水中絮体颗粒动态分布特征对絮凝效果影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮颗粒物是水处理的主要去除对象,在处理及使用过程中,水中的颗粒物质数量、形态和特征都会发生变化。在水处理工艺中,常采用絮凝除浊的方法进行固液分离,即使水中胶体粒子以及微小悬浮物等杂质在混凝药剂作用下进行聚集,而后通过沉淀去除的过程。从本质上讲,絮凝方法是专门用以改变水中悬浮颗粒粒度分布的,即促使水中悬浮颗粒由粒径较小、数量较多逐渐演变为粒径较大、数量较少的状态,沉淀和过滤工艺也只能去除一定粒径范围的悬浮颗粒。
     浊度是水中悬浮颗粒浓度、大小、形状、颜色和表面特性等诸因素对光所产生各种影响的一个综合光学性质度量;颗粒计数则是直接测定水中悬浮颗粒数量及大小分布,两者检测原理的差异导致浊度与颗粒总数在一定范围内相关性较差。颗粒计数仪的出现为研究絮体粒度动态分布提供了有效的监测手段。将颗粒计数仪作为浊度仪的有益补充,两者联用,可有效地表征水处理的效果,保证供水安全。
     本课题采用颗粒计数技术为主要检测手段研究水中含有的悬浮物和胶体杂质颗粒数、大小等分布特征对浊度变化的影响规律。结果表明,水中颗粒物具有不均一性或多分散性,不同粒径的颗粒对浊度的影响不同,在多数情况下水中含有的稳态微颗粒难以由浊度值来生动体现,而颗粒计数仪可直接计数并确定颗粒物的大小,它较全面地提供了有关水中悬浮颗粒物特征的信息,能从细节方面提供水中悬浮颗粒体系的微观特性。
     分别采用颗粒计数法和图像法对不同水力和水质条件下絮体的大小、数量、离散度等物理性质对絮凝效果的影响进行了试验研究,发现絮体在水处理中的固液分离行为与絮体的分布密切相关。基于絮体分布的脉动现象提出絮凝基线波动值这个新概念,试验结果表明:絮凝基线波动值可以作为反映絮凝过程颗粒聚集(絮凝)状态的有效指标,其在不同水质条件下与剩余浊度之间均具有良好的相关性,能够很好地反映絮凝效果的变化。而通过将分形理论引入到絮体粒度分布规律的研究发现,采用粒度分形维数这一特征指标可以实现不同絮凝反应条件下所形成絮体的粒度分布对絮凝效果影响力的定量描述,其与沉后水小于5μm颗粒数间存在良好的相关性。将絮凝基线波动值与粒度分形维数特征指标联用,不但可以在实际水处理工艺生产运行中优化絮凝条件和改善絮凝效果,还可以针对性地降低处理后水中的稳态微颗粒数量,消除其对城市供水水质安全产生的隐患。
In water treatment, suspended particle is one of the major removal targets, the quantity, configuration and characteristics of which all change in application process. Flocculation is usually used for solid/liquid separation process, in which small colloid and suspended particles are aggregated by adding flocculant, and, then, removed via sedimentation process. Essentially, flocculation is adopted to change size distribution of suspended particle, and it can turn a larger number of smaller particles into less amount of larger particles. Obviously, units of sedimentation and filtration can only remove a certain size range of suspended particles.
     Turbidity is an optical measurement of light scattered by the density, size, shape, color, surface characteristics of suspended particles in water. The particle counting is to calculate the number of suspended particles in water and measure their sizes. Due to their different testing principles, there is poor correlation between the turbidity and the particle population in a certain range. The particle counter has proven to be a useful instrument for studying the dynamic distribution of floc particles. Therefore, the particle counter can be used as a supplement to the turbidimeter. Combined use of the two instruments can effectively demonstrate the effect of water treatment and guarantee water safety.
