太湖浮游细菌分子生态学及溶藻细菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖是中国第二大淡水湖,位于中国的东部,是一个典型的浅层淡水湖泊。近些年来,由于周边地区的工农业污染加重,太湖水体出现了非常严重的生态问题和环境问题。为了对太湖水体进行修复,收集水体中微生物群落的基本信息就显得十分重要。由于水生生态系统中的微生物群落多样性和群落结构是生物地球化学循环的重要影响因素,所以对它们的变化规律进行评价就具有很大的意义。另外,为了找到新的生物学方法和技术来控制太湖每年夏季的蓝藻水华爆发,对太湖水体中的溶藻细菌进行深入研究也具有很高的潜在应用价值。
     为了深入探讨大型富营养淡水湖泊(太湖)水体中的浮游细菌群落多样性随时间空间的变化规律,我们使用了PCR-DGGE的方法来研究太湖水样。这些太湖水样取自三个不同的取样点(无锡、湖州和七都水域)和不同的月份,取样点的水体营养化程度从富营养到重度富营养逐渐变化。聚类分析和多维尺度分析表明浮游细菌群落多样性在时间维度上的变化主要受到蓝藻水华爆发的影响,两者之间有着紧密的联系。所有水样中的浮游细菌群落结构都可以被划分为冬季期、浅度水华爆发期和重度水华爆发期三大类。与此同时我们还发现三个取样点的水体中细菌群落多样性不仅存在时间上的变化,还存在空间维度上的差异,这种差异与三处取样点的富营养化程度密切相关。无锡、湖州和七都三处水体的富营养化程度呈现由超富营养到富营养的渐变规律,而这三处水体中的浮游细菌群落结构也呈现出了明显的渐变规律:无锡和七都两处水体中的细菌群落结构差异很大,而湖州水域的富营养化程度处于两者之间,与两者都有一定相似度。另外,某些特殊的DGGE条带也体现出了这种时间和空间上的变化。通过使用典型相关性分析进一步研究,我们发现太湖水体中的浮游细菌群落多样性主要受到温度、pH、总氮、总磷以及溶解氧浓度等因素的影响,其中总氮和总磷只在富营养化程度最高的无锡水样中表现出了对细菌群落的重要影响,而在另外两个富营养化程度相对较低的取样点样品中没有表现出这个规律。
     前面的研究结果表明太湖浮游细菌群落和蓝藻水华爆发之间有着非常明显的相互影响关系,那么在太湖的浮游细菌群落中是否存在能够抑制蓝藻生长甚至杀灭蓝藻水华的细菌呢?为了对太湖溶藻细菌进行深入的研究并寻找利用溶藻细菌来控制蓝藻水华的生物学方法,我们摸索并且完善了一整套从富营养化水体中对溶藻细菌进行筛选、鉴定、溶藻特性研究、溶藻模式研究及分离、纯化、鉴定溶藻活性物质的方法。应用该方法,我们从太湖水体中筛选出了包括菌株A27在内的十株溶藻细菌,这十株溶藻细菌菌株分属古细菌、微小杆菌属、气单胞菌属和芽孢杆菌属,并且均对铜绿微囊藻PCC7806具有很强的溶藻效果,而铜绿微囊藻是太湖蓝藻水华爆发的优势藻类。通过16s rRNA基因序列分析,菌株A27属于厚壁菌门中的微小杆菌属,它对铜绿微囊藻、聚球藻、绿色微囊藻、色球藻、浮游颤藻、念珠藻、水华束丝藻、颤藻等多株蓝藻都表现出了很好的溶藻效果,但对两株真核藻株效果不明显,说明菌株A27的溶藻能力具有选择性,其对蓝藻的溶藻效果显著,在太湖蓝藻水华爆发的治理中是很有潜力的溶藻细菌菌株。研究表明微小杆菌A27的溶藻能力与细菌密度密切相关,其起效的细菌密度阈值约为4×108CFU/mL。同时,微小杆菌A27的溶藻效果受测试藻株所处的不同生长阶段影响较大(对数期≈延滞期>平台期),而较少受到细菌本身所处的生长阶段的影响。
     对微小杆菌A27的溶藻作用产生模式的研究表明其溶藻作用是通过分泌胞外活性溶藻物质来实现的。我们发现该菌株的发酵液中至少含有三种具有溶藻效果的物质。在后续的研究中我们通过有机溶剂抽提、硅胶吸附柱层析和HPLC等方法成功分离纯化出了其中的两种,质谱、核磁共振和红外光谱等检测结果表明这两种溶藻物质分别是一种分子量为1188.5Da的化合物和胸腺嘧啶。进一步的研究结果显示胸腺嘧啶在浓度达到100mg/L时对铜绿微囊藻PCC7806具有明显溶藻效果,同时,胸腺嘧啶也表现出了对另外两株分离自太湖的铜绿微囊藻9110和聚球藻BN60的明显溶藻效果(太湖蓝藻水华以微囊藻和聚球藻为主)。虽然胸腺嘧啶在菌株A27的溶藻作用过程中未必扮演了很重要的角色,可能只起到了部分作用甚至没有发挥作用,并且对铜绿微囊藻的溶藻效果需要在较高浓度下才能出现,但这个发现还是为细菌在蓝藻水华的快速消退过程中扮演的重要作用提出了一种新的思路和解释:在太湖蓝藻水华爆发的后期,在藻类密度非常高的局部水体中,由于藻类和其他生物的死亡向环境中释放了大量的胸腺嘧啶,导致这些局部水体中胸腺嘧啶的浓度超过了100mg/L的溶藻作用阈值,从而起到了溶藻的作用并导致蓝藻加速死亡。这又进一步提高了水体中的胸腺嘧啶的浓度,从而形成了一个恶性循环,最终导致了蓝藻水华的快速消退。当然,在自然水体中这个解释是否成立还需要进一步实验的证明。
Lake Taihu, which is the second largest freshwater lake in China, isa very typical shallow freshwater lake located in Eastern China. Due toindustrial and agricultural pollution over the last two decades, LakeTaihu has experienced severe ecological and environmental problems.Therefore, to restore the water body, it is necessary to gather basicinformation regarding the microbial diversity of Lake Taihu. In general,it is also important to evaluate changes in the microbial diversity andcommunity composition in aquatic systems because these factors are thefoundation of biogeochemical cycles. Additionally, in order to developnew biological methods to control the cyanobacterial blooms occurredevery summer in Lake Taihu, it would be very useful to study algicidalbacteria in the waterbody of Lake Taihu.
     To describe the variation in bacterioplankton diversity in LakeTaihu, as well as changes in the diversity that occurred with time,PCR-DGGE was utilized to study water samples collected from LakeTaihu in China. To accomplish this, water samples were collected fromthree different locations (Wuxi, Qidu and Huzhou) and during differentmonths. The trophic status of these sampling sites ranged from eutrophic to hypertrophic. Cluster and MDS analyses revealed that the temporaltransition in the diversity of the bacterioplankton occurred primarily inresponse to a cyanobacterial bloom, and that all samples could bedivided into normal-bloom, peak-bloom and winter period groups.Spatial differences in the bacterial diversity were also detected amongthe three sampling sites, with diversity being found to be stronglycorrelated with the gradient of the trophic status of the three samplingsites (from eutrophic to hypereutrophic at Qidu, Huzhou and Wuxi,respectively). The gradual transition of bacterioplankton diversity wasconsistent with the gradual trophic status of the three sites. In addition,these temporal and spatial changes could be characterized by severalspecific DGGE bands. The results were further analyzed by canonicalcorrespondence analysis (CCA), which revealed that thebacterioplankton diversity of Lake Taihu was mainly associated withtemperature, pH, TN, TP and DO. Of these factors, TN and TP wereonly shown to be significant influencing factors at Wuxi, which had thehighest trophic level.
     In an effort to identify a bio-agent capable of controllingcyanobacterial blooms, we isolated ten algicidal bacterial strains (belongto Archaeon, Exiguobacteria, Aeromonas and Bacillus) including strainA27, which exhibited strong algicidal activity against the dominantbloom-forming species of Microcystis aeruginosa in Lake Taihu. Based on16s rRNA gene sequence analysis, this strain belongs to the genusExiguobacterium and of the Firmicutes. Strain A27exhibited algicidalactivity against a broad range of cyanobacteria, but elicited no to a lowresponse against the two green algal strains tested. This result suggeststhat Exiguobacterium sp. A27has great potential in the control ofcyanobacterial blooms of Lake Taihu. The algicidal activity of strainA27was shown to be dependent on the density of the bacteria and tohave a threshold density of about4×108CFU/mL. Our data also showedthat the algicidal activity of strain A27depended on different growthstages of Microcystis aeruginosa (exponential≈lag phase> earlystationary) rather than the growth stage of the bacterium itself.
