鱼腥藻FACHB 709碱性磷酸酶基因无机磷饥饿应答调控反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻(蓝细菌)是一类古老的具有放氧光合作用的革兰氏阴性细菌,在漫长的自然选择过程中进化出独特的环境适应能力,广泛分布于不同的生境中。由于水体的富营养化,蓝藻常常爆发形成水华,甚至释放毒素,成为世界性的环境问题,引起公众的关注。对磷极高的生物利用率是蓝藻获得生态竞争优势、导致蓝藻水华发生的关键因素。虽然富营养化水体中磷源非常丰富,但蓝藻等微生物能直接利用的无机磷却很缺乏。因此,阐明蓝藻细胞利用不同形式磷源的代谢调控,对揭示蓝藻水华发生的分子机制、监测蓝藻水华发生具有重要的意义。
     鱼腥藻(Anabaena sp.)FACHB 709是来源于淡水湖泊(中国,武汉东湖)的一种丝状固氮蓝藻。该藻与模式生物鱼腥藻(Anabaena sp.)PCC 7120高度同源,具有遗传操作系统,可通过接合转移将重组基因导入细胞。本论文利用微生物学、生物信息学、生物化学和分子生物学技术,研究了不同磷源对鱼腥藻FACHB 709生长的影响、发现并鉴定了在藻细胞的磷代谢调控过程中具有关键作用的碱性磷酸酶基因,并通过分析多个碱性磷酸酶基因对不同磷源的表达调控及其生理功能,以期揭示鱼腥藻FACHB 709碱性磷酸酶基因在磷代谢调控中的作用机制。
     本论文包括以下主要研究内容和结果:
     (1)研究了不同种类、不同浓度磷源对鱼腥藻FACHB 709生长和碱性磷酸酶活性的影响,结果表明磷缺乏诱导藻细胞生长抑制而不是死亡;鱼腥藻细胞通过上调碱性磷酸酶活性应对磷饥饿。磷饥饿细胞在无机磷不存在的条件下,能利用有机磷G-6-P和pNPP获得部分生长。同时,有机磷的利用可在一定程度上导致细胞总碱性磷酸酶活性下降。
     (2)分析鱼腥藻FACHB 709和其它几种蓝藻的亲缘关系,发现鱼腥藻FACHB709是鱼腥藻PCC 7120和产水华蓝藻—多变鱼腥藻(Anabaena variabilis)ATCC29413的近源种。利用近缘种中公认的碱性磷酸酶基因序列,扩增并克隆了鱼腥藻FACHB 709中可能的碱性磷酸酶基因,对克隆的全基因DNA片段测序和分析,发现鱼腥藻FACHB 709中存在四个碱性磷酸酶基因,分别为phoA-709、phoDl-709、phoD2-709和phoS-709.
     (3)构建了鱼腥藻FACHB 709碱性磷酸酶基因启动子和β-半乳糖苷酶基因(lacZ)的转录融合重组质粒,并将重组质粒接合转移到鱼腥藻FACHB 709,通过测定所得鱼腥藻调控报告菌株的β-半乳糖苷酶活性,分析四个碱性磷酸酶基因在不同浓度无机磷存在条件下的表达调控。结果表明,无机磷充足条件下,除了phoD2-709没有转录活性外,其余三个碱性磷酸酶编码基因phoA-709、phoD1-709和phoS-709都有转录活性;无机磷缺乏条件下,四个碱性磷酸酶基因通过上调转录水平,参与鱼腥藻FACHB 709的磷代谢调控反应,其中以phoA-709的作用最为显著。
     (4)利用免疫学方法,研究了鱼腥藻FACHB 709中四个碱性磷酸酶基因在蛋白水平的表达和分布。结果显示无机磷缺乏条件下,四个碱性磷酸酶基因的表达水平全部升高,且它们的表达产物分泌到了细胞外培养基中。
     (5)构建碱性磷酸酶基因缺失突变株DRTH65 (敲除phoA-709)和DRTH61(敲除phoS-709),检查突变株的生长和生理表型,结果表明在实验条件下,突变株DRTH65和DRTH61的生长和碱性磷酸酶活性与野生型鱼腥藻的没有差异。通过分析单个碱性磷酸酶基因缺失后,其余APase基因的表达调控,发现在含磷和缺磷条件下,phoD1-709和phoS-709转录水平的上调一定程度上可弥补phoA-709的失活;而phoD1-709和phoA-709转录水平的上调则一定程度上弥补了phoS-709的失活。
     本论文得到以下主要结论:
     (1)无机磷是鱼腥藻FACHB 709细胞吸收和利用的主要磷源形式和关键生长因子;藻细胞通过调控碱性磷酸酶活性应对无机磷饥饿诱导的细胞生长抑制。
     (2)鱼腥藻FACHB 709是鱼腥藻PCC 7120的近缘种,并且具有与之相同的碱性磷酸酶基因组成和序列高度同源的碱性磷酸酶PhoA-709、PhoD1-709、PhoD2-709和PhoS-709.
