LD端面泵浦连续Nd:GdVO_4激光的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管(laser diode, LD)泵浦的固体激光器集半导体激光器和固体激光器的优势于一体,在民用、军事等领域有重要而广泛的应用,是新一代的优质相干光源,也是激光技术的重要发展领域。其中LD端面泵浦固体激光器系统因其结构紧凑、转换效率高、空间模式好等特点而受到广泛关注。Nd:GdVO4晶体,作为一种较新型的激光材料,其优良的光学和热学特性使之成为一种非常适合LD泵浦的激光晶体,尤其适合于高功率运转。
     本论文发展了LD端面泵浦连续激光的理论计算方法,并对LD端面泵浦的连续Nd:GdVO4激光特性进行了理论模拟研究。首先在不考虑热效应的情况下,对端泵1063 nm(四能级结构)连续Nd:GdVO4激光进行了数值模拟;然后详细计算了端泵方式下Nd:GdVO4晶体中的热效应问题;最后在考虑热效应的情况下,分别对高功率LD端泵Nd:GdVO4 1063 nm和准三能级结构的912 nm连续激光进行了数值模拟研究,详细讨论了较高功率情况下激光器参数对激光输出特性和热效应的影响规律。
     本论文的研究工作,为高功率LD端面泵浦的连续激光研究探索出一种更加合理的理论计算方法,也有助于对Nd:GdVO4激光动力学过程的深入了解,为实际激光系统和器件的优化设计提供理论参考。
Laser-diode (LD)-pumped solid-state laser combines the advantages of semiconductor laser with those of solid-state laser. It has important applications in civil and military fields, and has become a new generation of coherent source of high quality. In particular, much attention has been paid to the LD end-pumped solid-state laser owing to its compactness, high conversion efficiency and good mode. In order to provide effective theoretical guidelines for experimental design, it is very necessary to theoretically study in detail the performance of LD end-pumped solid-state laser. In the theoretical models previously reported, there are some obvious limitations in the procedure of calculations for laser behaviors and thermal effects. In the present thesis, we developed a theoretical method for simulating LD end-pumped continuous wave (CW) lasers. Taking a newer laser crystal Nd:GdVO4 as the laser medium, we presented numerical simulations on the LD end-pumped CW Nd:GdVO4 laser and the thermal effects in the crystal, and discussed the cavity parameters influencing the laser operation with a view to optimizing laser performance. The thesis consists of the four parts: as follows
     Firstly, numerical simulations on end-pumped 1063 nm (four-level system) CW Nd:GdVO4 laser without consideration of thermal effects.
     In this part, we presented a more reasonable theoretical model for end-pumped CW laser, in which the rate equations and propagation equations have been employed, and the point-by-point iteration method has been used to numerically solve these equations. Since the propagation equations could demonstrate the spatial evolutions of the pump and the laser powers in the cavity, our model will be applicable to both low- and high-gain lasers.
     With this theoretical model the performance of end-pumped 1063 nm CW Nd:GdVO4 laser was numerically simulated. The good agreement between the calculated and the published experimental data validated our theoretical model. In addition, we investigated the influences on laser performance from some parameters including the reflectivity of output coupler, the spot size of laser beam and the crystal length, and the optimum parameter values were obtained. The optimum output reflectivity R2 opt is a decreasing function of the incident pump power; the optimum spot-size ratioαopt between the laser and pump beams is an increasing function of the incident power, and under higher pump power it is larger than unity; the optimum crystal length lo pt for Nd:GdVO4 hardly changes with the incident power.
     Secondly, theoretical calculations on thermal effect in LD end-pumped CW Nd:GdVO4 laser.
