会随水向深部转移;
     ④当污水入渗液中铬、砷浓度小于10.0mg/L时,黄土5m深度可作为Cr(Ⅵ)的净化深度,1.5m深度可作为As(Ⅴ)的净化深度。
     (5)研究了Cr(Ⅵ)和As(Ⅴ)与营养元素钙、镁、磷及它们相互之间的交互作用。初步发现钙、镁对黄土吸附Cr(Ⅵ)有减小作用,对吸附As(Ⅴ)有增大作用;Cr(Ⅵ)和As(Ⅴ)同时存在时,似乎在黄土中的吸附量有相互促进趋势。
     (6)在全面阐述土壤环境容量模型的基础上,用土柱淋滤试验方法研究首次得出了黄土类土中铬、砷的土壤环境容量分别为95.9kg/ha和12.6kg/ha。
     (7)在陕西关中交口灌区进行了相关的野外试验研究,进而选用不同模型耦合计
    
    算得出当灌溉水中铬、砷浓度不超过10.0m目1时,黄土地下水“防污埋深”对铬不小
    于5.0m,对砷不小于1.5m。
     以上取得的研究成果,为保证黄土区水资源的可持续利用提供了理论和实践依据。
Groundwater is important water resources in loess land. With increasing of human being's activities on farming and watering, it has great theoretical and practical significance on how to utilizing purification function of loessial soil to protect groundwater from polluting, which is the basis of building item of this paper. On the basis of these, the author studies the following problems and draws corresponding conclusions:
    (1) By demonstrating physichemical and structural character of loessial soil, the results are obtained that it is having great meaning to utilize widely distributive and profound loessial soil resources to purify sewage for protecting groundwater supplying security.
    (2) The contaminative elements are analyzed that is penetrated in soil by human being's activities on farming and watering, and Cr and As are decided as the primary researching objects which have great toxicity, quantities and easy migration. There is representative meaning to researching the action of Cr and As in loessial soil.
    (3) By experiments the paper reveals purification mechanism and ability and its influencing factors of soil to Cr and As. The results indicate:
    1) The main action to purifying Cr(III) in the loessial soil is that Cr(III) changes into Cr(OH)s. 2) The main absorption to Cr(VI) and As(V) is special absorption. The absorption form of Cr(VI) is HCrO4-. 3) Calculated by Langmuir equation the average absorption quantity of loessial soil layer to Cr(VI) is 162ug/g and to As(V) is 552ug/g. 4) Cr(VI) in loess purified is synthetical effects of adsorption and reduction. The purification mechanism to As( V) is not only absorption , and also includes other physical and chemical actions. 5) The main factors influencing loessial soil purification to Cr(VI) and As(V) are pH, organic matter, calcium, iron, aluminous compounds and contents of mucilaginous grain etc.
    (4) By the infiltration test of soil column, the author concludes that Cr and As has the following migration patterns by dynamic researches.
    1) The absorption and migration of Cr(VI) and As(V) in loessial soil relate to content of mucilaginous grain. The order of migration velocity is Cr(VI) > As(V). The purification ability of loessial soil to As( V) is strongger than Cr(VI). 2) The migration form of Cr(VI) in loessial soil is CrO42-, and that of As(V) is HAsO42-. 3) With a certain deepness when layer of soil reaches saturated absorption, the limit of saturated absorption will move to deeper place, with which Cr(VI) and As(V) will move to deeper place too, if infiltration quantity of sewage is continually increasing. 4) When concentration of Cr and As is less than 10.0mg/L
    
    
    in sewage infiltration fluid, the purification depths of Cr(VI) is 5m, and that of As(V) is 1.5m in loessial soil.
    (5) The paper discusses interaction of Cr(VI) and As(V) with nutritional element: Ca, Mg, P and finds that Ca and Mg have decrease absorption of loessial soil to Cr(VI) and have increase to As(V).Between Cr and As have possibly promotion to absorption amounts in loessial soil.
    (6) Utilizing infiltration experiment of soil column, the results show that environmental capacity of Cr and As in loessial soil is 95.9kg/ha and 12.6kg/ha.
    (7) Exampled by Jiaokou irrigation district in Shaanxi, the author forecasts the influence of irrigation to Cr and As of groundwater by investigating and monitoring irrigation water resource, groundwater and soil. The paper concludes that the safety buried depths of preventing groundwater from being polluted by Cr and As in irrigation district are not less than 5.0m and 1.5m on condition that concentrations of Cr and As in irrigation water are less than 10.0mg/L.
引文
[1] 李佩成.论干旱半干旱地区水资源可持续供给原则及节水型社会的建立[J].干旱地区农业研究,1997,5(2):1-7.
    [2] 李佩成,等.黄土台塬的治理与开发[M].西安:陕西人民出版社,1993.
    [3] 李佩成.论黄土原灌区的节水与养水[J].灌溉排水,2000,(1):12-15.
    [4] Vinogradov A P. The geochemistry of rare and dispersed chemical elements in soil [M].London, 1954.
    [5] Bowen H J M. Trace elements in biochemistry [M]. London, 1966.
    [6] Mitchell R L. Trace elements in soil[M]. London, 1964.
    [7] 若月利之,松伟嘉朗,久马一刚.肥料中重金属元素背景值[J].日本土壤肥料学杂志,1978,49(6):507-512.
    [8] Mills J G and Zwafichcan M A. Background values of heavy elements in some soils[J]. J. Soil Sci., 1975, 55: 295-300.
    [9] Frank R, Ishida K, Suda P. Background values of chemical elements in soil and plant [J]. Can. J. Sci., 1976, 56: 181-196.
    [10] 康纳,等.美国大陆某些岩石、土壤、植物及蔬菜的地球化学背景值[M].北京:科学出版社,1980.
    [11] 中国科学院土壤背景值协作组.背景值研究[J].土壤学报,1979,16(4):319-328.