     (3)磷饥饿诱导鱼腥藻FACHB 709中四个碱性磷酸酶基因phoA-709、phoD1-709、phoD2-709和phoS-709转录水平和翻译水平的上调,但转录水平上调的程度存在差异。其中,phoA-709在藻细胞磷源代谢调控中具有关键作用。
     (4)鱼腥藻FACHB 709中四个碱性磷酸酶PhoA-709、PhoD1-709、PhoD2-709和PhoS-709都是分泌型蛋白,缺磷诱导后分泌到细胞外培养基中。
     (5)phoA-709和phoS-709在鱼腥藻FACHB 709细胞磷代谢中具有重要作用但并非必需基因;phoA-709、phoD1-709和phoS-709编码的碱性磷酸酶可能在功能上重叠或互补。
Cyanobacteria are an ancient and diverse group of microorganisms found in many different ecosystems. In a long history of adaptation to the extreme or variable environments, cyanobacteria have developed more complicated regulatory mechanisms than those of other prokaryotes. In recent years, due to the eutrophication of water bodies, cyanobacteria often form blooms, even produce toxin. It has been a worldwide environmental problem that causes public attention. The extremely strong bioavailability of cyanobacterial cells for inorganic phosphorus plays a key role in the ecological success of cyanobacteria which causes occurance of cyanobacterial blooms. Phosphorus sources are extremely rich in eutrophic waters, but inorganic phosphorus, which can be directly used by cyanobacterial and other microorganism cells is limited. Studies on the phosphorus metabolic regulation in cyanobacteria are very important to reveal the mechanism for and to monitor the outbreak of algal blooms.
     An additional filamentous nitrogen-fixing cyanobacterium, Anabeana sp. FACHB 709 (hereinafter FACHB 709), was isolated from a freshwater lake in Wuhan, China (East lake). It is closely related to Anabeana sp. PCC 7120 and able to be genetically manipulated by using conjugal transfer system. In this research, characters of growth and alkaline phosphatases activity of FACHB 709 were investigated, and then the response of the FACHB 709 alkaline phosphatases to inorganic phosphorus starvation was discovered. So, genes encoding alkaline phosphatase were identified in FACHB 709. In order to elucidate their action mechanism in phosphorus metabolic regulation, the expression, regulation and physiological function of the identified alkaline phosphatase genes in FACHB 709 were analyzed under the conditions of different phosphorus sources.
     This research mainly obtained the following results:
     (1) The growth characteristics and response of the FACHB 709 to different phosphorus were studied. The results show that inorganic phosphorus starvation induces growth cessation but not cell death. FACHB 709 increase alkaline phosphatase activity in response to the inorganic phosphorus-limiting stress. Phosphorus-starved cells can utilize G-6-P and pNPP to support some growth in the absence of inorganic phosphorus. At the same time, the absorption of organic phosphorus will partially suppress the alkaline phosphatase activity of starved cultures.
     (2) The analysis of phylogenetic tree based on the 16S rDNA sequences of FACHB 709 and several other cyanobacteria prompts that FACHB 709 is very closed to Anabeana sp. PCC 7120 and the blooms-forming alga Anabaena variabilis ATCC 29413. The DNA sequences of putative alkaline phosphatase genes in FACHB 709 were amplified and cloned, then sequenced and analyzed. The results indicate that there are four alkaline phosphatase genes, phoA-709, phoD 1-709, phoD2-709 and phoS-709 exist in FACHB 709 cells.
     (3) The recombinant plamids with lacZ transcriptional fusions were constructed and introduced into FACHB 709 via conjugal transfer, producing strains FACHB 709 (pJS795), FACHB 709 (pTH70), FACHB 709 (pTH67), FACHB 709 (pTH68) and FACHB 709 (pTH64), respectively. By determining P-galactosidase enzyme activity of these strains, transcriptional regulation of four alkaline phosphatase genes was analyaed in the presence of different concentrations of inorganic or organic phosphorus conditions. The results indicate that under inorganic phosphorus-sufficient conditions, except phoD2-709, three other alkaline phosphatase genes are functionally expressed, but all four alkaline phosphatase genes, phoA-709, phoDl-709, phoD2-709 and phoS-709 were upregulated transcription to be involved in phosphorus metabolic regulation during phosphate starving, and the performance of phoA-709 was the best.
     (4) Using the immunological methods, the expression at the protein level and location of four alkaline phosphatase genes from FACHB 709 were studied. The results show that the four alkaline phosphatase genes were upregulated and their products were secreted to the extracellular medium in the absence of inorganic phosphorus.