     At first we introduced the theoretical methods for thermal effect in laser medium. And then taking Nd:GdVO4 as an example, we calculated the thermal effects in 1063 nm laser, including numerically solving the steady-state heat-conduction equation by the finite difference method to obtain temperature distribution in the crystal, with the temperature distribution calculating the optical path difference generating when the cavity mode passing through the medium, determining the thermal lens focal length by fitting the optical path difference to a parabolic reference surface, with the Strehl intensity ratio estimating the thermally-induced diffraction loss. From the calculated results, one can see the influences of some parameters, such as incident pump power, spot sizes of pump and laser beams, focal position of pump beam and so on, on the thermal effects, from which some methods for mitigating thermal effects were inspired. A larger waist radius of pump beam can effectively mitigate thermal effects in the crystal; Shift of pump beam focus from the surface into interior of the medium can reduce the end-face temperature; diminishing of the spot size of laser cavity mode especially less than that of pump beam is helpful to reduce the thermally induced diffraction loss and to improve laser beam quality; uniformity of transverse intensity distribution of pump beam through reshaping can also relieve thermal effects.
     Thirdly, numerical simulations on high-power LD end-pumped 1063 nm CW Nd:GdVO4 laser by considering thermal effects.
     For high-power LD-pumped solid-state lasers, the thermal effects in laser medium are the main limitation factor for stepping up output power. Therefore, it is crucial to include thermal effects into theoretical studies of this kind of laser. In this part, we presented a more reasonable calculation method considering thermal effects for simulating high-power LD end-pumped CW lasers. The advantage of our model is the entire considerations for the pump absorption saturation and the interactions between thermal effects and laser oscillation. As a result, it is applicable to both the case of lasing including three-level and four-level systems and the case of nonlasing.
     With this theoretical model we simulated the performance of high-power LD end-pumped 1063 nm CW Nd:GdVO4 laser, and meanwhile we obtained the results of thermal effects. The calculated results and the published experimental data agreed well with each other. In order to provide guidelines for resonator design, we investigated the input-output characteristics for different cavity lengths. It is found that a too short or long cavity is not favorable to achieve higher-efficient laser output. Also we investigated the relationship between the optimum spot-size ratio ( )ωsωpaopt and the incident pump power with and without thermal effects included. It can be seen that ( )ωsωpaopt without thermal effects included is an increasing function of the pump power and it is larger than unity for slightly high pump power. In contrast, ( )ωsωpaoptincluding thermal effects is a decreasing function of pump power and it is less than unity for slightly high pump power.
     Fourthly, numerical simulations on LD end-pumped 912 nm (quasi-three-level system) CW Nd:GdVO4 laser.
     According to the characteristics of a quasi-three-level system, some changes have to been made in the theoretical model included thermal effects. Here we investigated the case that the pump beam passes twice through laser medium. Because of the lower efficiency for 912 nm laser, the heat generation in the medium cannot be completely attributed to the quantum defect. Therefore, according to the definition of the laser extraction efficiencyηl, we made use of laser intensity and population density to determineηl and hence the fractional thermal loadingηh. Then a numerical simulation on LD end-pumped 912 nm CW Nd:GdVO4 laser was performed. And a good agreement between the calculated results and the published experimental data was achieved. By comparing the calculated results for two-pass pumping with those for one-pass case, it is found that the slope efficiency for the latter was much lower than that for the former. We also calculated the axial and the transverse distributions of the fractional thermal loading, and the results indicated that it is very necessary to calculate in detail the fractional thermal loading for a quasi-three-level system.
     The studies in this thesis presented a more reasonable theoretical method for LD end-pumped CW lasers. They are helpful to a better understanding for the kinetic behaviours of CW Nd:GdVO4 laser, and to theoretical guidelines for optimizing design of the practical laser system.
引文
[1]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007.
    [2] Newman R. Excitation of Nd fluorescence in CaWO4 by recombination radiation in GaAs [J]. J. Appl. Phys., 1963, 34: 437.
    [3] Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Phys. Rev. Lett., 1962, 9: 366-368.
    [4] Nathan M I, Dumke W P, Burns G, et al. Stimulated emission of radiation fromGaAs p-n junction [J]. Appl. Phys. Lett., 1962, 1: 62-64.