    [12] 汪雅各.上海地区土壤背景值研究[J].环境科学学报,1982,2(1):56-71.
    [13] 全国背景值研究协作组.我国十三省市主要农业土壤及粮食作物中有害元素环境背景值研究初报[研究报告].1982.
    [14] 薛澄泽,等.陕西省主要农业土壤中十种元素背景值研究[研究报告].西北农业大学,1985.
    [15] 李勋光,顾宗濂,李小平,等.几种类型土壤中砷环境基准的比较研究[J].土壤学报,1995,32(3):341-347.
    [16] 魏复盛,等.中国土壤环境背景值研究[J].环境科学,1991,12(4):36-51.
    [17] 蔡士悦,等.我国砖红壤、赤红壤、红壤环境容量研究[A].国家环保局编.环境背景和环境容量研究[C].北京:科学出版社,1993.
    [18] 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [19] 翁焕新,等.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报,2000,34(1):88-92.
    [20] 夏增禄.中国主要类型土壤重金属临界含量和环境容量区域分异的影响[J].土壤学报,1994,31(2):161-169.
    [21] 田均良,李雅琦,陈代中.中国黄土元素背景值分异规律研究[J].环境科学学报,1991,11(3):253-262.
    [22] 李天杰.土壤环境学[M].北京:高等教育出版社,1996.
    [23] 李佩成,等.陕西交口抽渭灌区水源污染对灌溉影响及治理对策[研究报告].长安大学,2000.
    [24] 李佩成.论三态平衡[J].西北农业大学学报,1998,26(4):84-88.
    [25] 李佩成.试论人类水事活动的新思维[J].灌溉排水,2000,2(2):5-9.
    [26] 周维博,李佩成.我国农田灌溉的水环境问题[J].水科学进展,2001,12(3):413-417.
    [27] 易秀.农业工程与农业可持续发展[J].陕西农业科学,2000,(5):31-33.
    [28] 易秀.干旱半干旱地区地下水问题[J].干旱区研究,2001,(3):34-39.
    [29] 易秀.农事活动对水资源的非点源污染问题[J].西安工程学院学报,2001,23(2):63-68.
    [30] 郑春荣,陈怀满.重金属的土壤负载容量[J].土壤学进展,1995,(12):53-58.
    [31] 张乃明.太原污灌区土壤重金属污染[J].农业环境保护,1996,15(1):15-19.
    
    
    [32] 李应学,何宗兰,霍文瑞,等.农田施用污泥中砷的控制标准研究[J].农业环境保护,1984,3(4):1-6.
    [33] 土壤环境容量研究组.土壤环境容量研究[J].环境科学,1986,7(5):34-44.
    [34] 王世耆,诸叶平,蔡士悦.土壤环境容量模型[J].环境科学学报,1993,13(1):51-58.
    [35] 李应学,等.天津市农用污泥和土壤中有害物质安全控制标准的研究[J].农业环境保护,1988,7(1):11-18.
    [36] 熊先哲,张学询,李辉军,等.土壤砷环境容量及其数学模型研究[J].环境科学,1987,8(1):8-14.
    [37] 青长乐,牟树森,蒲富永,等.论土壤重金属毒性临界值[J].农业环境保护,1992,11(2):51-56.
    [38] 涂从,苗金燕.土壤砷毒性临界值的初步研究[J].农业环境保护,1992,11(2):80-83.
    [39] 周启星,熊先哲.土壤环境容量及其应用[J].浙江农业大学学报,1995,21(5):539-545.
    [40] 张乃明.土壤-植物系统重金属污染研究现状与展望[J].环境科学进展,1999,7(4):130-133.
    [41] 张秀梅,唐以剑,章申.白洋淀地区土壤-植物系统中污染物含量与变化规律研究[J].地理科学进展,1997,16(2):62-69.
    [42] 杨崇洁.几种重金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1989,10(3):16-19.
    [43] 熊礼明.土壤溶液中镉的化学形态及化学平衡研究[J].环境科学学报,1993,13(2):150-156.
    [44] 白瑛.汞在土壤-作物系统中残留与吸收[J].中国环境科学,1988,8(6):418-423.
    [45] 王鹏新.土壤和植物中的镍及其相互作用[J].农业环境保护,1993,12(5):213-216.
    [46] 张学询,等.张士灌区镉、铅等重金属迁移、分布规律及治理途径[J].环境科学,1982,3(6):16-21.
    [47] 许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.
    [48] 许嘉林,杨居荣.污水灌区农田重金属污染特征与地理条件的关系——以北京地区为例[J].中国环境科学,1982,2(4):31-35.
    [49] 吴景社,等.我国21世纪农业用水危机与节水农业[J].农业工程学报,1998,14(3):27-31.
    [50] 吴启堂.土壤中重金属污染与作物生长关系研究[J].华南农业大学学报,1992,13(3):121-123.
    [51] 蒋以超.土壤化学的物理化学[M].北京:中国科学技术出版社,1993.
    [52] Kinniburgh D G. General purpose adsorption isotherms [J]. Environ. Sci., 1986, 20: 985-904.
    [53] Amacher M C, et al. Retention and release of metals by soil evaluation of several models [J]. Geoderma, 1986, 38: 131-154.
    [54] 温志良,莫大伦.土壤污染研究现状与趋势[J].重庆环境科学,2000,22(3):55-57.
    [55] 张光辉.毒性金属镉在包气带中的行为特征及其控制作用.西安地质学院博士学位论文,1995.
    [56] 王新,吴燕玉.不同作物对重金属复合污染物吸持特性的研究[J].农业环境保护,1998,17(5):205-209.
    [57] Presicani D. Analysis of leaching behavior of sludge applied metals in two fields soils [J]. Water, Air and Soil Pollution, 1995, 83(1): 1-20.