     Our results also suggested the algicidal activity of strain A27occurred via the production of extracellular algicidal compounds.Three different algicidal compounds were found in the bacterial cultureof strain A27. Two of these three compounds were successfullyextracted and purified. One was identified as a compound with themolecular weight of1188.5Da and the other was identified as thymine.Investigation of these algicidal compounds revealed that thymine wasfound to inhibit the growth of Microcystis aeruginosa at a lowconcentration (100mg/L). This finding adds a possible mechanism tothe interactions between planktonbacteria and bloom-formingcyanobacteria. At the terminal stage of a cyanobacterial bloom, the death of cyanobacteria, planktonbacteria, aquatic animals and plantsmay release large amount of thymine into the water body causing itsconcentration to rise rapidly. At last, the concentration of thymine mightreach an effective level and the growth of many species of cyanobacteriawould be inhibited, which could cause the bloom to terminate. Of coursethis hypothesis still need to be verified by further study.
引文
[1]. Adachi, M., Fukami, K., Kondo, R., et. al. Identification of marine algicidalFlavobacterium sp.5N-3using multiple probes and whole-cell hybridization[J]. FisheriesScience,2002,68(4):713-720.
    [2]. Baker, K. H., Herson, D. S. Interactions between the diatom Thallasiosira pseudonannaand an associated pseudomonad in a mariculture system[J]. Applied and EnvironmentalMicrobiology, Apr,1978,35(4):791-796.
    [3]. Banin, E., Khare, S. K., Naider, F., et. al. Proline-rich peptide from the coral pathogenVibrio shiloi that inhibits photosynthesis of Zooxanthellae[J]. Applied and EnvironmentalMicrobiology, Apr,2001,67(4):1536-1541.
    [4]. Ben-Haim, Y., Banim, E., Kushmaro, A., et. al. Inhibition of photosynthesis andbleaching of zooxanthellae by the coral pathogen Vibrio shiloi[J]. EnvironmentalMicrobiology, Jun,1999,1(3):223-229.
    [5]. Berger, P. S., Rho, J., Gunner, H. Bacterial suppression of chlorella by hydroxylamineproduction[J]. Water Research,1979,13(3):267-273.
    [6]. Caiola, M. G.,Pellegrini, S. Lysis of Microcystis aeruginosa by Bdellovibrio-likebacteria[J]. J Phycol,1984,20(4):471-475.
    [7]. Chen, M., Chen, F., Zhao, B., et. al. Seasonal variation of microbial eukaryoticcommunity composition in the large, shallow, subtropical Taihu Lake, China[J]. AquaticEcology,2010,44(1):1-12.
    [8]. Chen, Y., Qin, B., Teubner, K., et. al. Long-term dynamics of phytoplanktonassemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China[J].Journal of Plankton Research,2003,25(4):445-453.
    [9]. Chorus, I., Bartram, J. Toxic cyanobacteria in water: a guide to their public healthconsequences, monitoring, and management[M]. London; New York: E&FN Spon,1999;xv,416p.
    [10]. Dakhama, A., de la Noüe, J., Lavoie, M. C. Isolation and identification of antialgalsubstances produced by Pseudomonas aeruginosa[J]. Journal of Applied Phycology,1993,5(3):297-306.
    [11]. Dar, S. A., Yao, L., van Dongen, U., et. al. Analysis of diversity and activity ofsulfate-reducing bacterial communities in sulfidogenic bioreactors using16S rRNA anddsrB genes as molecular markers[J]. Applied and environmental microbiology, Jan,2007,73(2):594-604.
    [12]. Degans, H., Zollner, E., Gucht, K., et. al. Rapid Daphnia-mediated changes inmicrobial community structure: an experimental study[J]. FEMS microbiology ecology, Oct1,2002,42(1):137-149.
    [13]. Doucette, G. J., McGovern, E. R., Babinchak, J. A. Algicidal bacteria activeagainst Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization ofkilling activity[J]. Journal of Phycology,1999,35(6SUPPL.):1447-1454.
    [14]. Fandino, L. B., Riemann, L., Steward, G. F., et. al. Variations in bacterialcommunity structure during a dinoflagellate bloom analyzed by DGGE and16S rDNAsequencing[J]. Aquatic Microbial Ecology,2001,23(2):119-130.
    [15]. Ferrero, E. M., de Godos, I., Rodríguez, E. M., et. al. Molecular characterization ofbacterial communities in algal-bacterial photobioreactors treating piggery wastewaters[J].Ecological Engineering,2012,40:121-130.
    [16]. Forsberg, C., Ryding, S. O. Eutrophication parameters and trophic state indices in30Swedish waste-receiving lakes[J]. Archiv fur Hydrobiologie,1980,89(1-2):189-207.
    [17]. Fry, J. C., Webster, G., Cragg, B. A., et. al. Analysis of DGGE profiles to explorethe relationship between prokaryotic community composition and biogeochemical processesin deep subseafloor sediments from the Peru Margin[J]. FEMS microbiology ecology, Oct,2006,58(1):86-98.
    [18]. Fukami, K., Yuzawa, A., Nishijima, T., et. al. Isolation and properties of abacterium inhibiting the growth of Gymnodinium nagasakiense[J]. Nippon SuisanGakkaishi,1992,58:1073-1077.
    [19]. Furusawa, G., Yoshikawa, T., Yasuda, A., et. al. Algicidal activity and glidingmotility of Saprospira sp. SS98-5[J]. Canadian journal of microbiology, Feb,2003,49(2):92-100.
    [20]. Gao, G., Qin, B., Sommaruga, R., et. al. The bacterioplankton of Lake Taihu,China: Abundance, biomass, and production[J]. Hydrobiologia,2007,581(1):177-188.
    [21]. Granhall, U., Berg, B. Antimicrobial effects of Cellvibrio on blue-green algae[J].Archiv fur Mikrobiologie,1972,84(3):234-242.
    [22]. Gromov, B. V., Ivanov, O. G., Mamkaeva, K. A., et. al. A flexibacter that lyses bluegreen algae[J]. Mikrobiologia,1972,411074-1079.
    [23]. Guo, J., Pu, Y., Yin, L., et. al. Isolation and evaluation of algicidal bacteria fromTaihu Lake[J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University(Natural Science Edition),2006,36(2):293-297.
    [24]. Hare, C. E., Demir, E., Coyne, K. J., et. al. A bacterium that inhibits the growth ofPfiesteria piscicida and other dinoflagellates[J]. Harmful Algae,2005,4(2):221-234.
    [25]. Hayashida, S., Tanaka, S., Teramoto, Y. Isolation of anti-algal Pseudomonasstutzeri strains and their lethal activity for Chattonella antiqua[J]. Agric. Biol. Chem.,1991,55(3):787-790.
    [26]. Hofle, M. G., Haas, H., Dominik, K. Seasonal dynamics of bacterioplanktoncommunity structure in a eutrophic lake as determined by5S rRNA analysis[J]. Applied andEnvironmental Microbiology, Jul,1999,65(7):3164-3174.
    [27]. Imai, I., Ishida, Y., Hata, Y. Killing of marine phytoplankton by a glidingbacterium Cytophaga sp., isolated from the coastal sea of Japan[J]. Marine Biology,1993,116(4):527-532.
    [28]. Imai, I., Ishida, Y., Sakaguchi, K., et. al. Algicidal marine bacteria isolated fromnorthern Hiroshima bay, Japan[J]. Fish. Sci.,1995,61(1):628-636.
    [29]. Imamura, N., Motoike, I., Noda, M., et. al. Argimicin A, a novelanti-cyanobacterial compound produced by an algae-lysing bacterium[J]. The Journal ofantibiotics, Nov,2000,53(11):1317-1319.
    [30]. Jaspers, E., Nauhaus, K., Cypionka, H., et. al. Multitude and temporal variabilityof ecological niches as indicated by the diversity of cultivated bacterioplankton[J]. FEMSmicrobiology ecology, Jul,2001,36(2-3):153-164.
    [31]. Jeong, H., Yim, J. H., Lee, C., et. al. Genomic blueprint of Hahella chejuensis, amarine microbe producing an algicidal agent[J]. Nucleic acids research,2005,33(22):7066-7073.
    [32]. Jeong, S. Y., Ishida, K., Ito, Y., et. al. Bacillamide, a novel algicide from themarine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodiniumpolykrikoides[J]. Tetrahedron Letters,2003,44(43):8005-8007.