     In this paper, particle counting technique was taken as the main detection method to investigate the influence of distribution characteristics of suspended and colloid particles, such as particle amount and size, on water tubidity. The results showed that particulate matter in the water had heterogeneity or dispersion nature, and particle population of various grain size ranges had different effects on turbidity. In most instances, steady-state micro-particles were hardly reflected vividly by turbidity, while particle counter could directly determine particule size. Simultaneously, it could more comprehensively provide information of suspended particle in the water, and reflect microcharacteristic of suspended particle system in detail.
     In addition, paticle counting and image analysis were respectively used to study the influence of floc physical properties, such as size, amount and dispersion, on flocculation efficiency under different hydrodynamic conditions and different water quality. It was founded that the behavior of flocs was closely related to floc size distribution during solid/liquid separation. Based on pulsation phenomena of floc size distribution, the concept of fluctuation value of flocculation baseline was proposed for the first time. The results showed that the new index could be effective to reflect the aggregation state of particles in flocculation process, and, under different water quality, it had a good correlation with residual turbidity, indicating that the index could reflect flocculation efficiency well. Moreover, fractal theory was introduced into floc size distribution, and fractal dimension of floc size distribution was also proposed. The experimental results showed that this index could quantify the influence force of particle size distribution on flocculation efficiency under different flocculation conditions. The results also displayed that there was a good correlation between fractal dimension of floc size distribution and less than 5μm particle population. Besides, associating application of fluctuation value of flocculation baseline and fractal dimension of floc size distribution could not only optimize flocculation conditions and improve flocculation efficiency, but also appropriately reduce the number of steady-state micro-particles after water treatment, and guarantee water quality in city, then remove hidden danger in time.
引文
1李贵宝,周怀东,刘晓茹.我国生活饮用水水质标准发展趋势及特点.中国水利. 2005, (9):40~42
    2陈国光,乐林生.不同水源饮用水水质指标的控制及工艺选择.中国给水排水. 2006, 22 (增刊) :233~240
    3蔡祖根.当前我国安全饮用水的若干问题.江苏卫生保健. 2005, 7 (2):28~30
    4中华人民共和国环境保护部.中国环境状况公报. 2008
    5张燕,王志奇,陈英旭.微污染水源水的控制技术.环境污染与防治. 2001, 23( 2):69~71
    6高乃云,李富春,汤浅晶,等.原水及常规处理出水的SS粒径分布.中国给水排水. 2001, 17(11):70~73
    7 R. M. Srivastava. Effect of Sequence of Measurement on Particle Count and Size Measurement Using a Light Blockage (HIAC) Particle Counter. Water Res. 1993, 27(5):939~942
    8王在刚,徐勇鹏,崔福义,等.给水处理过程中颗粒特征分析.中国给水排水. 2006, 22(17):50~52
    9杨艳玲,李星,丛丽,等.优化监测与净水工艺提高致病原生动物去除率.给水排水. 2003, 29(6):22~26
    10 A. Gcrad Edwads. Removing Color Caused by Hμmic Acids. J. AWWA. 1985, 77(3): 50~57