    [58] Asami T, Kubota M and Orikasa K. Distribution of different fraction Cadmium, Zinc, Lead and Copper in unpolluted and polluted [J]. Water, Air and Soil Pollution, 1995, 83(3): 187-194.
    [59] Yasuda H, et al. Sorption of Manganese, Cobalt, Zinc, Strontium, and Cesium onto agricultural soils: statistical analysis on effects of soil properties [J]. Water, Air and Soil Pollution, 1995, 83(1): 85-96.
    [60] Palm V. A model for sorption,, flux and plant uptake of Cadmium in a soil profile: Model structure and sensitivity analysis[J]. Water, Air and Soil Pollution, 1994, 77(1/2): 169-190.
    [61] Peryea F J, Creger T L. Vertical distribution of Lead and Arsenic in soils contaminated with Lead Arsenate pesticide residues [J]. Water, Air and Soil Pollution, 1994, 78(3/4): 297-306.
    
    
    [62] Wilson S C. Screening the environmental fate of organic contaminants in sewage sludge applied to agricultural soils: Ⅰ: The potential for downward movement to groundwater [J]. Sci. Total Environ., 1996, 185(1/3): 45-57.
    [63] Jardine P M. The fate and movement of Chromium in undisturbed soil[J]. Sci. and Technol., 1999, 33(1): 2939-2944.
    [64] Vrba J,Romijn E.农事活动对地下水的影响[M].北京:地质出版社,1991.
    [65] Guardo A D. A fugacity model of pesticide runoff to surface water: Development and validation [J]. Chemosphere, 1994, 28: 511-531.
    [66] Grover R, Lessna A J. Environment chemistry of herbicides [M]. Boca Raton, Florida: CRC Press, 1991.
    [67] Carsel R F. The pesticide root zone model(PRZM): a procedure for evaluating pesticide leaching threats to groundwater[J]. Ecological modeling, 1985, 30: 49-69.
    [68] Canter L W, Knox R C. Groundwater pollution control[M]. Boca Raton, Florida: Lewis Publishers Inc, 1985.
    [69] 成徐洲,等.土壤渗滤处理技术研究现状与进展[J].环境科学研究,1999,12(4):33-36.
    [70] 周建平,曹风珍.COD在包气带地层中自净能力的试验研究[A].蒋才俊.环境水文地质问题研究论文集[C].北京:中国科技出版社,1997,88-94.
    [71] 曾伟,郁伟杰.酚、氰废水在土柱淋滤试验中的变化规律研究[A].蒋才俊.环境水文地质问题研究论文集[C].北京:中国科技出版社,1997,95-99.
    [72] 阎先良.污染物质在包气带中运移规律的试验研究[J].环境科学,1993,14(5):32-38.
    [73] 尹喜霖,曹继亮.酚在包气带中运移规律的试验[J].水文地质工程地质,1992,19(3):53-54.
    [74] 刘兆昌,张兰生,吕贤弼,等.华北地区污灌(土地处理)系统对地下水污染的数学模拟[J].中国环境科学,1989,9(6):408-414.
    [75] 刘兆昌,等.水环境数学模型[M].北京:中国建筑工业出版社,1987.
    [76] 吴敦敖,鲁文毓.铬在土壤-地下水系统中的污染研究[J].环境科学学报,1991,11(3):276-283.
    [77] 张学询.天津污灌区土壤作物重金属污染状况的研究[J].中国环境科学,1988,8(2):135-139.
    [78] 叶常明.多介质环境污染研究[M].北京:科学出版社,1997.
    [79] 杨国栋,孙立宏.我国农业环境保护研究的现状与展望[J].农业环境保护,2001,20(1):62-64.
    [80] 戴树桂,等.土壤多介质环境污染研究进展[J].土壤与环境,2001,10(1):1-5.
    [81] 徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社,1998.
    [82] 付克文.农业环境的化学污染[M].北京:农业出版社,1985.
    [83] Mcgroddy S E. Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls [J]. Environ. Sci. Technol., 1996, 30: 172-177.
    [84] Pavlostathis S G, Jaglal K. Desorptive behavior of trichloroethylene in contaminated soil [J]. Environ. Sci. Technol., 1991, 25: 274-279.
    [85] Weber W J, Miller C T. Modeling the sorption of hydrophobic contamintants by aquifer materials: Ⅰ: rates and equilibria [J]. Water Res., 1988, 24: 457-464.
    [86] Graber E R, Borisover M D. Hydration-facilitated sorption of specifically interacting organic compounds by model soil organic matter[J]. Environ. Sci. Technol., 1998, 32: 258-263.
    [87] Weber W J, Huang W. A distributed reactivity model for sorption by soils and sediments: 4. Intraparticle heterogeneity and phasedistribution relationships under nonequilibrium conditions [J]. Environ. Sci. Technol., 1996, 30: 881-888.
    [88] 熊毅,陈家坊.土壤胶体[M].北京:科学出版社,1990.
    
    
    [89] Sullivane E J. Fourier transform raman spectroscopic investigation of sorbed HDTMA and the mechanism of chromate sorption to surfactant modified clinoptilolite [J]. Environ. Sci. Technol., 1998, 32: 1948-1955.
    [90] Fang F. A spectrofluorimetfic study of the binding of carbofuran, carbaryl, and aldicarb with dissolved organic matter[J]. Anal. Chim. Acta, 1998, 373: 139-151.
    [91] Senesi N, Testini C. Spectroscopic investigation of electron donor-acceptor processes involving organic free radicals in the adsorption substituted urea herbicides by humic acids[J]. Pestic Sci., 1983, 14: 79-89.
    [92] Weissmahr K W. In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals [J]. Environ. Sci. Technol., 1997, 31: 240-247.
    [93] Xing B, Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy polyvinyl chloride and soil organic matter[J]. Environ. Sci. Technol., 1997, 31: 792-799.
    [94] Xing B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents [J]. Environ. Sci. Technol., 1996, 30: 2432-2440.