    [33]. Jinglu, W., Chengmin, H., Haiao, Z., et. al. Sedimentary evidence for recenteutrophication in the northern basin of Lake Taihu, China: Human impacts on a largeshallow lake[J]. Journal of Paleolimnology,2007,38(1):13-23.
    [34]. Jung, S. W., Kim, B. H., Katano, T., et. al. Pseudomonas fluorescensHYK0210-SK09offers species-specific biological control of winter algal blooms caused byfreshwater diatom Stephanodiscus hantzschii[J]. Journal of Applied Microbiology, Jul,2008,105(1):186-195.
    [35]. Kang, Y. H., Kim, J. D., Kim, B. H., et. al. Isolation and characterization of abio-agent antagonistic to diatom, Stephanodiscus hantzschii[J]. Journal of AppliedMicrobiology,2005,98(5):1030-1038.
    [36]. Kato, J., Amie, J., Murata, Y., et. al. Development of a genetic transformationsystem for an alga-lysing bacterium[J]. Applied and environmental microbiology, Jun,1998,64(6):2061-2064.
    [37]. Kawano, Y., Nagawa, Y., Nakanishi, H., et. al. Production of thiotropocin by amarine bacterium, Caulobacter sp. and its antimicroalgal activities[J]. Journal of MarineBiotechnology,1997,5(4):225-229.
    [38]. Kim, D., Park, Y. K., Lee, J. S., et. al. Analysis of a prodigiosin biosynthetic genecluster from the marine bacterium Hahella chejuensis KCTC2396[J]. Journal ofMicrobiology and Biotechnology,2006,16(12):1912-1918.
    [39]. Kodani, S., Imoto, A., Mitsutani, A., et. al. Isolation and identification of theantialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium,Pseudomonas sp. K44-1[J]. Journal of Applied Phycology,2002,14(2):109-114.
    [40]. Kolmonen, E., Sivonen, K., Rapala, J., et. al. Diversity of cyanobacteria andheterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland[J]. AquaticMicrobial Ecology,2004,36(3):201-211.
    [41]. Kondo, R., Imai, I. Polymerase chain reaction primers for highly selectivedetection of algicidal Proteobacteria[J]. Fisheries Science,2001,67(2):364-366.
    [42]. Kondo, R., Imai, I., Fukami, K., et. al. Phylogenetic analysis of algicidal bacteria(family flavobacteriaceae) and selective detection by PCR using a specific primer set[J].Fisheries Science,1999,65(3):432-435.
    [43]. Lee, S. O., Kato, J., Takiguchi, N., et. al. Involvement of an extracellular proteasein algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28[J]. Appliedand Environmental Microbiology, Oct,2000,66(10):4334-4339.
    [44]. Li, M. G., Liu, J., Pan, W. B., et. al. Primary report on the growth character of threealgae-lysing bacteria[J]. Guangzhou Environ Sci,2007,22(2):1-3.
    [45]. Li, Q. S., Li, S. H. Bacteria that lyse nitrogen-fixing bluegreen algae[J]. ActaHydrobiol Sin,1981,7(3):377-384.
    [46]. Li, S., Xiao, X., Yin, X., et. al. Bacterial community along a historic lake sedimentcore of Ardley Island, west Antarctica[J]. Extremophiles: life under extreme conditions, Oct,2006,10(5):461-467.
    [47]. Liu, J. K., Xie, P. Unraveling the enigma of the disappearance of water bloomfrom the East Lake (Lake Donghu) of Wuhan[J]. Resourc&Environ Yangtze Basin,1999,8(3):312-319.
    [48]. Liu, Z., Huang, S., Sun, G., et. al. Phylogenetic diversity, composition anddistribution of bacterioplankton community in the Dongjiang River, China[J]. FEMSmicrobiology ecology,2012,80(1):30-44.
    [49]. Lovejoy, C., Bowman, J. P., Hallegraeff, G. M. Algicidal effects of a novel marinepseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algalbloom species of the genera Chattonella, Gymnodinium, and Heterosigma[J]. Applied andEnvironmental Microbiology, Aug,1998,64(8):2806-2813.
    [50]. Manage, P. M., Kawabata, Z., Nakano, S. I. Algicidal effect of the bacteriumAlcaligenes denitrificans on Microcystis spp[J]. Aquatic Microbial Ecology,2000,22(2):111-117.
    [51]. Manage, P. M., Kawabata, Z., Nakano, S. I. Dynamics of cyanophage-likeparticles and algicidal bacteria causing Microcystis aeruginosa mortality[J]. Limnology,2001,2(2):73-78.
    [52]. Mayali, X., Doucette, G. J. Microbial community interactions and populationdynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae)[J]. HarmfulAlgae,2002,1(3):277-293.
    [53]. Mitsutani, A., Takesue, K., Kirita, M., et. al. Lysis of Skeletonema costatum byCytophaga sp. isolated from the coastal water of the Ariake sea[J]. Nippon Suisan Gakkaishi,1992,58(2):2158-2167.
    [54]. Mitsutani, A., Yamasaki, I., Kitaguchi, H., et. al. Analysis of algicidal proteins of adiatom-lytic marine bacterium Pseudoalteromonas sp. strain A25by two-dimensionalelectrophoresis[J]. Phycologia,2001,40(3):286-291.
    [55]. Moss, B. Ecology of fresh waters: man and medium, past to future[M].3rd ed.Oxford Eng.; Malden, MA: Blackwell Science,1998.
    [56]. Mu, R. M., Fan, Z. Q., Pei, H. Y., et. al. Isolation and algae-lysing characteristicsof the algicidal bacterium B5[J]. J Environ Sci (China),2007,19(11):1336-1340.
    [57]. Muyzer, G., de Waal, E. C., Uitterlinden, A. G. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16S rRNA[J]. Applied and Environmental Microbiology,Mar,1993,59(3):695-700.
    [58]. Myers, R. M., Fischer, S. G., Lerman, L. S., et. al. Nearly all single basesubstitutions in DNA fragments joined to a GC-clamp can be detected by denaturinggradient gel electrophoresis[J]. Nucleic Acids Research,1985,13(9):3131-3145.
    [59]. Myers, R. M., Fischer, S. G., Maniatis, T., et. al. Modification of the meltingproperties of duplex DNA by attachment of a GC-rich DNA sequence as determined bydenaturing gradient gel electrophoresis[J]. Nucleic Acids Research,1985,13(9):3111-3129.
    [60]. Nagasaki, K., Yamaguchi, M., Imai, I. Algicidal activity of a killer bacteriumagainst the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from AgoBay, Japan[J]. Nippon Suisan Gakkaishi (Japanese Edition),2000,66(4):666-673.
    [61]. Nakai, S., Inoue, Y., Hosomi, M., et. al. Myriophyllum spicatum-releasedallelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa[J].Water Research,2000,34(11):3026-3032.
    [62]. Nakamura, N., Nakano, K., Sugiura, N., et. al. A novel cyanobacteriolyticbacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of bioscience andbioengineering,2003,95(2):179-184.
    [63]. Nakashima, T., Miyazaki, Y., Matsuyama, Y., et. al. Producing mechanism of analgicidal compound against red tide phytoplankton in a marine bacteriumγ-proteobacterium[J].Applied Microbiology and Biotechnology,2006,73(3):684-690.
    [64]. Niu, Y., Shen, H., Chen, J., et. al. Phytoplankton community succession shapingbacterioplankton community composition in Lake Taihu, China[J]. Water Research,2011,45(14):4169-4182.
    [65]. Pei, H. Y., Hu, W. R., Qu, Y. B., et. al. Algae-lytic character and its identificationof one algae-lysing bacterium[J]. Zhongguo Huanjing Kexue/China Environmental Science,2005,25(3):283-287.
    [66]. Pei, H. Y., Hu, W. R., Qu, Y. B., et. al. Isolation and identification of onealgae-lysing bacteria and its lytic character[J]. Acta Sci Circumst,2005,25(6):796-802.
    [67]. Peng, C., Wu, G., Xi, Y., et. al. Isolation and identification of three algae lysingbacteria and their lytic efects on blue-green algae (Cyanobacteria)[J]. Res Environ Sci,2003,16(1):37-40.
    [68]. Peng, X., Fanxiang, K., Huansheng, C., et. al. Relationship betweenbacterioplankton and phytoplankton community dynamics during late spring and earlysummer in Lake Taihu, China[J]. Acta Ecologica Sinica,2007,27(5):1696-1702.
    [69]. Qin, Y. Y., Li, D. T., Yang, H. Investigation of total bacterial andammonia-oxidizing bacterial community composition in a full-scale aerated submergedbiofilm reactor for drinking water pretreatment in China[J]. FEMS microbiology letters, Mar,2007,268(1):126-134.