    [5] Holonyak N, Bevacaua S F. Coherent (visible) light emission from Ga (As1-xPx) junctions [J]. Appl. Phys. Lett., 1962, 1: 82-83.
    [6] Quist T M, Rediker R H, Keyes R J, et al. Semiconductor maser of GaAs [J]. Appl. Phys. Lett., 1962, 1: 91-92.
    [7] Keyes R J, Quist T M. Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers [J]. Appl. Phys. Lett., 1964, 4 (3): 50-52.
    [8] Ross M. YAG laser operation by semiconductor laser pumping [C]. Proc IEEE, 1968, 56: 196.
    [9] Ostermayer F W, Allen R B, Dierschike E G. Room-temperature CW operation of a GaAs1-xPx diode-pumped YAG:Nd laser [J]. Appl. Phys. Lett., 1971, 19: 289-292.
    [10] Dnielmeyer H G, ostermayer F W. Diode-pump-modulated Nd:YAG laser [J]. J. Appl. Phys., 1972, 43: 2911-2913.
    [11] Barnes N P. Diode-pumped solid-state lasers [J]. J. Appl. Phys., 1972, 44: 230-237.
    [12] Rosenkrantz L J. Gas diode-pumped Nd:YAG laser [J]. J. Appl. Phys., 1973, 43: 4603-4605.
    [13] Chesler R B, Draegert D A. Miniature diode-pumped Nd:YAG lasers [J]. Appl. Phys. Lett., 1973, 23 (5): 235-236.
    [14] Draegert D A. Single-diode end-pumped Nd:YAG laser [C]. IEEE J. Quantum Electron., 1973, QE-9: 1146-1149.
    [15] Washio K, Iwamoto K, Inoue K, et al. Room-temperature CW operation of an efficient miniaturized Nd:YAG laser end-pumped by a superluminescent diode [J]. Appl. Phys. Lett., 1976, 29: 720-722.
    [16] Farmer G I, Kiang Y C. Low-current- density LED-pumped Nd:YAG laser using a solid cylindrical reflector [J]. J. Appl. Phys., 1974, 45: 1356-1371.
    [17] Chesler E B, Singh. Performance model for end-pumped miniature Nd:YAG laser [J]. J. Appl. Phys., 1973, 44: 5441-5443.
    [18] Weber H P, Damen t C, Damielmeyler H G, et al. Nd-ultraphoshpate laser [J].Appl. Phys. Lett., 1973, 22: 534-536.
    [19] Saruwatari M, Kimura T, Otsuka K. Miniaturized cw LiNdP4O12 laser pumped with a semiconductor laser [J]. Appl. Phys. Lett., 1976, 29: 291-293.
    [20] Stone J, Bruurs C A. Neodymium-doped fiber laser: Room temperature CW operation with an injection laser pump [J]. Appl. Opt., 1974, 13: 1256-1258.
    [21] Stone J, Burrus C A, Dentai A G, et al. Nd:YAG single-crystal fiber laser: Room temperature CW operation using a single LED as an end pump [J]. Appl. Phys. Lett., 1976, 29: 37-39.
    [22] Stone J, Burrus C A. Nd:Y2O3 single-crystal fiber laser: room-temperature CW operation at 1.07-and 1.35μm wavelength [J]. J. Appl. Phys., 1978, 49 (4): 2281-2287.
    [23] Stone J, Burrus C A. Self-contained LED-pumped single crystal Nd:YAG fiber laser [J]. Fiber Integrated Opt., 1979, 2: 19-46.
    [24] Kubodera K, Otsuka K. Spike-mode oscillations in laser-diode pumped LiNdP4O12 lasers [C]. IEEE J. Quantum Electron., 1981, QE-17: 1139-1144.
    [25] Chinn S R, Zwicker W K. FM mode-locked Nd0.5La0.5P5O14 laser [J]. Appl. Phys. Lett., 1979, 34: 847-849.