    [95] Kan A T. Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions [J]. Environ. Sci. Technol., 1998, 32: 892-902.
    [96] 莫汉宏.农药在土壤中的淋溶行为[J].环境化学,1997,16:321-326.
    [97] Dejonckheere W. Leaching of aldicarb and thiofanox, and their uptake in soil by sugarbeet plants [J]. Pestic Sci., 1983, 14: 99-107.
    [98] Bellini G et al. Anion transport through columns of highly weathered acid soil: adsorption and retardation [J]. Soil Sci. Soc. Am. J., 1996, 60: 132-137.
    [99] Gupte S M et al. Anion transport in a Piedmond ultisol: local-scale parameters [J]. Soil Sci. Soc. Am. J., 1996, 60: 762-770.
    [100] Southwick L M et al. Leaching of nitrate, atrazine and metribuzin from sugarcane in southern Louisiana[J]. J. Environ. Qual., 1995, 24: 684-690.
    [101] 刘培桐主编.环境学概论[M].北京:高等教育出版社,1995.
    [102] 戴树桂.环境化学[M].北京:高等教育出版社,1997.
    [1] 李佩成,等.黄土原灌区三水转化机理及调控研究[M].西安:陕西科学技术出版社,1999.
    [2] 谢宇平.第四纪地质学及地貌学[M].北京:地质出版社,1994.
    [3] 西北水利科学研究所.西北黄土的陛质[M].西安:陕西人民出版社,1959。
    [4] 郑晏武.中国黄土的湿陷性[M].北京:地质出版社,1982.
    [5] 冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
    [6] 贺剑章,郁寿松.黄土的物理化学性质[A].黄土基本性质研究[C].北京:科学出版社,1961.
    [7] 高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1203-1208.
    [8] 陕西省地质局第二水文地质队.黄河中游区域工程地质[研究报告].西安,1982.
    [9] 彭琳.黄土地区旱作土壤资源及其合理利用[A].陕西土壤学会论文集(二)[C].西安,1983.
    [10] 孙建中.黄土地质[内部教材].西安:西安地质学院,1985.
    [11] 孙广忠.陇西黄土中修筑渠道的稳定性预报问题[A].水文地质工程地质论文集(第一辑)[C].北京:科学出版社,1962.
    [12] 刘东生,等.黄土与环境[M].北京:科学出版社,1985.
    [13] 文启忠,等.黄土剖面中氧化物的比值和相对淋溶、积聚值在地质上的意义[J].地球化学,1981b,(4):381-387.
    
    
    [14] 中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社,1978.
    [15] 朱显谟.陕西土地资源及其合理利用[M].西安:陕西科学技术出版社,1981.
    [16] 朱显谟.论原始土壤的成土过程[J].中国科学B辑,(10):919-927.
    [17] 李佩成,等.黄土台塬的治理与开发[M].西安:陕西人民出版社,1993.
    [18] 黄春长,李万田.祖国的黄土高原[M].北京:科学普及出版社,1987.
    [19] 中国科学院黄土高原综合科学考察队.黄土高原地区土地资源[M].北京:中国科学技术出版社,1991
    [1] Samuel D F et al. Chemistry of natural water[J]. Ann. Arbor Sci. Pub., 1981, 5: 376-385.
    [2] 陈英旭.铬的土壤化学[J].土壤学进展,1992,20(5):8-13.
    [3] 王德中,等.农业环境保护研究资料[A].农业环境背景专集(第一集)[C].天津,1986.
    [4] 陈清,等.微量元素与健康[M].北京:北京大学出版社,1989.
    [5] 魏复盛,陈静生.中国土壤环境背景值研究[M].环境科学,1991,12(4):36-51.
    [6] 夏增禄.北京地区铬的土壤化学地理[J].地理学报,1989,44(4):449-458.
    [7] 林年丰.医学环境地球化学[M].长春:吉林科学技术出版社,1991.
    [8] 田均良,李雅琦,陈代中.中国黄土元素背景值分异规律研究[J].环境科学学报,1991,11(3):253-262.
    [9] 邹邦基.土壤中的砷[J].土壤学进展,1986.2:8-13.
    [10] 翁焕新,张霄宇,邹乐君,等.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报,2000,34(1):88-92.
    [11] 王华东,郝春曦,王建.环境中的砷[M].北京:中国环境科学出版社,1992.
    [12] 李廷芳.北京土壤的地球化学过程与元素背景含量的关系[J].环境科学,1987,8(4):57-61.
    [13] Bishop P F, Chisholm D. Arsenic contents in fruit garden soils [J]. Can. J, Soil Sci., 1962, 42: 77-80.
    [14] 小山雄生.母岩与土壤含砷量的关系[J].日土肥志,1975,46(11):491-502.
    [15] 杨景辉.土壤污染与防治[M].北京:科学出版社,1995.
    [16] James B R, Bartlett R J. Behavior of chromium in soils : Ⅵ. Interaction between oxidation and organic complex[J]. J. Environ. Qual., 1983, 12: 173-176.
    [17] James B R, Bartlett R J. Behavior of chromium in soils : Ⅶ. Adsorption and reduction of hexavalent forms [J]. J. Environ. Qual., 1983, 12: 177-181.
    [18] Bartlett R J, Kimble J M. Behavior of chromium in soils: Ⅱ. Hexavalent forms[J]. J. Environ. Qual., 1976, 5: 383-386.
    [19] 王超,阮晓红,朱亮.水分及非保守性污染物在土壤中运移数值模拟[J].河海大学学报,1996,24(3):5-10.
    [20] 刘云惠.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [21] 王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995.
    [22] 许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素[J].土壤,1996,(2):85-89.
    [23] 严健含,詹重慈.环境土壤学[M].武昌:华中师范大学出版社,1985.