    [70]. Reim, R. L., Shane, M. S., Cannon, R. E. The characterization of a Bacilluscapable of blue-green bactericidal activity[J]. Canadian journal of microbiology, Jul,1974,20(7):981-986.
    [71]. Ren, H., Zhang, P., Liu, C., et. al. The potential use of bacterium strain R219forcontrolling of the bloom-forming cyanobacteria in freshwater lake[J]. World Journal ofMicrobiology and Biotechnology,2010,26(3):465-472.
    [72]. Riemann, L., Steward, G. F., Azam, F. Dynamics of bacterial communitycomposition and activity during a mesocosm diatom bloom[J]. Applied and environmentalmicrobiology, Feb,2000,66(2):578-587.
    [73]. Sekiguchi, H., Watanabe, M., Nakahara, T., et. al. Succession of bacterialcommunity structure along the Changjiang River determined by denaturing gradient gelelectrophoresis and clone library analysis[J]. Applied and Environmental Microbiology, Oct,2002,68(10):5142-5150.
    [74]. Shi, S., Liu, Y., Shen, Y., et. al. The algae-lytic ability of bacterium DC10and theinfluence of environmental factors on the ability[J]. Science in China. Series C, Lifesciences/Chinese Academy of Sciences, Jun,2005,48(3):250-255.
    [75]. Shi, S. Y., Shen, Y. W., Li, D. H., et. al. Isolation, identification and algae-lyticcharacteristic of a bacterium Staphylococcus sp[J]. Zhongguo Huanjing Kexue/ChinaEnvironmental Science,2006,26(5):587-590.
    [76]. Shilo, M. Lysis of blue-green algae by myxobacter[J]. Journal of Bacteriology, Oct,1970,104(1):453-461.
    [77]. Sigee, D. C., Glenn, R., Andrews, M. J., et. al. Biological control of cyanobacteria:Principles and possibilities[J]. Hydrobiologia,1999,395-396:161-172.
    [78]. Skerratt, J. H., Bowman, J. P., Hallegraeff, G., et. al. Algicidal bacteria associatedwith blooms of a toxic dinoflagellate in a temperate Australian estuary[J]. Marine EcologyProgress Series,2002,2441-2415.
    [79]. Sohn, J. H., Lee, J. H., Yi, H., et. al. Kordia algicida gen. nov., sp. nov., analgicidal bacterium isolated from red tide[J]. International journal of systematic andevolutionary microbiology, May,2004,54(Pt3):675-680.
    [80]. Stewart, J. R.,Brown Jr, R. M. Cytophaga that kills or lyses algae[J]. Science,1969,164(3887):1523-1524.
    [81]. Su, J. Q., Yang, X. R., Zheng, T. L., et. al. Isolation and characterization of amarine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense[J].Harmful Algae,2007,6(6):799-810.
    [82]. Tijdens, M., Hoogveld, H. L., Kamst-van Agterveld, M. P., et. al. Populationdynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake[J].Microbial ecology, Jul,2008,56(1):29-42.
    [83]. Van Der Gucht, K., Sabbe, K., De Meester, L., et. al. Contrasting bacterioplanktoncommunity composition and seasonal dynamics in two neighbouring hypertrophicfreshwater lakes[J]. Environmental Microbiology, Nov,2001,3(11):680-690.
    [84]. Van der Gucht, K., Vandekerckhove, T., Vloemans, N., et. al. Characterization ofbacterial communities in four freshwater lakes differing in nutrient load and food webstructure[J]. FEMS microbiology ecology, Jul1,2005,53(2):205-220.
    [85]. van Hannen, E. J., Zwart, G., van Agterveld, M. P., et. al. Changes in bacterial andeukaryotic community structure after mass lysis of filamentous cyanobacteria associatedwith viruses[J]. Applied and Environmental Microbiology, Feb,1999,65(2):795-801.
    [86]. Vareli, K., Zarali, E., Zacharioudakis, G. S. A., et. al. Microcystin producingcyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) andtoxin accumulation in mussels (Mytilus galloprovincialis)[J]. Harmful Algae,2012,15:109-118.
    [87]. Wakelin, S. A., Anand, R. R., Reith, F., et. al. Bacterial communities associatedwith a mineral weathering profile at a sulphidic mine tailings dump in arid WesternAustralia[J]. FEMS microbiology ecology,2012,79(2):298-311.
    [88]. Wang, J. J. The isolation of algae-lysing bacterium and myxobacteria and the studyon the algae-lysing effect:[Master’s Degree Paper]. Wuhan, China: Huazhong NormalUniversity,2007,1-45.
    [89]. Watanabe, K., Kodama, Y., Syutsubo, K., et. al. Molecular characterization ofbacterial populations in petroleum-contaminated groundwater discharged from undergroundcrude oil storage cavities[J]. Applied and Environmental Microbiology, Nov,2000,66(11):4803-4809.
    [90]. Watanabe, T., Kimura, M., Asakawa, S. Dynamics of methanogenic archaealcommunities based on rRNA analysis and their relation to methanogenic activity inJapanese paddy field soils[J]. Soil Biology and Biochemistry,2007,39(11):2877-2887.
    [91]. Wey, J. K., Jürgens, K., Weiterea, M. Seasonal and successional influences onbacterial community composition exceed that of protozoan grazing in river biofilms[J].Applied and Environmental Microbiology,2012,78(6):2013-2024.
    [92]. Williams, S. K., Kempton, J., Wilde, S. B., et. al. A novel epiphyticcyanobacterium associated with reservoirs affected by avian vacuolar myelinopathy[J].Harmful Algae,2007,6(3):343-353.
    [93]. Wu, Q. L., Chen, Y., Xu, K., et. al. Intra-habitat heterogeneity of microbial foodweb structure under the regime of eutrophication and sediment resuspension in the largesubtropical shallow Lake Taihu, China[J]. Hydrobiologia,2007,581(1):241-254.
    [94]. Wu, Q. L., Zwart, G., Wu, J., et. al. Submersed macrophytes play a key role instructuring bacterioplankton community composition in the large, shallow, subtropical TaihuLake, China[J]. Environmental Microbiology,2007,9(11):2765-2774.
    [95]. Wu, X., Xi, W., Ye, W., et. al. Bacterial community composition of a shallowhypertrophic freshwater lake in China, revealed by16S rRNA gene sequences[J]. FEMSmicrobiology ecology, Jul,2007,61(1):85-96.
    [96]. Xi, W., Wu, X., Ye, W., et. al. Changes in bacterial community structure duringpreceding and degraded period of cyanobacterial bloom in a bay of the Taihu Lake[J].Chinese Journal of Applied and Environmental Biology,2007,13(1):97-103.
    [97]. Xing, P., Kong, F. Intra-habitat heterogeneity of environmental factors regulatingbacterioplankton community composition in Lake Taihu, China[J]. Aquatic MicrobialEcology,2007,48(2):113-122.
    [98]. Xing, P., Kong, F., Cao, H., et. al. Variations of bacterioplankton communitycomposition during Microcystis spp. blooms in a shallow eutrophic lake[J]. Journal ofFreshwater Ecology,2007,22(1):61-67.
    [99]. Yoshikawa, K., Adachi, K., Nishijima, M., et. al. beta-cyanoalanine production bymarine bacteria on cyanide-free medium and its specific inhibitory activity towardcyanobacteria[J]. Applied and Environmental Microbiology, Feb,2000,66(2):718-722.
    [100]. Yu, Y., Yan, Q., Feng, W. Spatiotemporal heterogeneity of plankton communitiesin Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and itsrelation to biotic and abiotic factors[J]. FEMS microbiology ecology, Mar,2008,63(3):328-337.
    [101]. Zeng, J., Bian, Y., Xing, P., et. al. Macrophyte species drive the variation ofbacterioplankton community composition in a shallow freshwater lake[J]. Applied andEnvironmental Microbiology,2012,78(1):177-184.
    [102]. Zhao, C. P., Pu, Y. P., Yin, L. H., et. al. Isolation and algicidal effect of a lyticMicrocystis bacterium from Taihu Lake[J]. J Southeast Univ Nat Sci Ed,2005,35(4):602-606.
    [103]. Zhao, D., Ma, T., Zeng, J., et. al. Effects of lake water chemistry onbacterioplankton community structures of three lakes[J]. African Journal of MicrobiologyResearch,2011,5(27):4820-4831.
    [104]. Zhao, Y. J., Liu, Y. D. Possible microbial control on the adverse impacts ofalgae-current information about the relationships between algae and microbes[J]. ActaHydrobiol Sin,1996,20(2):173-181.