    11李圭白,张杰.水质工程学.中国建筑工业出版社, 2005:48~79
    12严熙世,范瑾初.给水工程.第四版.中国建筑工业出版社, 1999:254~276
    13范谨初.混凝技术.中国环境科学出版社, 1992: 10~18
    14 P. T. Spicer, S. E. Pratsinis. Coagulation and Fragmentation:Universal Steady-state Particle-size Distribution. AICh. E. J. 1996b, 42(6):1612~1620
    15 P. T. Spicer, S. E. Pratsinis. Shear-induced Flocculation:the Evolution of Floc Structure and the Shape of the Size Distribution at Steady State. Water Res. 1996, 30(5):1049~1056
    16 K. Mühle. Floc Stability in Laminar and Turbulent Flow. In: Dobias B, Coagulation and Flocculation. New York:Marcel Dekker, 1993:355~390
    17付英,于水利,于衍真,等.聚硅酸铁混凝剂絮凝与破碎的定量研究.环境科学. 2008, 29(1):92~97
    18 D. N. Sutherland.Comments on Vold’s Simulation of Floc Formation. C&IS. 1966,22:300~3031
    19 R. J. Francois, A. A. Van Haute. Structure of Hydroxide Flocs. Wat. Res. 1985, 19(10):1249~1254
    20 D. N. Sutherland. Letter to the Editors. J Colloid Inter Sci. 1966, 22:300~302
    21 D. N. Sutherland. A Theoretical Model of Floc Structrure. J Colloid Inter Sci. 1967, 25:373~380
    22周有丹,梁虹.团簇—团簇聚集模型及模拟实现.计算机与自动化. 2005, 24(2):81~84
    23 B. A. Firth, R. J. Hunter. Flow Properties of Coagulated Colloidal Suspensions. J Colloid Interface Sci. 2004, 7(2):248~265
    24 B. E. Logan, J. R. Kilps. Fractal Dimensions of Aggregates Formed in Different Fluid Mechanical Environments. Water Research. 1995, 29(2):443~453
    25 P. Jarvis, B. Jefferson, J. Gregory, et al. A Review of Floc Strength and Breakage. Water Res. 2005, 39:3121~3137
    26 K. Mühle. Floc Stability in Laminar and Turbulent Flow. In: Dobias B, Coagulation and Flocculation. New York:Marcel Dekker, 1993:355~390
    27 T. Serra, J. Colomer, X. Casamitjana. Aggregation and Breakage of Particles in a Shear Flow. J Colloid Interface Sci. 1997, 187:466~473
    28 J. Gregory. The Role of Floc Density in Solid-liquid Separation. Filtr Separat. 1998, 35(4):367~371
    29张忠国,栾兆坤,赵颖,等.聚合氯化铝(PAC)混凝絮体的破碎与恢复.环境科学. 2007, 28(2):346~351
    30 M. A. Yukselen, J. Gregory. The Effect of Rapid Mixing on the Break-up and Re-formation of Flocs. Journal of Chemical Technology and Biotechnology. 2004, 79:782~788
    31 P. Jarvis, B. Jefferson, S. A. Parsons. Breakage, Regrowth and Fracal Natural Organic Matter Flocs. Environ Sci Technol. 2005, 39:2307~2314
    32王补宣,盛文彦,彭晓峰,等.剪切力作用下颗粒的絮凝与破碎.热科学与技术. 2007, 6(3):189~192
    33刘晓艳.确定水中低浓度离散性颗粒粒径的方法.湖南高等专科学校学报, 2000, 9(2):45~46
    34 P. T. O. Shaughnessy, et al. Evaluating Particle Counters. AWWA. 1997, 89(12):60~76
    35龙腾锐.现代给水和废水处理原理.第二版.高等教育出版社, 2002:203~204
    36 J. Gregroy and H. J. Chuang. Continuons Monitoring of Floc. Properties in Stirred-suspensions. Water SRT_Aquua. 1995, (44):125~131
    37杨艳玲.透光率脉动检测值与悬浮颗粒浓度关系.给水排水. 1999, 25(2):23
    38李孟.透光率脉动絮凝投药自控系统配置的工程实践.给水排水. 1999, 25(9):66
    39李孟.透光率脉动检测技术对絮凝过程的连续在线分析.环境科学. 1999, 20(6):84
    40李孟.透光率脉动检测技术在油田污水处理中的应用.工业用水与废水. 1999, 30(3):35
    41 J. Moghadasi, H. M. Steinhagen, M. Jamialahmadi, et al. Model Study on the Kinetics of Oil Field Formation Damage due to Salt Precipitation from Injection. Journal of Petroleμm Science and Engineering. 2004, 43:201~217