    [24] 小山雄生.砷在土壤作物中的动态[A].地理环境污染与保护译文集(第6集)[C].北京:科学技术文献出版社,1977.
    [25] 李勋官.土壤砷的化学形态及其含量[J].土壤学报,1982,19(4):11-16.
    
    
    [26] 夏立江,华珞,韦东普.部分地区蔬菜中的含砷量[J].土壤,1996,(2):105-109.
    [27] Williams S E et al. Arsenic compounds forms in soil[J]. J. Environ. Qual., 1991, 20(1): 42-47.
    [28] 李生志.砷污染与农业[M].北京:科学普及出版社,1989.
    [29] 李汉卿.环境污染与生物[M].哈尔滨:黑龙江科学技术出版社,1985.
    [30] 傅平.砷的地球化学屏障作用初探[M].重庆环境科学,1999,21(6):48-49.
    [31] 杨居荣.砷在土壤中的累积迁移特征[M].环境科学,1983,7(2):26-31.
    [32] 张光辉.毒性金属镉在包气带中的行为特征及其控制作用.西安地质学院博士学位论文,1995.
    [33] Fowler B A. Biological and environmental effects of Arsenic [M]. Amsterdam: Elsevier, 1983.
    [34] Masscheleyn P H, Delaune R D and Patrick J. Eh and pH effects on Arsenic properties in soil [J]. J. Environ. Qual., 1991, 20(3): 522-527.
    [35] Taylor F G. Cycling and retention of hexavalent chromium in a plant soil system[A]. Proc. Intern. Conf. on heavy metals in the environment[C]. Heidelberg, 1983.
    [36] Mortvedt J J, Giordano P M. Response of corn to Zinc and Chromium in municipal wastes applied to soil [J]. J. Environ. Qual.,1975,4:170-174.
    [37] 曹仁林,等.土壤中的铬与植物生长[J].农业环境保护,1982,1(1):15-19.
    [38] 李应学,等.天津市农用污泥和土壤中有害物质安全控制标准的研究[J].农业环境保护,1988,7(1):11-18.
    [39] 郭松林,武丽群.微量元素铬、砷在家禽生产中的应用[J].山东家禽,2000,(1):32-33.
    [40] Anderson R A. Chromium in Shils ME, Young VR[A]. Modern nutrition in health and disease[C]. Philadephia: Lea and Febiget, 1989.
    [1] 夏荣基.土壤的重金属污染问题[J].农业环境保护,1985,4(1):5-9.
    [2] 陕西省土壤普查办公室.陕西土壤[M].北京:科学出版社,1982.
    [3] 吴敦敖,鲁文毓.铬在土壤-地下水系统中的污染研究[J].环境科学学报,1991,11(3):276-283.
    [4] 农业部农业环境监测中心站.农业环境监测技术规范分析方法[技术规范].天津,1987.
    [5] 陈英旭,骆永明,朱永官,等.土壤中铬的化学行为研究[J].土壤学报,1994,31(1):77-85.
    [6] Richard F R, Bourg A M. Aqueous geochemistry of chromium: A review[J]. Water Res., 1991, 25(7): 807-816.
    [7] 黄佩丽,田荷珍.基础元素化学[J].北京:北京师范大学出版社,1994.
    [8] 曾令庆,刘玉凤,刘月华.黄河冲积土壤对三价铬、六价铬的吸附特性[J].人民黄河,1996,(6):13-15.
    [9] 刘云惠,等.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [10] Bartlett R J, Kimble J M. Behavior of chromium in soils: Ⅰ. Trivalent forms[J]. J. Environ. Qual., 1976, 5: 379-383.
    [11] 柴之芳,祝汉生.微量元素化学概论[M].北京:原子能出版社,1994.
    [12] 李天然.土壤环境化学[M].北京:高等教育出版社,1996.
    [13] 章永良,何增耀,吴方正.红壤吸附Cr(Ⅵ)的初步研究[J].农业环境保护,1991,10(1):15-17.
    [14] 陈英旭,朱荫湄,袁可能,等.土壤铬的化学行为研究.Ⅱ.土壤对Cr(Ⅵ)吸附和还原动力学研究[J].环境科学学报,1989,9(2):137-143.
    [15] 章永良.土壤中六价铬的吸附与提取[J].环境化学,1990,9(4):43-48.
    [16] Griffin R A, Au A K, and Frost R R. Effects of pH on adsorption of chromium from landfill leachate by clay minerals [J]. J. Environ. Sci., 1977, 12: 431-449.
    [17] Bloomfield C, Pruden G. The behavior of Cr(Ⅵ) in soil under aerobic and anaerobic conditions[J]. Environ. Pollut., 1980, 23: 103-114.
    
    
    [18] 杨崇洁.几种金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1989,10(3):2-8.
    [19] Ainsworth C C, et al. CrO42- adsorption on goethite: effects of aluminum substitution [J]. Soil Sci. Soc. Am. J., 1989, 53: 411-418.
    [20] Bartlett R J, and James B R. Mobility and bioavailability of chromium in soils [A]. Chromium in the natural and human environments[C]. New York: Wiley & Sons, 1988.
    [21] Eary L E, and Rai D. Kinetics of chromate removal from aqueous wastes by reduction with ferrous iron[J]. Environ. Sci. Technol., 1988, 22: 972-977.
    [22] Mayer L M, and Schick L L. Removal of hexavalent chromium from estuarine waters by model substrates and natural sediment [J]. Environ. Sci. Technol., 1981, 15: 1482-1484.
    [23] Music S, Ristic M and Tonkovic M. Sorption of Cr(Ⅵ) on hydrous iron oxides[J]. Z. Wasser Abwasser Forsch, 1986, 19: 186-196.
    [24] Saleh F Y, et al. Kinetics of chromium transformations in the environment [J]. Sci. Total Environ., 1989, 86: 25-41.