    [105].成芳,凌去非,徐海军等.太湖水质现状与主要污染物分析[J].上海海洋大学学报,2010,01:105-110.
    [106].戴林森,林丽珠,王力平等.核磁共振研究人肿瘤坏死因子α衍生物a(hTNF αDa)的变性过程[J].分析测试学报,1998,17(04):10-12.
    [107].邓建明,陶勇,李大平等.溶藻细菌及其分子生物学研究进展[J].应用与环境生物学报,2009,15(06):895-900.
    [108].冯太国,万新南.富营养化对湖泊的危害及修复技术探讨[J].水土保持研究,2006,13(02):145-146+161.
    [109].高爱环,李红缨,郭海福.水体富营养化的成因、危害及防治措施[J].肇庆学院学报,2005,26(05):47-50.
    [110].韩应琳.溴类杀菌灭藻剂的研究现状[J].工业水处理,1995,35(02):5-8.
    [111].王少沛,曹煜成,李卓佳等.水生环境中细菌与微藻的相互关系及其实际应用[J].南方水产,2008,4(01):76-80.
    [112].吴刚,席宇,赵以军.溶藻细菌研究的最新进展[J].环境科学研究,2002,15(05):43-46.
    [113].杨桂山,马荣华,张路等.中国湖泊现状及面临的重大问题与保护策略[J].湖泊科学,2010,06799-810.
    [114].余国忠,王占生.藻毒素的特性与其净水工艺选择[J].环境与健康杂志,2002,19(02):158-160.
    [115].张艳艳.试论太湖富营养化的发展、现状及治理[J].环境科学与管理,2009,34(05):126-129.
    [116].张勇,席宇,吴刚.溶藻细菌杀藻物质的研究进展[J].微生物学通报,2004,31(01):127-131.
    [117].张运林,秦伯强.太湖水体富营养化的演变及研究进展[J].上海环境科学,2001,20(06):263-265+304.
    [118].仇春华,韩宝华,李伯骥等.季铵盐杀菌灭藻剂控制工业循环冷却水中的藻类生长[J].工业水处理,1992,12(04):23-25.
    [1]. Aizaki, M., Otsuki, A., Fukushima, T. Application of modified Carson's trophic stateindex to Japanese lakes and its relationships to other parameters related to trophic state[J].Environ. Stud.,1981,23:13-31.
    [2]. Allgaier, M., Grossart, H. P. Diversity and seasonal dynamics of Actinobacteriapopulations in four lakes in northeastern Germany[J]. Applied and EnvironmentalMicrobiology, May,2006,72(5):3489-3497.
    [3]. Bouvy, M., Molica, R., De Oliveira, S., et. al. Dynamics of a toxic cyanobacterialbloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region ofnortheast Brazil[J]. Aquatic Microbial Ecology,1999,20(3):285-297.
    [4]. Brummer, I. H., Fehr, W., Wagner-Dobler, I. Biofilm community structure in pollutedrivers: abundance of dominant phylogenetic groups over a complete annual cycle[J].Applied and Environmental Microbiology, Jul,2000,66(7):3078-3082.
    [5]. Burkert, U., Warnecke, F., Babenzien, D., et. al. Members of a readily enrichedbeta-proteobacterial clade are common in surface waters of a humic lake[J]. Applied andEnvironmental Microbiology, Nov,2003,69(11):6550-6559.
    [6]. Clarke, K. R., Gorley, R. N. PRIMER v5: User manual/tutorial.[M]. PRIMER-E ed.Plymouth, UK:2001.
    [7]. de Figueiredo, D. R., Pereira, M. J., Moura, A., et. al. Bacterial community compositionover a dry winter in meso-and eutrophic Portuguese water bodies[J]. FEMS microbiologyecology, Mar,2007,59(3):638-650.
    [8]. De Wever, A., Muylaert, K., Van der Gucht, K., et. al. Bacterial communitycomposition in Lake Tanganyika: vertical and horizontal heterogeneity[J]. Applied andEnvironmental Microbiology, Sep,2005,71(9):5029-5037.
    [9]. Eiler, A., Bertilsson, S. Composition of freshwater bacterial communities associatedwith cyanobacterial blooms in four Swedish lakes[J]. Environmental Microbiology, Dec,2004,6(12):1228-1243.
    [10]. Fandino, L. B., Riemann, L., Steward, G. F., et. al. Variations in bacterialcommunity structure during a dinoflagellate bloom analyzed by DGGE and16S rDNAsequencing[J]. Aquatic Microbial Ecology,2001,23(2):119-130.
    [11]. Havens, K. E. Cyanobacteria blooms: effects on aquatic ecosystems[J]. Advancesin experimental medicine and biology,2008,619:733-747.
    [12]. Hofle, M.G., Haas, H., Dominik, K. Seasonal dynamics of bacterioplanktoncommunity structure in a eutrophic lake as determined by5S rRNA analysis[J]. Applied andenvironmental microbiology, Jul,1999,65(7):3164-3174.
    [13]. Jahan, R., Khan, S., Haque, M. M., et. al. Study of harmful algal blooms in aeutrophic pond, Bangladesh[J]. Environmental monitoring and assessment,2010,170(1-4):7-21.
    [14]. Jaspers, E., Nauhaus, K., Cypionka, H., et. al. Multitude and temporal variabilityof ecological niches as indicated by the diversity of cultivated bacterioplankton[J]. FEMSmicrobiology ecology, Jul,2001,36(2-3):153-164.
    [15]. Jia, X., Shi, D., Shi, M., et. al. Formation of cyanobacterial blooms in LakeChaohu and the photosynthesis of dominant species hypothesis[J]. Shengtai Xuebao/ActaEcologica Sinica,2011,31(11):2968-2977.
    [16]. Kan, J., Suzuki, M. T., Wang, K., et. al. High temporal but low spatialheterogeneity of bacterioplankton in the Chesapeake Bay[J]. Applied and EnvironmentalMicrobiology, Nov,2007,73(21):6776-6789.
    [17]. Lee, H. W., Lee, S. Y., Lee, J. W., et. al. Molecular characterization of microbialcommunity in nitrate-removing activated sludge[J]. FEMS microbiology ecology, Aug1,2002,41(2):85-94.
    [18]. Lymer, D., Logue, J. B., Brussaard, C. P. D., et. al. Temporal variation infreshwater viral and bacterial community composition[J]. Freshwater Biology,2008,53(6):1163-1175.
    [19]. McManus, G. B., Griffin, P. M., Pennock, J. R. Bacterioplankton abundance andgrowth in a river-dominated estuary: Relationships with temperature and resources[J].Aquatic Microbial Ecology,2004,37(1):23-32.
    [20]. Mohebbi, F., Mohsenpour Azari, A., Heidari, M., et. al. CyanobacteriumMicrocystis aeruginosa bloom in Aras dam reservoir[J]. International Journal ofEnvironmental Research,2012,6(1):309-312.
    [21]. Muyzer, G., de Waal, E. C., Uitterlinden, A. G. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16S rRNA[J]. Applied and Environmental Microbiology,Mar,1993,59(3):695-700.
    [22]. Myers, R. M., Fischer, S. G., Lerman, L. S., et. al. Nearly all single basesubstitutions in DNA fragments joined to a GC-clamp can be detected by denaturinggradient gel electrophoresis[J]. Nucleic Acids Research,1985,13(9):3131-3145.
    [23]. Niu, Y., Shen, H., Chen, J., et. al. Phytoplankton community succession shapingbacterioplankton community composition in Lake Taihu, China[J]. Water Research,2011,45(14):4169-4182.
    [24]. Qin, Y. Y., Li, D. T., Yang, H. Investigation of total bacterial andammonia-oxidizing bacterial community composition in a full-scale aerated submergedbiofilm reactor for drinking water pretreatment in China[J]. FEMS microbiology letters, Mar,2007,268(1):126-134.
    [25]. Riemann, L., Steward, G. F., Azam, F. Dynamics of bacterial communitycomposition and activity during a mesocosm diatom bloom[J]. Applied and EnvironmentalMicrobiology, Feb,2000,66(2):578-587.
    [26]. Shade, A., Kent, A. D., Jones, S. E., et. al. Interannual dynamics and phenology ofbacterial communities in a eutrophic lake[J]. Limnology and Oceanography,2007,52(2):487-494.
    [27]. Tamura, K., Dudley, J., Nei, M., et. al. MEGA4: Molecular Evolutionary GeneticsAnalysis (MEGA) software version4.0[J]. Molecular biology and evolution, Aug,2007,24(8):1596-1599.