    [26] Otsuka K, Tarucha S, Kubodera K, et al. Gigabit optical pulse generations [G] // Integrated lasers in Picosecond Lasers and Applications. Proc. SPIE, 1982, 322: 172-180.
    [27] Sipes D L. Highly efficient neodymium: yttrium aluminum garnet laser end pumped by a semiconductor laser array [J]. Appl. Phys. Lett., 1985, 47: 74-76.
    [28] Berger J, Welch D F, Scifries D R, et al. 370 mW 1.06μm CE TEM00 output from a Nd:YAG laser rod end pumped by a nonolithic diode array [C] // Post-deadline Paper, Conf Lasers Electro-Opt, Opt Soc, Amer Washing DC, 1987, paper ThT10.
    [29] Baer T. Laser diode array pumping of solid-state lasers [C] // Tech Dig Conf Lasers Electro-Opt, Opt Soc, Amer Washington DC, 1986, paper WG3.
    [30] Kimball-Linne M, Bear T. Q-switching of diode-pumped solid-state laser [C] // Tech Dig Conf Lasers Electro-Opt, Opt Soc, Amer Washington DC, 1987, paper Ws4.
    [31] Ferguson A I. Optically pumped Q-switching micro-YAG lasers [C] // Tech Dig Conf Lasers Electro-Opt, Opt Soc, Amer Washington DC, 1987, paper Ws3.
    [32] Bash S, Byer R L. Diode-laser-pumped mode-locked Nd:glass laser [C] // Tech Dig Conf Lasers Electro-Opt, Opt Soc, Amer Washington DC, 1987, paper Wn3.
    [33] Fan T Y, Dixon G J, Buer R L. Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047μm with intracavity doubling to 532.6 nm [J]. Opt. Lett., 1986, 11: 204-206.
    [34] Cordova-Plaza A, Fan T Y, Digonnet M F, et al. Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode [J]. Opt. Lett., 1988, 13: 209-211.
    [35] Fan T Y, Cordova-Plaza A, Digonnet M F, et al. Nd:MgO:LiNbO3 spectroscopy and laser devices [J]. J. Opt. Soc. Am. B, 1987, 3: 140-148.
    [36] Fields R A, Birnbaum M, Fincher C L. Highly efficient diode-pumped Nd:crystal lasers [C] // Tech Dig Conf Lasers Electro-Opt, Opt Soc, Amer Washington DC, 1987, paper FL4.
    [37] Allen R, Esterowitz L, Goldberg L, et al. Diode-pumped 2μm holmium laser [J]. Election. Lett., 1986, 22: 947.
    [38] Fan T Y, Byer R L. Continuous wave operation of a room temperature diode laser-pumped 946 nm Nd:YAG laser [J]. Opt. Lett., 1987, 12: 809-811.
    [39] Kintz G J, Allen R, Esterowitz L. CW and pulsed 2.8μm laser emission from diode-pumped Er3+:LiYF4 at room temperature [J]. Appl. Phys. Lett., 1987, 50: 153-155.
    [40] Baer T, Keirstead M S. Intracavity doubling of a Nd:YAG laser pumped by a laser diode array [C] // Post-deadline Paper, Conf Lasers Electro-Opt, Opt Soc, Amer Washing DC, 1985, paper ThZZI.
    [41] Trutna W R, Donald D K, Nazarathy M. Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field [J]. Opt. Lett., 1987, 12: 248-250.
    [42] Risk W P, Lenth W. Room temperature CW 946 nm Nd:YAG laser pumped by laser-diode-array and intracavity frequency doubling to 473 nm [J]. Opt. Lett., 1987, 12: 993-995.
    [43] Risk W P, Baumert J C, Bjorklund G C, et al. Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet lasers [J]. Appl. Phys. Lett., 1988, 52: 85-87.
    [44] Comaskey R, Beach R, Mundinger D, et al. Diode Pumped 70Watt Anerage Power Nd:YAG Laser [C] // OSA Proceedings on Advanced Solid-State Lasers. G Dube and L Chase, eds (Optical Society of America, Washington, DC, 1991), col. 10: 251-254.