    [25] Stollenwerk K G, and Grove D B. Reduction of hexavalent chromium in water samples acidified for preservation [J]. J. Environ. Qual., 1985, 14(2): 396-399.
    [26] James B R, Bartlett R J. Behavior of chromium in soils: Ⅵ. Interactions between oxidation-reduction and organic complexation [J]. J. Environ. Qual., 1983, 12: 173-176.
    [27] Bartlett R J, Kimble J M. Behavior of chromium in soils: Ⅲ. Oxidation [J]. J. Environ. Qual., 1979, 8: 31-35.
    [28] 朱月珍.土壤中六价铬的吸附与还原[J].环境化学,1982,1:359-364.
    [29] 陈英旭,朱祖祥,何增耀.土壤、矿物对Cr(Ⅵ)吸附机制的研究[J].农业环境保护,1993,12(4):150-152.
    [30] 吴瑜端,等.水体中溶解性有机质对六价铬的还原作用[J].环境科学学报,1983,3(2):176-181.
    [31] Parfitt R L. Anion adsorption by soils and soil minerals [J]. Adv. Agron., 1978, 30: 1-50.
    [32] Hering J G, and Stumm W. Oxidative and reductive dissolution of minerals [J]. Rev. Mineral, 1990, 23: 427-465.
    [33] 陈英旭,朱荫湄,袁可能,等.pH、温度对土壤溶液中Cr(Ⅵ)减少速率的影响[J].环境科学,1992,13(3):7-10.
    [34] 邵孝侯,刑光熹,侯文华.连续提取法区分土壤重金属元素形态研究及其应用[J].土壤学进展,1994,22(3):40-45.
    [35] 李生志,等.土壤中砷的形态研究[J].中国环境科学,1983,3(2):65-70.
    [36] 王春旭,李生志,许荣玉.环境中砷的存在形态研究[J].环境科学,1993,14(4):53-57.
    [37] 王忠全,游植麟,廖宗文.土壤砷的吸持研究[J].农业环境保护,1996,15(6):274-276.
    [38] 简放陵.四川紫色土砷的化学行为及其临界值研究.西南农业大学硕士学位论文,1988.
    [39] 谢正苗.砷的土壤化学[J].农业环境保护,1989,8(1):36-38.
    [40] Wanchope R D. Fixation of arsenical herbicides, phosphate and arsenate in alluvial soils [J]. J. Environ. Qual., 1985, 4(3): 355-358.
    [41] Liversey W, et al. Adsorption of arsenate by soils and its relation to selected chemical properties and anions [J]. Soil Sci., 1981, 131: 88-94.
    [42] Woolen E A, et al. The chemistry and phytotoxicity of arsenic in soils. Ⅱ. Effect of time and
    
    phosphorus [J]. Soil Sci. Soc. Am. J. 1973, 37: 257-259.
    [43] Huang Pan M, et al. Adsorption of arsenate by lake sediments [J]. Int. Rev. Gesamten Hydrobiol, 1979, 64(2): 263-271.
    [44] 谢正苗.土壤中砷的吸附和转化及其与水稻生长的关系.浙江农业大学博士学位论文,1987.
    [45] 夏增禄,等.中国土壤环境容量[M].北京:地震出版社,1992.
    [46] Elkhatib E A, et al. Kinetics of arsenite sorption in soils [J]. Soil Sci. Soc. Am. J.1984, 48: 758-762.
    [47] 姜永清.土壤吸附砷酸盐动力学的初步研究[J].土壤学报,1885,22(1):75-83.
    [48] Hayward D O, and Trapnell B M W. Chemisorption [M]. Landon: Lewis, 1964.
    [49] Huahg P M. Rention of arsenic by hydroxy-Aluminum on surface of micaaeous mineralcolloids[J]. Soil Sci. Soc. Amer. Proc., 1970, 34: 271-277.
    [50] Jacobs L W, Syers J K, and Keeney D D. Arsenic sorption by soil[J]. Soil Sci. Soc. Amer. Proc., 1970, 39: 750-754.
    [51] Barrow N J. The description of phosphate adsorption curves[J]. J. Soil Sci., 1978, 29: 447-483.
    [52] Fromhrz H. Physics-chemical calculation in science and industry [M]. Landon, 1964.
    [53] Gunay D. A new adsorption isotherm for phosphate in soil[J]. J. Soil Sci., 1970, 21: 72-77.
    [54] Holford L C R, Weelerburn R M W, and Maffingly G E R. A Langmuir two-surface equation as model for phosphate adsorption by soil[J]. J. Soil Sci., 1974, 25: 242-247.
    [55] Woolson E A, Axley J H, and Keakney P C. The chemistryand phytotoxicity of arsenic in soil: Ⅰ. Contaminated field soil[J]. Soil Sci. Soc. Am. J. 1971, 35: 938-943.
    [56] Van R B, Moreale A. Adsorption of herbcidederived p-chloroaniline residues in soil: A predictive equation [J]. J. Soil Sci., 1977, 28: 93-99.
    [57] 陈家坊,蒋佩弦.几种水稻土对铵离子的吸附特性研究[J].土壤学报,1963,11(2):171-184.
    [58] 李勋光,李小平.土壤砷吸附及砷的水稻毒性[J].土壤,1996,(2):98-100.
    [59] 何少先,孙石,龚光碧.净化去除酸性废水中不同价态砷的研究[J].环境科学,1994,15(4):44-46.
    [60] Galba J, et al. Sorption of arsenates under kinetic conditions in selected soil types [J]. Acta Phyto. Tech., 1973, 28: 187-197.
    [61] Frost R R, et al. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay mineral [J]. Soil Sci. Soc. Am. J. 1977, 41: 53-57.
    [62] 华珞.广义缓冲性研究[J].农业工程学报,1992,8(增刊):4-13.
    [63] 华珞,张国祥,杨居荣,等.土壤对无机外源砷的缓冲动力学研究[J].土壤学报,1996,33(4):337-343.