     (5) The phoA-709 and phoS-709-inactivated mutants, DRTH65 and DRTH61of FACHB 709 were constructed, and the investigations into the growth and physiological phenotype of mutants were focused on. The results indicate that under inorganic phosphorus-sufficient and -limiting conditions, no difference was observed in the growth rate and the alkaline phosphatase activity between the wild-type strain and the mutant DRTH65 or DRTH61. So, the lacZ transcription fusion plasmids pTH67, pTH68 and pTH64 were introduced into the mutant strain DRTH65 to obtain the strains DRTH65 (pTH67), DRTH65 (pTH68) and DRTH65 (pTH64), respectively. And similarly, the lacZ transcription fusion plasmids pTH67, pTH70 and pTH64 were introduced into the mutant strain DRTH61 to obtain the strains DRTH61 (pTH67), DRTH61 (pTH70) and DRTH61 (pTH64), respectively. By detecting theβ-galactosidase enzyme activity of these strains, the transcriptional regulation of other three active alkaline phosphatase genes was studied. The results show that to some extent, the increased expression of phoD 1-709 and phoS-709 could counteract the phoA-709 inactivation in DRTH65 under experimental conditions, and similarly, expression of phoD1-709 and phoA-709 to some extent could counteract the phoS-709 inactivation in DRTH61 under experimental conditions.
     On the basis of above results, we conclude as follows:
     (1) Inorganic phosphorus is the major form of phosphorus source and a key growth factor for the Anabaena sp. FACHB 709 cells. Cyanobacterial cells increase alkaline phosphatase activity in response to the growth inhibition of phosphate starvation-induced cells.
     (2) Anabaena sp. FACHB 709 is closely related to Anabaena sp. PCC 7120. And this strain also has the same composition and highly homologous sequences of the alkaline phosphatase genes, phoA-709, phoDl-709, phoD2-709 and phoS-709 with Anabaena sp. PCC 7120.
     (3) Inorganic phosphorus starvation induced the upregulation of four alkaline phosphatase genes, phoA-709,phoDl-709, phoD2-709 and phoS-709 from Anabaena sp. FACHB 709 at the transcription and translation levels, but the increases of their transcription levels were different from one another. phoA-709 plays a crucial role in the phosphorus metabolic regulation of the FACHB 709 cells.
     (4) The alkaline phosphatase of Anabaena sp. FACHB 709, PhoA-709、PhoD1-709、PhoD2-709 and PhoS-709 all are secreted proteins. They are induced by inorganic phosphorus starvation and released out of the cells into the medium. (5) The mutational analysis showed that phoA-709 and phoS-709 play an important role in phosphate metabolism of cyanobacteria cells but not essential genes, and the function of alkaline phosphatases encoded by the genes, phoA-709, phoDl-709 and phoS-709 probably overlap or complement each other.
引文
[1]福迪B.藻类学[Z].上海:上海科学技术出版社,1980.
    [2]Fay P. Heterotrophy and nitrogen fixation in chlorogloea fritschii[J]. J Gen Microbiol.1965,39: 11-20.
    [3]Anderson S L, Mcintosh L. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803:a blue-light-requiring process[J]. J Bacteriol.1991,173(9): 2761-2767.
    [4]Oliver R L, Ganf G G. Freshwater blooms[M]. The ecology of cyanobacteria:their diversity in time and space, Whitton B A, Potts M, Dordrecht:Kluwer Academic Publishers,2000,149-194.
    [5]Paerl H W, Tucker J, Bland P T. Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginoscl) surface blooms [J]. Limnol. Oceunogr.1983,28(5):847-857.
    [6]郑维发,曾昭琪.淡水蓝藻的高温适应[J].湖泊科学.1994(4):356-363.
    [7]Agusti S, Phlips E J. Light absorption by cyanobacteria:Implications of the colonial growth form[J]. Limnol. Oceanogr.1991,37:434-441.
    [8]Ganf G G, Oliver R L. Vertical separation of light and available nutrients as a factor causing replacement of green algae in the plankton of stratified lake[J]. Journal of Ecology.1982,70:829-844.
    [9]Paerl H W, Tucker C S. Ecology of Blue-Green Algae in Aquaculture Ponds[J]. J. World Aquaculture Society.1995,26:109-131.
    [10]Reynolds C S, Walsby A E. Water-Blooms[J]. Biol. Rev.1975,50:437-481.
    [11]Lucas W J, Berry J A. Inorganiccarbonuptake by aquaticphotosyntheticorganisms[M]. Rockville, MD:Am. Soc. Plant Physiol.,1985:229-254.
    [12]Rai A N. CRC handbook of symbiotic cyanobactria[M]. Boca Raton:CRC Press,1990:253.
    [13]Dutta D, De D, Chaudhuri S, et al. Hydrogen production by Cyanobacteria[J]. Microb Cell Fact. 2005,4:36.