    [45] Yasui K. Efficient and stable operation of a high-brightness CW 500 W Nd:YAG rod laser [J]. Appl. Opt., 1996, 35: 2566-2569.
    [46] Honea E C, Beach R J, Mitchell S G, et al. High-Power dual-rod Yb:YAG laser [J]. Opt. Lett., 2000, 25 (11): 805-807.
    [47] Fujikawa S, Furuta K, Yasui K. 28% electrical-efficiency operation of a diode-side-pumped Nd:YAG rod laser [J]. Opt.,Lett., 2001, 26 (9): 602-604.
    [48] Giesen A, et al. Laser Opto., 1999, 31: 36.
    [49] Pierre R J St, Mordaunt D W, Jacqueline HJ, et al. Diode array pumped kilowatt laser [C]. SPIE 3264, 1998.
    [50] Pask H M, Archambault J L, Hanna D C, et al. Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1μm region [J]. Electron. Lett., 1994, 20 (11): 863-865.
    [51] Wen W Q, Yao J Q, Wang T, et al. LD pumped Nd:YAG/KTP Q-CW red laser with 12W power [J]. J. Photoelectron Laser, 2005, 16 (3): 271-273.
    [52] Jaque D. Self-frequency-sum mixing in Nd doped nonlinear crystals for laser generation in the three fundamental colours: the NYAB case [J]. Journal of Alloys and Compounds, 2001, 323-324, 204-209.
    [53]郭丽,姚键铨,禹国俊,等.百瓦级全固态绿光激光器的实验研究[J].光子学报,2004,33(9):1025-1027.
    [54]王鹏,姚键铨,徐德刚,等.天津大学激光与光电子研究所研制成功104 W全固态532nm绿光激光器[J].激光杂志,2003,24(4):3.
    [55] Risk W P, Lenth W. Room temperature CW 946 nm Nd:YAG laser pumped by laser-diode-array and intracavity frequency doubling to 473 nm [J]. Opt. Lett., 1987, 12 (12): 993-995.
    [56] Xue Q H, Zheng Q, Bu Y K, et al. High power efficient diode pumped Nd:YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power [J]. Opt. Lett., 2006, 31 (8): 1070-1071.
    [57]李志刚.二极管泵浦固体激光器及放大器的研究[D].武汉:华中科技大学,2004.
    [58]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2002.
    [59]克希耐尔. W.固体激光工程[M].北京:科学出版社,2002.
    [60] Born M, Wolf E. Principles of Optics [M]. Oxford, U.K.: Pergamon, 1975.
    [61] Siegman A E. Analysis of laser beam quality degradation caused by spherical aberration [J]. Appl. Opt., 1993, 32: 5893-5901.
    [62] Chen Y F. Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture [J]. IEEE J. Quantum Electron., 1999, 35 (2): 234-239.
    [63] Walter Koechker, Rice Dennis K. Effect of birefringence on the performance of linearly polarized Walter Koechker, Rice Dennis K. Effect of birefringence on the performance of linearly polarized YAG: Nd lasers [J]. IEEE J. Quantum Electron., 1970, 6 (9): 557-566.
    [64] Song F, Zhang C B, Ding X, et al. Determination of thermal focal length andpumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers [J]. App. Phys. Lett., 2002, 81 (12): 2145-2147.
    [65] Chenais S, Druon F, Balembois F, et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW [J]. Opt. Material, 2003, 22: 129-137.
    [66] Chenais S, Forget S, Druon F, et al. Direct and absolute temperature mapping and heat transfer measurement in diode-end-pumped Yb:YAG [J]. Appl. Phys. B, 2004, 79: 221-224.
    [67] Zygus B O, Zhang Q C. Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes [J]. Appl. Phys. Lett., 1997, 71 (18): 2590-2592.
    [68] Chen Y F, Huang T M, Kao C F, et al. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to high power: influence of thermal effect [J]. IEEE J. Quantum Electron., 1997, 33 (8): 1424-1429.