    [64] 安德诺夫,等(俄).振动理论[M].北京:科学出版社,1981.
    [65] 华珞,韦东普,白玲玉,等.土壤对砷的缓冲性及平衡时间与污染次数的关系[J].土壤,1996,(2):69-71.
    [66] 赵玉霞,杨居荣,王红瑞,等.土壤对砷的缓冲动力作用的统计学分析[J].土壤,1996,(2):72-75.
    [67] Nater Y,等.应用线性回归模型[M].北京:中国统计出版社.1990.
    [1] 王学俭,田春声,杨广仁,等.几种重金属污染质在包气带中垂直运移规律的试验研究[A].环境水文地质理论及方法研究[C].北京:地质出版社,1987.
    [2] 中国科学院南京土壤研究所环保室.土壤砷污染及其防治的研究[J].环境科学,1977,(3):41-46.
    [3] 李生志,等.砷除草剂在滹沱河流域土壤中固定性能初探[J].中国环境科学,1981,1(1):41-46.
    [4] 李应学,何宗兰,霍文瑞,等.农田施用污泥中砷的控制标准研究[J].农业环境保护,1984,3(4):1-6.
    [5] 李广贺,张先起.As(Ⅲ)在包气带土层中的自净作用实验研[J].水文地质工程地质,1988,(4):1-4.
    
    
    [6] 环境水文地质组.某市地下水环境质量评价及污染质在包气带运移规律试验研究[A].中国地质科学院,水文地质工程地质研究所所刊[C].北京:地质出版社,1987.
    [7] 李伯骥.化学化工实验师手册[M].大连:大连理工大学出版社,1996.
    [8] 陈英旭,朱祖祥,何增耀.土壤、矿物对Cr(Ⅵ)吸附机制的研究[J].农业环境保护,1993,12(4):150-152.
    [9] 阎先良.污染物质在包气带中运移规律的试验研究[J].环境科学,14(5):32-38.
    [10] 李昌静,卫钟鼎.地下水水质及其污染[M].北京:中国建筑工业出版社,1983.
    [11] “六五”国家重点科技攻关项目“38-1-4”课题组.污染质在包气带和含水层中运移规律的实验研究[A].中国地质科学院,水文地质工程地质研究所所刊[C].北京:地质出版社,1992.
    [12] 李佩成.怎样建立经验公式[M].西安:西安地图出版社,1995.
    [13] James B R, Bartlett R J. Behavior of chromium in soils: Ⅵ. Interactions between oxidation-reduction and organic complexation [J]. J. Environ. Qual., 1983, 12: 173-176.
    [14] James B R, Bartlett R J. Behavior of chromium in soils: Ⅶ. Adsorption and reduction of hexavalent forms [J]. J. Environ. Qual., 1983, 12: 177-181.
    [15] Eary L E, and Rai D. Kinetics of chromate removal from aqueous wastes by reduction with ferrous iron[J]. Environ. Sci. Technol., 1988, 22: 972-977.
    [16] Eary L E, and Rai D. Kinetics of chromate reduction by ferrousions derived from hematite and botite at 25℃ [J]. Am. J. Sci., 1989, 289: 180-213.
    [17] Barcelona M J, Holm T R. Oxidation reduction capacity of aquifer solids[J]. Environ. Sci. Technol., 1991, 25: 1563-1572.
    [18] 陈静生,张国梁,穆岚,等.土壤对六价铬的还原容量初步研究[J].环境科学学报,1997,17(3):334-339.
    [19] Eary L E, Rai D. Chromate reduction by subsurface soil under acidic conditions[J]. Soil Sci. Soc. Am. J., 1991, 55: 676-683.
    [20] Azizian M P, Nelson P O. Hexavalent chromium adsorption and reduction in natural soils. In: 65 Annual Conference of Water Environmental Federation. New Orleans, 1992.
    [1] 涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学,1997,17(6):526-529.
    [2] Yang J E, and Skogley E O. Effects on soil by heavy metals polluted[J]. Soil Sci. Soc. Am. J., 1989, 53(4): 1019-1023.
    [3] Macpherson S A. Ecological environment effects of heavy metals in soil[J]. Chemosphere, 1994, 29(12): 2571-2581.
    [4] 孟昭福,等.土壤中重金属复合污染的表征[J].农业环境保护,1999,18(2):87-91.
    [5] Wallace A. Additive, protective and synergistic effects on plants with excess trace elements [J]. Soil Science, 1982, 13(5): 319-323.
    [6] Macnical R D, and Beckett P H T. Critical tissue concentrations of potentially toxic elements [J]. Plant and Soil, 1985, 85: 107-129.
    [7] Alina Kabata-Pendias, Ph D, Sc D, et al. Trace elements in soils and plants [M]. CRC Press, Inc., 1984.
    [8] 周启星,高拯民.水稻-土壤系统Cd-Zn的复合污染及其衡量指标的研究[J].土壤学报,1995,32(4):430-435.
    
    
    [9] 张学询,等.土壤中锌当量的研究[A].见:夏增禄.土壤环境容量研究[C].北京:气象出版社,1986.
    [10] 朱建钊,李启真.Mn及Mn/Fe比对水稻生长影响的病因研究[J].农业环境保护,1998,17(2)74-77.
    [11] 周启星,高拯民.作物籽实中Cd和zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151.
    [12] 罗厚枚,王宏康.土壤重金属复合污染对作物的影响[J].环境化学,1994,13(5):427-432.
    [13] 郑春荣,陈怀满.复合污染对水稻生长的影响[J].土壤,1989,21(1):10-14.
    [14] 郑春荣,陈怀满.土壤-水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,1990,10(2):145-151.
    [15] Petruzzelli G. Recycling wastes in agriculture: heavy metal bioavailability [J]. Agriculture, Ecosys. and Environ., 1989, 27: 493-503.