    42 A. Adin. Particle Count and Size Alteration for Membrane Fouling Reduction in Non-conventional Water Filtration. Wat.Sci.Tech. 2004, 50(12):273~278
    43 M. O. Alver, T. Tennoy, J. A. Alfredsen, et al. Automatic Measurement of Rotifer Brachionus Plicatilis Densities in First Feeding Tanks. Aquacultural Engineering. 2007, 36(2):115~121
    44 M. Riester, A. Lutz, H. Hilgers, et al. Taber Abraser/liquid Particle Count Cpupling for the Determination of Sliding Wear of Metallized Plastics. Surface and Coating Technology. 1997, 97:649~655
    45崔红梅,张素霞,陈克诚,等.颗粒计数仪在北京第九水厂水处理中的应用.净水技术. 2004, 23(3):32~35
    46张忠和.给水排水设计手册.第2版.中国建筑工业出版社, 2004
    47栗林宗人.設計·施工時の浸入水対策のポイント.下水道. 1996, 7(10): 2~8
    48王东升,陈勇生.在线激光颗粒计数仪在水处理中的应用.中国给水排水. 2003, 19(9):29~31
    49徐骁.最优浊度水絮体成长协同作用机制研究.哈尔滨工业大学硕士论文. 2007: 3~4
    50杨华东.颗粒测试的图像处理.南京工业大学硕士论文. 2005:9~10
    51武道吉,徐衍忠,陈冬辰,等.烧杯搅拌试验中需探讨的几个问题.水处理技术. 1998, 24(1):51~5
    52 W. Kim, H. F. Ludwig, W. D. Bishop. Cation-exchange Capacity and pH in the Coagulation Process. JAWWA. 1965, 3:327~348
    53岳舜生.水的浊度问题.中国给水排水. 1995, 11(4):33~35
    54罗岳平,李宁,李建国,等.自来水中悬浮颗粒物的检测和控制.给水排水. 2000, 26(3):26~31
    55张越川,张国祺.分形理论的科学和哲学底蕴.社会科学研究. 2005, (5):81~86
    56张济忠.分形.清华大学出版社, 1995:7~187
    57汪富泉,李后强.分形几何与动力系数.黑龙江教育出版社, 1993:29~31
    58 X. Y. Li, B. E. Logan. Collision Frequencies of Fractal Aggregates with Small Particles by Differential Sedimentation. Environ Sci Tech. 1997, 31:1229~1236
    59 E. A. Gonzalez, P. S. Hill. A Method for Estimating the Flocculation Time of Monodispersed Sediment Suspensions. Deep-Sea Res I. 1998, 45:1931~1954
    60 D. N. Sutherland. A Theoretical Model of Floc Structrure. J Colloid Inter Sci. 1967, 25:373~380
    61 S. K. Friedlander, C. S. Wang. The Self-preserving Particle Size Distribution for Coagulation by Brownian Motion. J Colloid Interface Science. 1966, 22(1):126~132
    62 S. K. Friedlander. Smoke. Dust and Haze(M). New York: John Wiley and Sons, 1997
    63 B. E. Logan, J. R. Kilps. Fractal Dimensions of Aggregates Formed in Different Fluid Mechanical Environments. Water research. 1995, 29(2):443~453
    64 W. P. Frederick. Water Quality and Treatment. New York: Mc Graw-Hill. 1990
    65 C. R. O’Melia. Aquasols: the Behavior of Small Particles in Aquatic Systems. Environ Sci Tech. 1980, 14:1052~1060
    66刘广奇.低温低浊水处理各环节微颗粒分布规律及絮体形态分析.哈尔滨工业大学硕士论文. 2005:21~29
    67杨艳玲,李星,刘美洲,等.用颗粒计数和浊度联合评价颗粒物去除作用.北京工业大学学报. 2007, 33(11):1119~1202
    68孙博雅,陈洪斌,陈伟,等.颗粒计数法用于自来水厂运行的优化.中国环境科学. 2008, 28(2): 126~130
    69 T. Hall, B, Croll. Particle Counters as Tools for Managing Cryptosporidiμm Risk in Water Treatment. Wat. Sci. Tech. 1997, 36(4):143~149
    70 S. M. Teefy. Full Scale Particle Counting Study to Determine Giardia Cyst Removal Efficiency. Proceedings of the AWWA National Conference and Exhibition. 1991:253~275
    71 M. W. Lechevallier, W. D. Norton. Examining Relationships between Rarticle Counts and Giardia, Cryptosporidiμm, and Turbidity. JAWWA. 1992, 84(12): 54~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700