    [69] Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers [J]. J. Phys. D: Appl Phys, 2001, 34: 2381-2395.
    [70] Driedger K P, Ifflander R M, Weber H. Multi-rod resonators for high-power solid-state lasers with improved beam quality [J]. IEEE J. Quantum Electron., 1988, 24 (4): 665-673.
    [71] Frede M, Wilhelm R, Brendel M, et al. High power fundamental mode Nd:YAG laser with efficient birefringence compensation [J]. Opt. Express, 2004, 12 (15): 3581-3589.
    [72] Tsunkekane M, Taguchi N, Kasamatsu T, et al. Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pump geometry [J]. IEEE J. Selected Topics Quantum Electron., 1997, 3: 9-18.
    [73] Kracht D, Wilhelm R, Frede M. 407 W end-pumped multi-segmented Nd:YAG laser [J]. Opt. Express, 2005, 13 (25): 10140-10144.
    [74] Weber R, Neuenschwander B, Mac Donald M, et al. Cooling schemes forlongitudinally diode-laser-pumped Nd:YAG rods [J]. IEEE J. Quantum Electron., 1998, 34(6): 1046-1053.
    [75] Zagumennyi A I, Ostroumov V G, Shcherbakov I A, et al. The Nd:GdVO4 crystal: a new material for diode-pumped lasers [J]. Sov. J. Quantum Electron., 1992, 22: 1071-1072.
    [76] Jensen T, Ostroumov V G, Meyn J P, et al. Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4 [J]. Appl. Phys. B, 1994, 58: 373-379.
    [77] Czeranowsky C, Schmidt M, Heumann E, et al. Colntinuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm [J]. Opt. Commun., 2002, 205: 361-365.
    [78] Zhang H, Liu J, Wang J, et al. Characterization of the laser crystal Nd:GdVO4 [J]. J. Opt. Soc. Am. B, 2002, 19: 18-27.
    [79] Qin L J, Meng X L, Du C L, et al. Growth of Nd:GdVO4 single crystal and its laser output at 1062 nm, 1342 nm [J]. Cryst. Res. Technol, 2002, 37: 913-920.
    [80] Studenikin P A, Zagumennyi A I, Zavartsev Y D, et al. GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Nd3+, Tm3+ and Er3+ ions [J]. Quantum Electron., 1995, 25: 1162-1165.
    [81] Yoichi Sato, Takunori Taira. Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process [J]. IEEE J. Selected Topics Quantum Electron., 2005, 11 (3): 613-620.
    [82] Kushida T, Marcos H M, Geusic J E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet [J]. Phys. Rev., 1968, 167 (2-10): 289-291.
    [83] Fan T Y, Byer R L. Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser [J]. IEEE J. Quantum Electron., 1987, QE-23: 605-612.
    [84] Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses [J]. J. Opt. Soc. Am. B, 1988, 5: 1412-1423.
    [85] Cousins A K. Temperature and thermal stress scaling in finite-length end-pumped laser rods [J]. IEEE J. Quantum Electron., 1992, 28: 1057-1069.
    [86] Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers [J]. Appl. Phys. Lett., 1990, 56 (19): 1831-1833.
    [87] Xie W, Tam S, Lam Y, et al. Analysis of a dynamical procedure on diode-end-pumped solid-state lasers [J]. IEEE J. Quantum Electron., 2001, 37: 1368-1372.
    [1]周炳琨,高以智,陈倜嵘,陈家骅.激光原理[M].北京:国防工业出版社,2000.
    [2]苏毅,万敏.高能激光物理[M].北京:国防工业出版社,2006.
    [3]吕百达.激光光学-光束描述、传输变换与光腔技术物理[M].北京:高等教育出版社,2003.
    [4] Siegman A E. New development in laser resonator [J]. SPIE, 1990, 1224: 2-14.
    [1] Liu J, Shao Z, Zhang H, et al. Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 mu m [J]. Appl. Phys. B, 1999, 69: 241-243.