    [16] 余国营,等.重金属复合污染对大豆生长的影响及其综合评价研究[J].应用生态学报,1995,6(4):433-439.
    [17] 陈怀满,郑春荣.交互作用对植物生长和元素循环的影响[J].土壤学进展,1994,22(1):47-49.
    [18] 吴燕玉,等.Cb、Pb、Cu、Zn、As复合污染对水稻的影响[J].农业环境保护,1998,17(2):49-54.
    [19] 吴燕玉,王新.土壤砷复合污染及其防治研究[J].农业环境保护,1994,13(3):109-114.
    [20] 何勇田,熊先哲.复合污染研究进展[J].环境科学,1994,15(6):79-83.
    [21] 朱祖祥.土壤学[M].北京:农业出版社,1983.
    [22] 王学俭,田春声,杨广仁,等.几种重金属污染质在包气带中垂直运移规律的试验研究[A].环境水文地质理论及方法研究[C].北京:地质出版社,1987.
    [23] 章永良,何增耀,吴方正.红壤吸附Cr(Ⅵ)的初步研究[J].农业环境保护,1991,10(1):15-17.
    [24] Stollenwerk K G, and Grove D B. Reduction of hexavalent chromium in water samples acidified for preservation [J]. J. Environ. Qual., 1985, 14(2): 396-399.
    [25] Bartlett R J, Kimble J M. Behavior of chromium in soils: Ⅲ. Oxidation [J]. J. Environ. Qual., 1979, 8: 31-35.
    [26] 陈英旭,朱祖祥,何增耀.土壤、矿物对Cr(Ⅵ)吸附机制的研究[J].农业环境保护,1993,12(4):150-152.
    [27] 刘云惠.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [28] 陈英旭,骆永明,朱永官,等.土壤中铬的化学行为研究[J].土壤学报,1994,31(1):77-85.
    [29] Roy W R, et al. Competitive coefficients for the adsorption of arsenate, molybdate and phosphate mixture by soils[J]. Soil Sci. Soc. Am. J. 1986, 50: 1176-1182.
    [30] Woolen E A, et al. The chemistry and phytotoxicity of arsenic in soils. Ⅱ. Effect of time and phosphorus [J]. Soil Sci. Soc. Am. J. 1973, 37: 257-259.
    [31] 姜永清.几种土壤对砷酸盐的吸附[J].土壤学报,1983,20(4):394-404.
    [32] 陈怀满,等.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [1] 中西弘.水质质量控制及水质污染治理对策[J].公害与对策,昭和49年,10(4):2-7.
    [2] 张荣茂.谈污染物排放总量控制[J].环境保护科学,1979,(1):7-9.
    [3] George A G. Application guidelines for sludges contaminated with toxic elements[J]. J. Water Pro., 1977, 67: 1212-1218.
    [4] 吴燕玉,等.论张士灌区的重金属环境容量[J].生态学报,1982,1(3):275-282.
    [5] 夏增禄,等.污灌区土壤重金属的容量研究[J].中国环境科学,1981,1(2):46-51.
    
    
    [6] 杨居荣,等.北京地区土壤重金属容量的研究[J].环境科学学报,1984,4(2):143-149.
    [7] 杨国栋,石晓枫,郭翠花.含铬皮革废水污灌和施用含铬污泥时铬在土壤环境中的残留[J].农业环境保护,1999,18(1):28-30.
    [8] 土壤环境容量研究组.土壤环境容量研究[J].环境科学,1986,7(5):34-44.
    [9] 王世耆,诸叶平,蔡士悦.土壤环境容量模型[J].环境科学学报,1993,13(1):51-58.
    [10] 夏增禄.土壤环境容量研究[M].北京:气象出版社,1986,202-216.
    [11] 车宇瑚,等.土壤环境容量研究中的结构模型[J].环境科学学报,1984,4(2):132-137.
    [12] Robert F S. Discrete mathematical models [M]. New Jersey: Prentice-Hall Inc., 1976.
    [13] 费美高,等.成都粘土中特征污染因子的迁移规律和铅、铬的污染预测[J].成都理工学院学报,1997,24(增刊):22-29.
    [1] 奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,1995.
    [2] 农业部农业环境监测中心站.农业环境监测技术规范分析方法[技术规范].天津,1987.
    [3] 中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法[M].北京:科学出版社,1989.
    [4] 薛澄泽,等.陕西省主要农业土壤中十种元素背景值研究[研究报告].西北农业大学,1985.
    [5] 丁桑岚.环境评价概论[M].北京:化学工业出版社,2001.
    [6] 刘兆昌,聂永丰,张兰生,等.重金属污染物在下包气带饱水条件下迁移转化的研究[J].环境科学学报,1990,10(2):160-172.
    [7] 许秀元,陈同斌.土壤中溶质运移模拟的理论与应用[J].地理研究,1998,17(1):99-106.
    [8] 周海红,张志杰,王士龙.重金属在农田生态系统中迁移的建模研究[J].农业环境保护,2001,20(5):315-318.
    [9] 孙讷正.地下水污染数学模型和数值方法[M].北京:地质出版社,1989.
    [10] 刘兆昌,等.地下水系统的污染与控制[M].北京:中国环境科学出版社,1991.
    [11] 祝万鹏,陈燕波,杨志华,等.酚在饱水亚砂土层中迁移转化的研究[J].环境科学,1994,15(3):18-18.
    [12] 阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51-55.
    [13] 王永胜.关中抽渭灌区农田非点源污染及水源保护研究[博士学位论文],西安建筑科技大学,2000.
    [14] 李佩成,等.黄土原灌区三水转化机理及调控研究[M].西安:陕西科学技术出版社,1999.
    [15] 王超,阮晓红,朱亮.水分及非保守性污染物在土壤中运移数值模拟[J].河海大学学报,1996,24(3):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700