    [28]. ter Braak, C. J. F., milauer, P. CANOCO reference manual and CanoDraw forWindows user’s guide: software for canonical community ordination (version4.5)[M].Ithaca, New York: Microcomputer Power,2002.
    [29]. Torsvik, V., Daae, F. L., Sandaa, R. A., et. al. Novel techniques for analysingmicrobial diversity in natural and perturbed environments[J]. Journal of Biotechnology, Sep17,1998,64(1):53-62.
    [30]. Van Der Gucht, K., Sabbe, K., De Meester, L., et. al. Contrasting bacterioplanktoncommunity composition and seasonal dynamics in two neighbouring hypertrophicfreshwater lakes[J]. Environmental Microbiology, Nov,2001,3(11):680-690.
    [31]. Van der Gucht, K., Vandekerckhove, T., Vloemans, N., et. al. Characterization ofbacterial communities in four freshwater lakes differing in nutrient load and food webstructure[J]. FEMS microbiology ecology, Jul1,2005,53(2):205-220.
    [32]. van Hannen, E. J., Zwart, G., van Agterveld, M. P., et. al. Changes in bacterial andeukaryotic community structure after mass lysis of filamentous cyanobacteria associatedwith viruses[J]. Applied and Environmental Microbiology, Feb,1999,65(2):795-801.
    [33]. Watanabe, K., Kodama, Y., Syutsubo, K., et. al. Molecular characterization ofbacterial populations in petroleum-contaminated groundwater discharged from undergroundcrude oil storage cavities[J]. Applied and Environmental Microbiology, Nov,2000,66(11):4803-4809.
    [34]. Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence ofchlorophyll b and pheopigments[J]. Limnology and Oceanography,1994,39(8):1985-1992.
    [35]. Xing, P., Kong, F., Cao, H., et. al. Variations of bacterioplankton communitycomposition during Microcystis spp. blooms in a shallow eutrophic lake[J]. Journal ofFreshwater Ecology,2007,22(1):61-67.
    [36]. Ye, W., Liu, X., Tan, J., et. al. Diversity and dynamics of microcystin-Producingcyanobacteria in China's third largest lake, Lake Taihu[J]. Harmful Algae,2009,8(5):637-644.
    [37]. Yu, Y., Yan, Q., Feng, W. Spatiotemporal heterogeneity of plankton communitiesin Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and itsrelation to biotic and abiotic factors[J]. FEMS microbiology ecology, Mar,2008,63(3):328-337.
    [38]. Zwart, G., Crump, B. C., Kamst-van Agterveld, M. P., et. al. Typical freshwaterbacteria: An analysis of available16S rRNA gene sequences from plankton of lakes andrivers[J]. Aquatic Microbial Ecology,2002,28(2):141-155.
    [39].常会庆,车青梅.富营养化水体的评价方法研究[J].安徽农业科学,2007,3210407-10409.
    [40].金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1995:291-294.
    [41].奚万艳.太湖梅梁湾富营养化水体中细菌群落结构和多样性的研究[硕士学位论文].上海交通大学图书馆,2006:55-60.
    [42].叶文瑾.太湖富营养化水体和底泥中微生物群落的分子生态学研究[博士学位论文].博士,上海交通大学2009:26-30.
    [1]. Altschul, S. F., Gish, W., Miller, W., et. al. Basic local alignment search tool[J]. Journalof Molecular Biology, Oct5,1990,215(3):403-410.
    [2]. Amaro, A. M., Fuentes, M. S., Ogalde, S. R., et. al. Identification and characterizationof potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellateAlexandrium catenella[J]. Journal of Eukaryotic Microbiology,2005,52(3):191-200.
    [3]. Bai, S. J., Huang, L. P., Su, J. Q., et. al. Algicidal effects of a novel marineactinomycete on the toxic dinoflagellate Alexandrium tamarense[J]. Current Microbiology,2011,62(6):1774-1781.
    [4]. Chen, W. M., Sheu, F. S., Sheu, S. Y. Aquimarina salinaria sp. nov., a novel algicidalbacterium isolated from a saltpan[J]. Archives of Microbiology,2012,194(2):103-112.
    [5]. Doucette, G. J., McGovern, E. R., Babinchak, J. A. Algicidal bacteria active againstGymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killingactivity[J]. Journal of Phycology,1999,35(6SUPPL.):1447-1454.
    [6]. Eiler, A., Bertilsson, S. Composition of freshwater bacterial communities associatedwith cyanobacterial blooms in four Swedish lakes[J]. Environmental Microbiology, Dec,2004,6(12):1228-1243.
    [7]. Fandino, L. B., Riemann, L., Steward, G. F., et. al. Variations in bacterial communitystructure during a dinoflagellate bloom analyzed by DGGE and16S rDNA sequencing[J].Aquatic Microbial Ecology,2001,23(2):119-130.
    [8]. Fraleigh, P. C., Burnham, J. C. Myxococcal predation on cyanobacterial populations:nutrient effects[J]. Limnology&Oceanography,1988,33(3):476-483.
    [9]. Fukami, K., Yuzawa, A., Nishijima, T., et. al. Isolation and properties of a bacteriuminhibiting the growth of Gymnodinium nagasakiense[J]. Nippon Suisan Gakkaishi,1992,58:1073-1077.
    [10]. Hare, C. E., Demir, E., Coyne, K. J., et. al. A bacterium that inhibits the growth ofPfiesteria piscicida and other dinoflagellates[J]. Harmful Algae,2005,4(2):221-234.
    [11]. Hofle, M. G., Haas, H., Dominik, K. Seasonal dynamics of bacterioplanktoncommunity structure in a eutrophic lake as determined by5S rRNA analysis[J]. Applied andEnvironmental Microbiology, Jul,1999,65(7):3164-3174.
    [12]. Imai, I., Ishida, Y., Hata, Y. Killing of marine phytoplankton by a glidingbacterium Cytophaga sp., isolated from the coastal sea of Japan[J]. Marine Biology,1993,116(4):527-532.
    [13]. Imai, I., Ishida, Y., Sakaguchi, K., et. al. Algicidal marine bacteria isolated fromnorthern Hiroshima bay, Japan[J]. Fish. Sci.,1995,61(1):628-636.
    [14]. Jaspers, E., Nauhaus, K., Cypionka, H., et. al. Multitude and temporal variabilityof ecological niches as indicated by the diversity of cultivated bacterioplankton[J]. FEMSmicrobiology ecology, Jul,2001,36(2-3):153-164.
    [15]. Jung, S. W., Kang, Y. H., Katano, T., et. al. Testing addition of Pseudomonasfluorescens HYK0210-SK09to mitigate blooms of the diatom Stephanodiscus hantzschii insmall-and large-scale mesocosms[J]. Journal of Applied Phycology,2010,22(4):409-419.
    [16]. Jung, S. W., Kim, B. H., Katano, T., et. al. Pseudomonas fluorescensHYK0210-SK09offers species-specific biological control of winter algal blooms caused byfreshwater diatom Stephanodiscus hantzschii[J]. Journal of Applied Microbiology, Jul,2008,105(1):186-195.
    [17]. Kang, Y. H., Kim, J. D., Kim, B. H., et. al. Isolation and characterization of abio-agent antagonistic to diatom, Stephanodiscus hantzschii[J]. Journal of AppliedMicrobiology,2005,98(5):1030-1038.
    [18]. Keawtawee, T., Fukami, K., Songsangjinda, P., et. al. Isolation andcharacterization of Noctiluca-killing bacteria from a shrimp aquaculture pond in Thailand[J].Fisheries Science,2011,77(4):657-664.
    [19]. Kim, M. J., Jeong, S. Y., Lee, S. J. Isolation, identification, and algicidal activity ofmarine bacteria against Cochlodinium polykrikoides[J]. Journal of Applied Phycology,2008,20(6):1069-1078.
    [20]. Kim, Y. M., Wu, Y., Duong, T. U., et. al. Thiazolidinediones as a novel class ofalgicides against red tide harmful algal species[J]. Applied Biochemistry and Biotechnology,2010,162(8):2273-2283.
    [21]. Kim, Y. M., Wu, Y., Duong, T. U., et. al. Algicidal Activity of ThiazolidinedioneDerivatives Against Harmful Algal Blooming Species[J]. Marine Biotechnology,2011,1-11.
    [22]. Kim, Y. S., Lee, D. S., Jeong, S. Y., et. al. Isolation and characterization of amarine algicidal bacterium against the harmful raphidophyceae Chattonella marina[J]. JMicrobiol, Feb,2009,47(1):9-18.