    [2] Yang J, Liu J, He J. High efficiency continuous-wave operation of a diode-pumped Nd:GdVO4 laser at 1.06μm [J]. Laser Phys. Lett., 2005, 2: 171-173.
    [3] Pavel N, Taira T. Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser [J]. Opt. Commun., 2006, 260: 271-276.
    [4] Qin L J, Meng X L, Du C L, et al. Growth of Nd:GdVO4 single crystal and its laser output at 1062 nm, 1342 nm [J]. Cryst. Res. Technol., 2002, 37: 913-920.
    [5] Lupei V, Pavel N, Sato Y, et al. Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4 [J]. Opt. Lett., 2003, 28: 2366-2368.
    [6] Fan T Y, Byer R L. Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser [J]. IEEE J. Quantum Electron., 1987, QE-23: 605-612.
    [7] Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses [J]. J. Opt. Soc. Am. B, 1988, 5: 1412-1423.
    [8] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127: 750-761.
    [9] Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37: 511-520.
    [10] Ermeneux F S, Goutaudier C, Moncorge R, et al. Multiphonon relaxation in YVO4 single crystals [J]. Phys. Rev. B, 2000, 61: 3915-3921.
    [11] Jiang H D, Zhang H J, Wang J Y, et al. Optical and laser properties of Nd:GdVO4 crystal [J]. Opt. Commun., 2001, 198: 447-452.
    [12] Czeranowsky C, Schmidt M, Heumann E, et al. Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm [J]. Opt. Commun., 2002, 205: 361-365.
    [13] Herault E, Balembois F, Georges P, et al. Nd:GdVO4 as a three-level laser at 879 nm [J]. Opt. Lett., 2006, 31: 2731-2733.
    [14] Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers [J]. J. Phys. D, 2001, 34: 2381-2395.
    [15] Huang Z Y, Huang Y D, Chen Y J, et al. Theoretical study on the laser performances of Nd3+:YAG and Nd3+:YVO4 under indirect and direct pumping [J]. J. Opt. Soc. Am. B, 2005, 22: 2564-2569.
    [1] Fan T Y. Heat generation in Nd:YAG and Yb:YAG [J]. IEEE J. Quantum Electron., 1993, 29: 1457-1459.
    [2] Didierjean J, Herault E, Balembois F, et al. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals [J]. Opt. Express, 2008, 16: 8995-9010.
    [3] Cousins A K. Temperature and thermal stress scaling in finite-length end-pumped laser rods [J]. IEEE J. Quantum Electron., 1992, 28: 1057-1069.
    [4] Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers [J]. Appl. Phys. Lett., 1990, 56 (19): 1831-1833.
    [5]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [6] Landau L D, Lifshitz E M. Theory of Elasticity [M]. Oxford, U.K.: Pergamon, 1986.
    [7] Fox A G, Li T. Modes in a maser interferometer with curved and tilted mirrors [C]. Proc IEEE, 1963, 51: 80-89.
    [8] Chen Y F, Huang T M, Kao C F, at el. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect [J]. IEEE J. Quantum Electron., 1997, 33: 1424-1429.
    [9] Born M, Wolf E. Principles of Optics [M]. Oxford, U.K.: Pergamon, 1975.
    [10] Schulz P A, Henion S R. Liquid-nitrogen-cooled Ti:Al2O3 laser [J]. IEEE J. Quantum Electron., 1991, 27: 1039-1047.
    [11] Marcuse D. Light Transmission Optics [M]. New York: Van Nostrand Reinhold, 1972.
    [12] Xiong Z, Li Z G, Moore N, et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers [J]. IEEE J. Quantum Electron., 2003, 39: 979-986.
    [13] Fan S, Zhang X, Wang Q, et al. More precise determination of thermal lens focal length for end-pumped solid-state lasers [J]. Opt. Commun., 2006, 266: 620-626.