    [14]Abed R M, Dobretsov S, Sudesh K. Applications of cyanobacteria in biotechnology [J]. J Appl Microbiol.2009,106(1):1-12.
    [15]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science.1983,221(4611):669-671.
    [16]Takamura N, Otsuki A, Aizaki M, et al. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan[J]. Arch Hydrobiol Beih.1992,124133:129-148.
    [17]Paerl H W, Fulton R R, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria[J]. ScientificWorldJournal.2001,1:76-113.
    [18]Xie L Q, Xie P, Li S X, et al. The low TN:TP ratio, a cause or a result of Microcystis blooms?[J]. Water Res.2003,37:2080-2973.
    [19]Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake[J]. Environ Pollut.2003,122:391-399.
    [20]王海军,王洪铸.富营养化治理应放宽控氮、集中控磷[J].自然科学进展.2009(6):599-604.
    [21]Graham L, Wilcox L. Algae[M]. London:Prentice-Hall,2000.
    [22]Robarts R D, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria[J]. N. Z. J. Mar. & Freshwat. Res.1987,21(3):391-399.
    [23]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报.2005(3):589-595.
    [24]Mur L R, Skulberg O M, Utkilen H. Cyanobacteria in the environment[M]. Toxic cyanobacteria in water, a guid to their public health consequences, monitoring and management., Chorus I, Bartram J, London and New York:E & EN Spon,1999,15-40.
    [25]钟远,金相灿,孙凌.磷及环境因子对太湖梅梁湾藻类生长及其群落影响[J].城市环境与生态.2005,18(6):32-36.
    [26]Reynolds C S. Phytoplankton periodicity:the interactions of from, function and environmental variability [J]. Freshwater Biology.1984,14:111-142.
    [27]Paerl H W, Ustach J F. Blue-green algal scums:An explanation for their occurrence during freshwater blooms[J]. Limnol. Oceanogr.1982,27(2):212-217.
    [28]钦州市环境保护局.国外蓝藻治理的相关经验[Z].2008.
    [29]百度百科.水华[Z].
    [30]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学.2008,1(20):21-26.
    [31]Dekker A G. Imaging spectrometry of water[M]. Imaging spectrometry:Basic principles and prospective applications, Van der Meer F, De Jong S, Dordrecht:Kluwer Academic,2001,307-309.
    [32]Vos R J, Brummelhuis P G J, Gerritsen H. Integrated-Data Modeling Approach for Suspended Sediment Transport on a regional scale[J]. Coastal Engineering.2000,41:177-200.
    [33]曾勇,杨志峰,刘静玲.城市湖泊水华预警模型研究——以北京“六海”为例[J].水科学进展.2007(1):79-85.
    [34]Elliott J A, Reynolds C S, Irish A E. An investigation of dominance in phytoplankton using the PROTECH model[J]. Freshwater Biology.2001,46:99-108.
    [35]韩新芹,叶麟,徐耀阳,等.香溪河库湾春季叶绿素a浓度动态及其影响因子分析[J].水生生物学报.2006(1):89-94.
    [36]徐恒省,洪维民,王亚超,等.太湖蓝藻水华预警监测技术体系的探讨[J].中国环境监测.2008,2(24):63-65.
    [37]朱光灿,吕锡武.藻毒素在传统净水工艺中的去除特性[J].环境化学.2002,6(21):584-589.
    [38]Who. Cyanobacterial toxins:Microcystin-LR. WHO Guidelines for Drinking Water Quality[S]. Geneva,1998.
    [39]Belkin S. Microbial whole-cell sensing systems of environmental pollutants[J]. Curr Opin Microbiol.2003,6(3):206-212.
    [40]Shao C Y, Howe C J, Porter A J, et al. Novel cyanobacterial biosensor for detection of herbicides[J]. Appl Environ Microbiol.2002,68(10):5026-5033.
    [41]Kostrzynska M, Leung K, Lee H, et al. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds[J]. J Microbiol Methods.2002,48:43-51.
    [42]Hansen L H, Sorensen S J. Versatile biosensor vectors for detectionand quantification of mercury[J]. FEMS Microbiology Letters.2000,193:123-127.
    [43]Applegate B M, Kehrmeyer S R, Sayler G S. A Chromosomally Based tod-luxCDABE Whole-Cell Reporter for Benzene, Toluene, Ethybenzene, and Xylene (BTEX) Sensing[J]. Appl. Environ. Microbiol.1998,64(7):2730-2735.
    [44]Valtonen S J, Kurittu J S, Karp M T. A luminescent Escherichia coli biosensor for the high throughput detection of β2 lactams[J]. J Biomolecular Screening.2002,7(2):127-134.