    [23]. Lee, S. O., Kato, J., Takiguchi, N., et. al. Involvement of an extracellular proteasein algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28[J]. Appliedand environmental microbiology, Oct,2000,66(10):4334-4339.
    [24]. Li, Q. S., Li, S. H. Bacteria that lyse nitrogen-fixing bluegreen algae[J]. ActaHydrobiol Sin,1981,7(3):377-384.
    [25]. Liu, J., Ye, J. Screening of algicidal bacteria in the lake and study on theiralgae-lytic effects[A]. In5th International Conference on Bioinformatics and BiomedicalEngineering, iCBBE[C],2011.
    [26]. Manage, P. M., Kawabata, Z., Nakano, S. I. Algicidal effect of the bacteriumAlcaligenes denitrificans on Microcystis spp[J]. Aquatic Microbial Ecology,2000,22(2):111-117.
    [27]. Manage, P. M., Kawabata, Z., Nakano, S. I. Dynamics of cyanophage-likeparticles and algicidal bacteria causing Microcystis aeruginosa mortality[J]. Limnology,2001,2(2):73-78.
    [28]. Mayali, X., Azam, F. Algicidal bacteria in the sea and their impact on algalblooms[J]. Journal of Eukaryotic Microbiology,2004,51(2):139-144.
    [29]. Mayali, X., Doucette, G. J. Microbial community interactions and populationdynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae)[J]. HarmfulAlgae,2002,1(3):277-293.
    [30]. Mu, R. M., Fan, Z. Q., Pei, H. Y., et. al. Isolation and algae-lysing characteristicsof the algicidal bacterium B5[J]. J Environ Sci (China),2007,19(11):1336-1340.
    [31]. Ni, L., Hao, X., Li, S., et. al. Inhibitory effects of the extracts with differentsolvents from three compositae plants on cyanobacterium Microcystis aeruginosas[J].Science China Chemistry,2011,54(7):1123-1129.
    [32]. Niu, D. D., Zheng, Q. S., Liu, Z. P., et. al. Algicidal effect of an algae-lysingbacterium YZ on Microcystis aeruginosa[J]. Zhongguo Huanjing Kexue/ChinaEnvironmental Science,2011,31(2):321-326.
    [33]. Niu, Y., Shen, H., Chen, J., et. al. Phytoplankton community succession shapingbacterioplankton community composition in Lake Taihu, China[J]. Water Research,2011,45(14):4169-4182.
    [34]. Paul, C., Pohnert, G. Interactions of the algicidal bacterium Kordia algicida withdiatoms: Regulated protease excretion for specific algal lysis[J]. PloS one,2011,6(6).
    [35]. Ren, H., Zhang, P., Liu, C., et. al. The potential use of bacterium strain R219forcontrolling of the bloom-forming cyanobacteria in freshwater lake[J]. World Journal ofMicrobiology and Biotechnology,2010,26(3):465-472.
    [36]. Riemann, L., Steward, G. F., Azam, F. Dynamics of bacterial communitycomposition and activity during a mesocosm diatom bloom[J]. Applied and EnvironmentalMicrobiology, Feb,2000,66(2):578-587.
    [37]. Shi, S. Y., Shen, Y. W., Li, D. H., et. al. Isolation, identification and algae-lyticcharacteristic of a bacterium Staphylococcus sp[J]. Zhongguo Huanjing Kexue/ChinaEnvironmental Science,2006,26(5):587-590.
    [38]. Su, J., Yang, X., Zhou, Y., et. al. Marine bacteria antagonistic to the harmful algalbloom species Alexandrium tamarense (Dinophyceae)[J]. Biological Control,2011,56(2):132-138.
    [39]. Su, J. Q., Yang, X. R., Zheng, T. L., et. al. Isolation and characterization of amarine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense[J].Harmful Algae,2007,6(6):799-810.
    [40]. Toncheva-Panova, T., Ivanova, J. Influence of physiological factors on the lysiseffect of Cytophaga on the red microalga Rhodella reticulata[J]. Journal of AppliedMicrobiology, Feb,2000,88(2):358-363.
    [41]. Van Der Gucht, K., Sabbe, K., De Meester, L., et. al. Contrasting bacterioplanktoncommunity composition and seasonal dynamics in two neighbouring hypertrophicfreshwater lakes[J]. Environmental Microbiology, Nov,2001,3(11):680-690.
    [42]. van Hannen, E. J., Zwart, G., van Agterveld, M. P., et. al. Changes in bacterial andeukaryotic community structure after mass lysis of filamentous cyanobacteria associatedwith viruses[J]. Applied and Environmental Microbiology, Feb,1999,65(2):795-801.
    [43]. Wang, B. X., Zhou, Y. Y., Bai, S. J., et. al. A novel marine bacterium algicidal tothe toxic dinoflagellate Alexandrium tamarense[J]. Letters in Applied Microbiology,2010,51(5):552-557.
    [44]. Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence ofchlorophyll b and pheopigments[J]. Limnology and Oceanography,1994,39(8):1985-1992.
    [45]. Wu, X., Xi, W., Ye, W., et. al. Bacterial community composition of a shallowhypertrophic freshwater lake in China, revealed by16S rRNA gene sequences[J]. FEMSmicrobiology ecology, Jul,2007,61(1):85-96.
    [46]. Xing, P., Kong, F., Cao, H., et. al. Variations of bacterioplankton communitycomposition during Microcystis spp. blooms in a shallow eutrophic lake[J]. Journal ofFreshwater Ecology,2007,22(1):61-67.
    [47]. Fukuyo, Y., Imai, I., Kodama, M., et. al. Red tides and other harmful algal bloomsin Japan[A]. In Harmful algal blooms in the PICES region of the North Pacific. PICESScientific report No.23. North Pacific Marine Science Organization (PICES)[C], Sidney,Canada,2002;7-20.
    [48]. Ye, W., Liu, X., Tan, J., et. al. Diversity and dynamics of microcystin-Producingcyanobacteria in China's third largest lake, Lake Taihu[J]. Harmful Algae,2009,8(5):637-644.
    [49].邓建明,陶勇,李大平等.溶藻细菌及其分子生物学研究进展[J].应用与环境生物学报,2009,15(06):895-900.
    [50].金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:14-22.
    [51].金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1995:291-294
    [52].徐立红,周炳升,张甬元等.微囊藻毒素环境行为的初步研究[J].水生生物学报,1997,21(01):85-89.
    [53].叶文瑾.太湖富营养化水体和底泥中微生物群落的分子生态学研究[博士学位论文].上海交通大学2009:32-34
    [1]. Ahn, C. Y., Joung, S. H., Jeon, J. W., et. al. Selective control of cyanobacteria bysurfactin-containing culture broth of Bacillus subtilis C1[J]. Biotechnology Letters, Jul,2003,25(14):1137-1142.
    [2]. Baker, K. H., Herson, D. S. Interactions between the diatom Thallasiosira pseudonannaand an associated pseudomonad in a mariculture system[J]. Applied and EnvironmentalMicrobiology, Apr,1978,35(4):791-796.
    [3]. Banin, E., Khare, S. K., Naider, F., et. al. Proline-rich peptide from the coral pathogenVibrio shiloi that inhibits photosynthesis of Zooxanthellae[J]. Applied and EnvironmentalMicrobiology, Apr,2001,67(4):1536-1541.
    [4]. Berger, P. S., Rho, J., Gunner, H. Bacterial suppression of chlorella by hydroxylamineproduction[J]. Water Research,1979,13(3):267-273.
    [5]. Dakhama, A., de la Noüe, J., Lavoie, M. C. Isolation and identification of antialgalsubstances produced by Pseudomonas aeruginosa[J]. Journal of Applied Phycology,1993,5(3):297-306.
    [6]. Doucette, G. J. Interactions between bacteria and harmful algae: A review[J]. NaturalToxins,1995,3(2):65-74.
    [7]. Doucette, G. J., McGovern, E. R., Babinchak, J. A. Algicidal bacteria active againstGymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killingactivity[J]. Journal of Phycology,1999,35(6SUPPL.):1447-1454.
    [8]. Doucette, G. J., Powell, C. L. Algal-bacterial interactions: can they determine thePSP-related toxicity of dinoflagellates[A]. In Reguera, B., Blanco, J., Fernandez, M. L., etc.,Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission ofUNESCO[C],1998;406-409.
    [9]. Hayashida, S., Tanaka, S., Teramoto, Y. Isolation of anti-algal Pseudomonas stutzeristrains and their lethal activity for Chattonella antiqua[J]. Agric. Biol. Chem.,1991,55(3):787-790.