    [14] Czeranowsky C, Schmidt M, Heumann E, et al. Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm [J]. Opt. Commun., 2002, 205: 361-365.
    [15] Qin L J, Meng X L, Shen H Y, et al. Thermal conductivity and refractive indices of Nd:GdVO4 crystals [J]. Cryst. Res. Technol., 2003, 38: 793-797.
    [16] Zhang H, Liu J, Wang J, et al. Characterization of the laser crystal Nd:GdVO4 [J]. J. Opt. Soc. Am. B, 2002, 19: 18-27.
    [17] Laporta P, Brussard M. Design criteria for mode size optimization in diode-pump solid-state lasers [J]. IEEE J. Quantum Electron., 1991, 27 (10): 2319-2326.
    [18] Chen Y F, Kao C F, Huang T M, et al. Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers [J]. IEEE J. Quantum Electron., 1997, 3 (1): 29-34.
    [1] Chen Y F, Huang T M, Kao C F, at el. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect [J]. IEEE J. Quantum Electron., 1997, 33: 1424-1429.
    [2] Xie W, Tam S, Lam Y, et al. Analysis of a dynamical procedure on diode-end-pumped solid-state lasers [J]. IEEE J. Quantum Electron., 2001, 37: 1368-1372.
    [3] Xiong Z, Li Z G, Moore N, et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers [J]. IEEE J. Quantum Electron., 2003, 39: 979-986.
    [4] Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers [J]. J. Phys. D, 2001, 34: 2381-2395.
    [5] Liu J, Shao Z, Zhang H, et al. High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity [J]. Opt. Laser Technol., 1999, 31: 459-462.
    [1] Fan T Y, Byer R. Continuous-wave operation of a room-temperature, diode-laser-pumped 946 nm Nd:YAG laser [J]. Opt. Lett., 1987, 12: 808-811.
    [2] Pierrou M, Laurell F, Karlsson H, et al. Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal [J]. Opt. Lett., 1999, 24: 205-207.
    [3] Zhou R, Zhang T L, Li E B, et al. 8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946 nm [J]. Opt. Express, 2005, 13: 10115-10119.
    [4] Zeller P, Peuser P. Efficient, multiwatt, continuous-wave laser operation on the 9/243/24 F ? I transitions of Nd:YVO4 and Nd:YAG [J]. Opt. Lett., 2000, 25: 34-36.
    [5] Xue Q H, Zheng Q, Bu Y K, et al. High power efficient diode pumped Nd:YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power [J]. Opt. Lett., 2006, 31: 1070-1071.
    [6] Czeranowsky C, Schmidt M, Heumann E, et al. Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm [J]. Opt. Commun., 2002, 205: 361-365.
    [7] Zhang L, Zhang C Y, Wei Z Y, et al. Characteristics of Nd:GdVO4 laser with different Nd-doping concentrations [J]. Chin. Phys. Lett., 2006, 23: 2088-2091.
    [8] Xu C W, Wei Z Y, He K N, et al. Diode-pumped passively mode-locked Nd:GdVO4 laser at 912 nm [J]. Opt. Commun., 2008, 281: 4398-4400.
    [9] Mizuuchi K, Morikawa A, Sugita T, et al. Continuous-wave deep blue generation in a periodically poled MgO:LiNbO3 crystal by single-pass frequency doubling of a 912-nm Nd:GdVO4 laser [J]. Jpn. J. Appl. Phys., 2004, 43: L1293-L1295.
    [10] Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses [J]. J. Opt. Soc. Am. B, 1988, 5: 1412-1423.
    [11] Lupei V, Pavel N. Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping [J]. Appl. Phys. Lett., 2002, 81:2677-2679.
    [12] Lupei V. Efficiency enhancement and power scaling of Nd lasers [J]. Optical Materials, 2003, 24: 353-368.
    [13] Jiang H D, Zhang H J, Wang J Y, et al. Optical and laser properties of Nd:GdVO4 crystal [J]. Opt. Commun., 2001, 198: 447-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700