    [45]Mbeunkui F, Richaud C, Etienne A, et al. Bioavailable nitrate detection in water by an luminescent cyanobacterial reporter strain[J]. Appl. Microbiol. Biotechnol.2002,60:306-312.
    [46]Gillor O, Harush A, Hadas O, et al. A cyanobacterial glnA-lux fusion for assessment of nitrogen bioavailability in a freshwater lake[J]. Appl. Environ. Microbiol.2003,69:1465-1474.
    [47]Gillor O, Hadas O, Post F A, et al. Phosphorus bioavailability monitoring by a luminescent cyanobacterial sensor strain[J]. J Phycol.2002,38:107-115.
    [48]Harms H, Wells M, van der Meer J. Whole-cell living biosensors—are they ready for environmental application?[J]. Appl. Microbiol. Biotechnol.2006,70:273-280.
    [49]Allan I, Vrana B, Greenwood R, et al. A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive[J]. Talanta.2006,69:302-322.
    [50]Wetzel R. Limnology-Lake and river ecosystems. Third edition. [M]. New York:Academic Press, 2001:266-269.
    [51]Ritchie R, Donelle A, Larkum A. Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid, opportunistic uptake of phosphate[J]. New Phytol.2001,152:189-201.
    [52]Dignum M, Matthijs H C P, Pel R, et al. Nutrient limitation of freshwater cyanobacteria[M]. Harmful Cyanobacteria, Huisman J, Matthijs H C P, Visser P M, Netherlands:Springer,2005.
    [53]Rao N N, Torriani A. Molecular aspects of phosphate transport in Escherichia coli.[J]. Molecul. Microbiol.1990,4:1083-1090.
    [54]Ault-Riche D, Fraley C D, Tzeng C M, et al. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli[J]. J. Bacteriol.1998,180: 1841-1847.
    [55]Jahid I K, Silva A J, Benitez J A. Polyphosphate Stores Enhance the Ability of Vibrio cholerae To Overcome Environmental Stresses in a Low-Phosphate Environment[J]. Appl. Environ. Microbiol. 2006,72(11):7043-7049.
    [56]Ostroff R M, Wretlind B, Vasil M L. Mutations in the hemolytic-phospholipase-C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions[J]. Infect. Immun.1989,57:1369-1373.
    [57]Sinai A P, Bavoil P M. Hyper-invasive mutants define a novel pho-regulated invasion pathway in Escherichia coli. [J]. Mol. Microbiol.1993,10:1125-1137.
    [58]Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol:anionic membrane lipids and phosphate regulation[J]. Curr. Opin. Plant Biol.2004,14:47-77.
    [59]Orchard E D, Webb E A, Dyhrman S T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp.[J]. Environ. Microbiol.2009,11(9):2400-2411.
    [60]Degerholm J, Gundersen K, Bergman B, et al. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp.[J]. FEMS Microbiol. Ecol.2006,58: 323-332.
    [61]Grillo J F, Gibson J. Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus[J]. J Bacteriol.1979,140:508-517.
    [62]Makino K, Amemura M, Kim S, et al. Mechanism of transcriptional activation of the phosphate regulon in Escherichia coli[M]. Phosphate in Microorganisms:Cellular and Molecular Biology, Torriani-Gorini A, Washington:Am. Soc. Microbiol.,1994,5-12.
    [63]Hulett F M. The Signal Transduction Network for Pho Regulation in Bacillus subtilis[J]. Mol. Microbiol.1996,19:933-939.
    [64]Ray J M, Bhaya D, Block M A, et al. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942[J]. J Bacteriol.1991,173: 4297-4309.
    [65]Luo M, Guo Y, Deng J. Characterization of a Monomeric Heat-Labile Classical Alkaline Phosphatase from Anabaena sp. PCC7120[J]. Biochem. (Moscow).2010,75(5):655-664.
    [66]Hirani T A, Suzuki I, Murata N, et al. Characterization of a Two-Component Signal Transduction System Involved in the Induction of Alkaline Phosphatase under Phosphate-limiting Conditions in Synechocystis sp. PCC 6803[J]. Plant Mol. Biol.2001,45(2):133-144.
    [67]Magbanua J, Fujisawa K, Ogawa N, et al. The Homeodomain Protein Pho2p Binds at an A/T-Rich Segment Flanking the Binding Site of the Basic Helix-Loop-Helix Protein Pho2p in the Yeast Pho Promoters[J]. Yeast.1997,14:1299-1308.
    [68]Osorio G, Jerez C A. Adaptive Response of the Archaeon Sulfolobus acidocaldarius BC65 to Phosphate Starvation[J]. Microbiology (UK).1996,142:1531-1536.
    [69]Jh B, Sy L. Novel gene members in the Pho regulon of Escherichia coli[J]. FEMS Microbiol. Lett. 2006,264:104-109.