    [10]. He, M., Zhang, T., Wu, A., et. al. Inhibition of cinnamic acid on Microcystisaeruginosa K. and Scenedesmus arcuatus L[J]. Chinese Journal of Applied andEnvironmental Biology,2008,14(6):774-778.
    [11].Imai, I., Fujimaru, D., Nishigaki, T., et. al. Algicidal bacteria isolated from the surfaceof seaweeds from the coast of Osaka Bay in the Seto Inland Sea, Japan[J]. African Journalof Marine Science,2006,28(2):319-323.
    [12]. Imamura, N., Motoike, I., Noda, M., et. al. Argimicin A, a novelanti-cyanobacterial compound produced by an algae-lysing bacterium[J]. The Journal ofAntibiotics, Nov,2000,53(11):1317-1319.
    [13]. Jeong, S. Y., Ishida, K., Ito, Y., et. al. Bacillamide, a novel algicide from themarine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodiniumpolykrikoides[J]. Tetrahedron Letters,2003,44(43):8005-8007.
    [14]. Kawano, Y., Nagawa, Y., Nakanishi, H., et. al. Production of thiotropocin by amarine bacterium, Caulobacter sp. and its antimicroalgal activities[J]. Journal of MarineBiotechnology,1997,5(4):225-229.
    [15]. Keawtawee, T., Fukami, K., Songsangjinda, P., et. al. Isolation andcharacterization of Noctiluca-killing bacteria from a shrimp aquaculture pond in Thailand[J].Fisheries Science,2011,77(4):657-664.
    [16]. Kim, Y. M., Wu, Y., Duong, T. U., et. al. Thiazolidinediones as a novel class ofalgicides against red tide harmful algal species[J]. Applied Biochemistry and Biotechnology,2010,162(8):2273-2283.
    [17]. Kim, Y. M., Wu, Y., Duong, T. U., et. al. Algicidal Activity of ThiazolidinedioneDerivatives Against Harmful Algal Blooming Species[J]. Marine Biotechnology,2011,1-11.
    [18]. Kodani, S., Imoto, A., Mitsutani, A., et. al. Isolation and identification of theantialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium,Pseudomonas sp. K44-1[J]. Journal of Applied Phycology,2002,14(2):109-114.
    [19]. Lee, S. O., Kato, J., Nakashima, K., et. al. Cloning and characterization ofextracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp.strain A28[J]. Bioscience, Biotechnology, and Biochemistry, Jun,2002,66(6):1366-1369.
    [20]. Lee, S. O., Kato, J., Takiguchi, N., et. al. Involvement of an extracellular proteasein algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28[J]. Appliedand Environmental Microbiology, Oct,2000,66(10):4334-4339.
    [21]. Liu, J., Lewitus, A. J., Kempton, J. W., et. al. The association of algicidal bacteriaand raphidophyte blooms in South Carolina brackish detention ponds[J]. Harmful Algae,2008,7(2):184-193.
    [22]. Llewellyn, C. A., Tarran, G. A., Galliene, C. P., et. al. Microbial dynamics duringthe decline of a spring diatom bloom in the Northeast Atlantic[J]. Journal of PlanktonResearch,2008,30(3):261-273.
    [23]. Lovejoy, C., Bowman, J. P., Hallegraeff, G. M. Algicidal effects of a novel marinepseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algalbloom species of the genera Chattonella, Gymnodinium, and Heterosigma[J]. Applied andEnvironmental Microbiology, Aug,1998,64(8):2806-2813.
    [24]. Mayali, X., Franks, P. J. S., Azam, F. Cultivation and ecosystem role of a marineRoseobacter clade-affiliated cluster bacterium[J]. Applied and Environmental Microbiology,2008,74(9):2595-2603.
    [25]. Mitsutani, A., Yamasaki, I., Kitaguchi, H., et. al. Analysis of algicidal proteins of adiatom-lytic marine bacterium Pseudoalteromonas sp. strain A25by two-dimensionalelectrophoresis[J]. Phycologia,2001,40(3):286-291.
    [26]. Mu, R. M., Fan, Z. Q., Pei, H. Y., et. al. Isolation and algae-lysing characteristicsof the algicidal bacterium B5[J]. J Environ Sci (China),2007,19(11):1336-1340.
    [27]. Oh, J. I., Kim, M. J., Lee, J. Y., et. al. Isolation and characterization of algicidalbacteria from Cochlodinium polykrikoides culture[J]. Biotechnology and BioprocessEngineering,2011,16(6):1124-1133.
    [28]. Paul, C., Pohnert, G. Interactions of the algicidal bacterium Kordia algicida withdiatoms: Regulated protease excretion for specific algal lysis[J]. PloS one,2011,6(6): art.no. e21032.
    [29]. Peng, C., Wu, G., Xi, Y., et. al. Isolation and identification of three algae lysingbacteria and their lytic efects on blue-green algae (Cyanobacteria)[J]. Res Environ Sci,2003,16(1):37-40.
    [30]. Qiu, X. T., Qian, Y. T., Zhou, R., et. al. Isolation and algicidal effect of algicidalbacterium strain N25[J]. Journal of Shanghai Jiaotong University (Medical Science),2011,31(10):1375-1379.
    [31]. Rashidan, K. K., Bird, D. F. Role of Predatory Bacteria in the Termination of aCyanobacterial Bloom[J]. Microbial Ecology, Feb,2001,41(2):97-105.
    [32]. Ren, H., Zhang, P., Liu, C., et. al. The potential use of bacterium strain R219forcontrolling of the bloom-forming cyanobacteria in freshwater lake[J]. World Journal ofMicrobiology and Biotechnology,2010,26(3):465-472.
    [33]. Sakata, T., Yoshikawa, T., Nishitarumizu, S. Algicidal activity and identification ofan algicidal substance produced by marine Pseudomonas sp. C55a-2[J]. Fisheries Science,2011,77(3):397-402.
    [34]. Skerratt, J. H., Bowman, J. P., Hallegraeff, G., et. al. Algicidal bacteria associatedwith blooms of a toxic dinoflagellate in a temperate Australian estuary[J]. Marine EcologyProgress Series,2002,2441-15.
    [35]. Su, J. Q., Yang, X. R., Zheng, T. L., et. al. Isolation and characterization of amarine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense[J].Harmful Algae,2007,6(6):799-810.
    [36]. Tomaru, Y., Shirai, Y., Nagasaki, K. Ecology, physiology and genetics of aphycodnavirus infecting the noxious bloom-forming raphidophyte Heterosigma akashiwo[J].Fisheries Science,2008,74(4):701-711.
    [37]. Uchida, N., Handa, S. Y., Nakazono, K., et. al. Isolation and identification ofalgicidal substance in the autolysate from the jellyfish, Aurelia aurita[J]. Bulletin of thePlankton Society of Japan,2010,57(2):87-93.
    [38]. Valenzuela, A. S., Benomar, N., Abriouel, H., et. al. Isolation and identification ofEnterococcus faecium from seafoods: antimicrobial resistance and production ofbacteriocin-like substances[J]. Food Microbiology, Oct,2010,27(7):955-61.
    [39]. Wang, X., Gong, L., Liang, S., et. al. Algicidal activity of rhamnolipidbiosurfactants produced by Pseudomonas aeruginosa[J]. Harmful Algae,2005,4(2):433-443.
    [40]. Wu, W., An, C., Liu, X., et. al. Preliminary research on alga removalcharacteristics and efficiency of the algae-lysing bacterium (strain B5)[J]. Beijing DaxueXuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis,2003,39(4):489.
    [41]. Yan, R. J., Yin, P. H., Qiu, J. H. Isolation and characterization of two marinealgicidal bacteria against the Phaeocystis globosa[J]. Huan Jing Ke Xue, Jan,2011,32(1):225-30.
    [42]. Yu, F. J., Xu, L. L., Cheng, K., et. al. Isolation and characterization of twoalgicidal actinomycetes against Heterosigma akashiwo[J]. Zhongguo Huanjing Kexue/ChinaEnvironmental Science,2011,31(1):111-115.
    [43]. Zhang, S. H., Cheng, S. P., Sun, P. S., et. al. Isolation and identification of antialgalcompounds from potamogeton maackianus by activity-guided fractionation[J]. AllelopathyJournal,2011,28(1):95-104.
    [44]. Zhao, Y. J., Liu, Y. D. Possible microbial control on the adverse impacts ofalgae-current information about the relationships between algae and microbes[J]. ActaHydrobiol Sin,1996,20(2):173-181.
    [45].邓建明,陶勇,李大平等.溶藻细菌及其分子生物学研究进展[J].应用与环境生物学报,2009,15(06):895-900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700