    [70]VanBogelen RA, Olson E R, Wanner B L, et al. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli[J]. J. Bacteriol.1996,178:4344-4366.
    [71]Makino K, Shinagawa H, Amemura M, et al. Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro[J]. J Molecul. Biol.1988,203:85-95.
    [72]Makino K, Shinagawa H, Amemura M, et al. Signal transduction in the phosphate regulon of Escherichia colunvolves phosphotransfer between PhoR and PhoB proteins[J]. J Molecul. Biol.1989, 210:551-559.
    [73]Vershinina O A, Znamenskaia L V. The Pho regulons of bacteria. [J]. Microbiol.2002,71: 497-511.
    [74]Wanner B L. Multiple Controls of the Escherichia coli Pho Regulon by the Pi Sensor PhoR, the Catabolite Regulatory Sensor CreC, and Acetyl Phosphate[M]. Phosphate in Microorganisms:Cellular and Molecular Biology, Torriani-Gorini A, Washington:Am. Soc. Microbiol.,1994,13-21.
    [75]Hirofumi A, Masahiro N, Takeshi M. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation[J]. Molecul. Microbiol.1993,18(1):81-91.
    [76]Nagaya M, Aiba H, Mizuno T. The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter[J]. J Bacteriol.1994,176:2210-2215.
    [77]Hirani T, Suzuki I, Murata N, et al. Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803[J]. Plant Molecul. biol.2001,45:133-144.
    [78]Juntarajumnong W, Incharoensakdi A, Eaton-Rye J J. Identification of the start codon for sphS encoding the phosphate-sensing histidine kinase in Synechocystis sp. PCC 6803[J]. Curr. Microbiol. 2007,55:142-146.
    [79]Juntarajumnong W, Hirani T A, Simpson J M, et al. Phosphate sensing in Synechocystis sp. PCC 6803:SphU and the SphS-SphR two-component regulatory system.[J]. Arch. Microbiol.2007,188: 389-402.
    [80]Kimura S, Shiraiwa Y, Suzuki I. Function of the N-terminal region of the phosphate-sensing histidine kinase, SphS, in Synechocystis sp. PCC 6803[J]. Microbiol.2009,155(Pt 7):2256-2264.
    [81]Su Z C, Olman V, Xu Y. Computational prediction of Pho regulons in cyanobacteria[J]. BMC Genomics.2007,8:156.
    [82]Tetu S G, Brahamsha B, Johnson D A. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102.[J]. The ISME Journal.2009,3:835-849.
    [83]Howell A, Dubrac S, Noone D, et al. Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis:the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation[J]. Molecul. Microbiol.2006,59(4):1199-1215.
    [84]Tommassen J. Expression of the Outer Membrane PhoE Protein in Escherichia coli K12 [M]. Phosphate Metabolism and Cellular Regulation in Microorganisms, Torriani-Gorini A, Washington:Am. Soc. Microbiol.,1987,26-30.
    [85]Rao N N, Torriani A. Utilization by Escherichia coli of a High-Molecular-Weight, Linear Polyphosphate:Roles of Phosphatases and Pore Proteins[J]. J. Bacteriol.1988,170:5216-5223.
    [86]Yang K, Metcalf W W. A new activity for an old enzyme:Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase[J]. PNAS.2004,101:7919-7924.
    [87]Baek J H, Lee S Y. Transcriptome analysis of phosphate starvation response in Escherichia coli[J]. J Microbiol. Biotechnol.2007,17:244-252.
    [88]Ostrowski M, Mazard S, Tetu S G, et al. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus[J]. The ISME Journal.2010,4:908-921.
    [89]Krol E, Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011[J]. Mol. Gen. Genomics.2004,272:1-17.
    [90]Allenby N E E, O Connor N, Pra Gai Z, et al. Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of Bacillus subtilis[J]. J. Bacteriol.2005,187(23):8063-8080.
    [91]Rodriguez-Garcia A, Barreiro C, Santos-Beneit F, et al. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DphoP mutant[J]. Proteomics.2007,7:2410-2429.
    [92]Lian W, Jayapal K P, Charaniya S, et al. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2)[J]. BMC Genomics.2008,9(56).
    [93]Vera M, Guiliani N, Jerez C A. Proteomic and genomic analysis of the phosphate starvation response ofAcidithiobacillus ferrooxidans[J]. Hydrometallurgy.2003,71:125-132.
    [94]Fuszard M A, Wright P C, Biggs C A. Cellularacclimation strategies ofa minimal picocyanobacterium to phosphate stress[J]. FEMS Microbiol. Lett.2010,306:127-134.
    [95]Coleman J E, Gettins P. Alkaline phosphatase, solution structure, and mechanism[M]. Advances in enzymology and related areas of molecular biology, Meister A, Hoboken, NJ, USA:John Wiley & Sons, Inc,1983:55,381-452.
    [96]Gottlieba A J, Sussman H H. Human placental alkaline phosphatase:Molecular weight and subunit structure[J]. BBA-Protein Structure.1968,160(2):167-171.
    [97]Garen A, Levinthal C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. Coli I. Purification and characterization of alkaline phosphatase[J]. BBA.1960,38: 470-483.
    [98]De P P, Loveland-Curtze J, Brenchley J. Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain[J]. Appl. Environ. Microbiol.1996,62:3732-3738.
    [99]Vincent J B, Crowder M W, Averill B A. Hydrolysis of phosphate monoesters:A biological problem with multiple chemical solutions[J]. Trends Biochem. Sci.1992,17:105-110.
    [100]O'Brien P J, Herschlag D. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.[J]. Biochemistry.2001,40: 5691-5699.
    [101]Cathala G, Brunel C. Bovine Kidney Alkaline Phosphatase. Purification, subunit structure, and metalloenzyme properties[J]. J Biol. Chem.1975,250(15):6040-6045.
    [102]Dhaked R K, Alam S I, Dixit A, et al. Purification and characterization of thermo-labile alkaline phosphatase from an Antarctic psychrotolerant Bacillus sp. P9[J]. Enzyme and Microbial Technology. 2005,36:855-861.
    [103]盛小禹,王曦,高静波,等.嗜热细菌的碱性磷酸酯酶的研究[J].生物化学杂志.1997,13(6):672-676.
    [104]Block M A, Grossman A R. Identification and Purification of a Derepressible Alkaline Phosphatase from Anacystis nidulans R2[J]. Plant Physiol.1988,86:1179-1184.
    [105]Heppel L A, Harkness D R, Hilmoe R J. A Study of the Substrate Specificity and Other Properties the Alkaline Phosphatase of Escherichia coli [J]. J Biol. Chem.1962,237(3):841-846.
    [106]Murphy J E, Kantrowitz E R. Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases?[J]. Molecul. Microbiol.1994,12:351-357.
    [107]严盈,彭露,刘万学,等.昆虫碱性磷酸酶的研究进展[J].昆虫学报.2009,52(1):95-105.
    [108]Reid R, Wilson J. E. coli alkaline phosphatase[M]. The Enzymes, Boyer P, New York:Academic Press,1971:4,373-415.
    [109]Eder S, Shi L, Jensen K, et al. A Bacillus subtilis secreted phosphodiesterasel/alkaline phosphatase is the product of a Pho regulon gene, phoD[J]. Microbiol.1996,142:2041-2047.
    [110]von Kruger W M A, Lery L M S, Soares M R, et al. The phosphate-starvation response in Vibrio cholerae 01 and phoB mutant under proteomic analysis:disclosing functions involved in adaptation, survival and virulence[J]. Proteomics.2006(6):1495-1511.
    [111]Majumdar A, Ghatak A, Rk G. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup 01 strain[J]. Gene.2006(344):251-258.
    [112]Kim E E, Wyckoff H W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis[J]. J Mol Biol.1991(218):449-464.
    [113]Monds R D, Newell P D, Schwartzman J A, et al. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1[J]. Appl Environ Microbiol.2006,72:1910-1924.
    [114]Guibault G G. Handbook of Enzymatic Methods of Analysis[M]. New York and Basel:Marcel Dekker, Inc.,1976.
    [115]张晓龙,秦阳.酵母菌碱性磷酸酶的分离及部分性质研究[J].安徽农学通报.2008,14(8):93-95.
    [116]Boavida M, Hamza W, Ruggiu D, et al. Eutrophication:alkaline phosphatase revisited[J]. Mem.Ist. ital. Idrobiol.1997,56:15-21.
    [117]Kageyama H, Tripathi K, Rai A, et al. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium.[J]. Appl. Environ. Microbiol.2011,15(77):5178-5183.
    [118]Sebastian M, Ammerman J W. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA[J]. The ISME Journal.2009,3:563-572.
    [119]Kathuria S, Martiny A C. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria[J]. Environ. Microbiol.2011(13): 74-83.
    [120]Munoz-Martin M A, Mateo P, Leganes F, et al. Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes ofAnabaena sp. PCC 7120[J]. Anal Bioanal Chem.2011,400:3573-3584.
    [121]Degerholm J, Gundersen K, Bergman B, et al. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp.[J]. FEMS Microbiol. Ecol.2006,58: 323-332.
    [122]Wanner B L. Phosphorus assimilation and control of the phosphate regulon.[M]. Escherichia coli and Salmonella:Cellular and Molecular Biology, Neidhardt F, Curtiss R I, Ingraham J, et al, Washington, DC:ASM Press,1996,1357-1381.
    [123]Song L. FACHB-collection:general introduction and the strain list[J]. Acta. Hydrobiol. Sin.1999, 23(suppl):537-546.
    [124]宁德刚.鱼腥藻PCC7120异形胞分化的分子遗传学研究[D].中国武汉:中科院水生所,2003.
    [125]余利红,郭厚良,徐旭东.表达lac和glk基因的蓝藻的异养生长[J].水生生物学报.2002,26(4):363-368.
    [126]Rippka R, Deruelles J, Waterburry J B, et al. Generic assignment, strain histories and properties of pure cultures of cyanobacteria.[J]. Journal of General Microbiology.1979,111:1-61.
    [127]Adams M M, Gomez-Garcia M R, Grossman A R, et al. Phosphorus Deprivation Responses and Phosphonate Utilization in a Thermophilic Synechococcus sp. from Microbial Mats[J]. J. Bacteriol. 2008,190(24):8171-8184.
    [128]Pandey M, Tiwari D N. Characteristics of alkaline phosphatase in cyanobacterial strains and in an APasedef mutant of Nostoc muscorum[J]. World Journal of Microbiology & Biotechnology.2003,19: 279-284.
    [129]Li H M, Veldhuis J W, Post A F. Alkaline Phosphatase activities among planktonic communities in the northern Red Sea[J]. Mar. Ecol. Prog. Ser.1998(173):107-115.
    [130]Gage M A, Gorham E. Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes[J]. Freshwater Biology.1985,2(15):227-233.
    [131]Nubel U, Garcia-Pichel F, Muyzer G. PCR Primers To Amplify 16S rRNA Genes from Cyanobacteria[J]. Appl. Environ. Microbiol.1997,8(63):3327-3332.
    [132]Cai Y P, Wolk C P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. Journal of Bacteriology [J]. J Bacteriol.1990, 172:3138-3145.
    [133]Stackebrandt E, Goebel B M. Taxonomic Note:A Place for DNA-DNA Reassociation and 16s rRNA Sequence Analysis in the Present Species Definition in Bacteriology [J]. International Journal of Systematic Bacteriology.1994,4(44):846-849.
    [134]Bendtsen J D, Kiemer L, Fausb(?)ll A, et al. Non-classical protein secretion in bacteria[J]. BMC Microbiology.2005,58(5).
    [135]Torriani A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli.[J]. Biochim. Biophys. Acta.1960,38:460-469.
    [136]Gao H, Xu X. Construction of copper induced gene expression platform in Synechosystis sp. PCC6803[J]. Acta Hydrobiologica Sinica.2007,31:240-244.
    [137]Wang Y, Xu X. Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120[J]. J. Bacteriol.2005,187:8489-8493.
    [138]萨姆布鲁克J.,拉塞尔D.W.分子克隆试验指南[M].第三版.北京:科学出版社,2002.
    [139]Elhai J, Wolk C P. Conjugal transfer of DNA to cyanobacteria[J]. Method Enzymol.1988, 167(747-754).
    [140]Wang Y, Xu X. Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120[J]. J Bacteriol.2005(187):8489-8493.
    [141]Underwood A J. Experiments in Ecology:Their Logical Design and Interpretation Using Analysis of Variance[M]. Cambridge:Cambridge University Press,1997.
    [142]Yamane K, Maruo B. Purification and Characterization of Extracellular Soluble and Membrane-Bound Insoluble Alkaline Phosphatases Possessing Phosphodiesterase Activities in Bacillus subtilis[J]. J. Bacteriol.1978,134(1):100-107.
    [143]Simpson R J. Proteins and proteomics:a laboratory manual[Z].科学出版社,2003.
    [144]Spijkerman E, Coesel P F M. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope[J]. Freshwater Biology.1998,39(3):503-513.
    [145]Wang J, Liu B, Guo N, et al. Alkaline Phosphatase Activity in Four Microcystis aeruginosa Species and Their Responses to Nonylphenol Stress[J]. Bull. Environ. Contam. Toxicol.2006,76:999-1006.
    [146]Baneyx F. Recombinant Protein Expression in Escherichia coli[J]. Curr. Opin. Biotechnol.1999, 10:411-421.
    [147]Palenik B, Brahamsha B, Larimer F W, et al. The genome of a motile marine Synechococcus[J]. Nature.2003,424:1037-1042.
    [148]Rubartelli A, Cozzolinol F, Talio M, et al. A novel secretory pathway for interleukin-lfl, a protein lacking a signal sequence[J]. The EMBO Journal.1990,9(5):1503-1510.
    [149]Stinchcombe J, Bossi G, Griffiths G M. Linking albinism and immunity:the secretory lysosomes [J]. Science.2004,305(5680):55-59.
    [150]Elhai J, Wolk C P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers[J]. Gene.1988,68:119-138.
    [151]Black T A, Cai Y, Wolk C P. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena[J]. Mol. Microbiol.1993,9:77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700