二极管泵浦单掺Tm~(3+)固体激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外激光光源在激光遥感、激光测距、光谱分析、大气环境监测、空间通讯以及军事方面应用的不断扩展,其重要性越来越明显。Tm激光器的输出波长为2μm附近,处于大气窗口,为遥感探测以及光电对抗提供了有利工具,是相干多普勒测风雷达、差分吸收雷达和激光测距机等系统的理想光源。此外,Tm固体激光器还是获得3~5μm波段光学参量振荡激光输出的理想泵浦源。本论文从理论和实验两个方面对常温下四种单掺Tm~(3+)固体激光器进行了较为深入细致的比较研究和探索。
     首先对Tm~(3+)在GdVO_4和YAP基质中红外、可见和紫外波段的吸收光谱、发射光谱和荧光寿命进行实验测量,给出了详细的能级分布和高度。其次,根据这些基本数据,计算出晶体的吸收截面、发射截面和有效受激发射截面。最后,与Tm~(3+)在LuAG和YAG基质中的光谱性质比较,定性的分析了晶体基质对Tm~(3+)能级分布和跃迁的影响。这些数据是J-O理论计算和激光器实验研究的基础。
     理论方面,主要是对Tm~(3+)在不同基质中的光谱参数进行计算分析并建立了Tm激光器连续和Q运转的速率方程模型。首先,通过J-O理论,计算了Tm~(3+)在GdVO_4和YAP中的强度参数并获得了多项光谱参数(自发辐射跃迁几率、辐射寿命、荧光分支比和积分发射截面)。通过对光谱参数的对比,从理论上分析了Tm~(3+)在哪些晶体基质中和Tm~(3+)的哪些跃迁最有可能获得激光输出,并对上转换荧光所发生的能级和强弱对比进行合理解释。其次,在详细地分析了粒子跃迁和能量传递过程的基础上,考虑了能量传递上转换和基态损耗效应的影响,建立了端面连续泵浦Tm激光器的准三能级速率方程的理论模型。得到了描述输出功率与泵浦功率关系的方程,利用此方程讨论了晶体长度、粒子掺杂浓度、输出镜透过率等对激光器输出特性的影响。并讨论了不同上能级寿命情况下,Q脉冲输出单脉冲能量与调制频率之间的关系,为Tm激光器的设计提供了理论基础。最后,在Tm激光器不同运转模式下,理论分析了F-P标准具、复合腔和双折射滤光片对波长选择和线宽压缩作用。此外,利用ANSYS软件不仅计算了Tm:GdVO_4和Tm:YAP晶体内的温度梯度分布而且对注入锁定实验中出现的试验平台共振频率进行了理论分析。
     实验方面,主要对不同基质的Tm激光器在单频、调谐、调Q等运转模式下的实验结果进行比较分析并进行优化设计,为不同应用方向的Tm激光晶体的选择提供重要的参考依据。首先对于单频输出的Tm:GdVO_4、Tm:YAP、Tm:YAG和Tm:LuAG微片激光器进行了详细的实验研究。分别利用标准具法和复合腔法获得了连续单频输出Tm激光器,并利用腔内插入双折射滤光片和标准具的方法实现了宽带可调谐的单频Tm:YAP激光输出。其次,研究在高功率泵浦条件下Tm:GdVO_4、Tm:YAP、Tm:YAG和Tm:LuAG块状晶体激光的连续波输出,连续波宽带调谐输出,声光调Q等输出性质,从不同角度给出影响连续功率输出的各种因素,包括:晶体材料、晶体质量、耦合输出透射率、晶体长度、工作温度等。分析了不同晶体材料的热力学性质、测量了热透镜焦距。给出Q输出条件下,泵浦功率和调制频率等因素对脉冲宽度的影响。最后通过对常温2微米种子光注入锁频激光器的初步实验探索,为以后进行的系统设计和搭建提出了优化方案。
Widely applicable mid-infrared laser sources become more and more important in laser remote sensing, laser target detecting, spectra analysis, atmospheric environment monitoring, space communicating and special military applications. Emission wavelength of Tm laser system is near 2μm, just within atmospheric window, it provides an effective tool for remote sensing and photoelectric countermeasures. Tm laser is thought to be an ideal laser source for coherent Doppler lidar, differential absorption lidar (DIAL) and laser ranging and tracking system. In addition, Tm laser is an ideal pump sources for optical parameter oscillator (OPO) in the 3~5μm band. This thesis investigates and explores four diode-end-pumped thulium-doped lasers theoretically and experimentally.
     As the basis of J-O theory calculation and Tm laser experiments, the absorption and emission spectrum of Tm:GdVO_4 and Tm:YAP in the infrared visible and ultraviolet band are measured, the distribution and lifetime of thulium energy levels are also given. According to experimental data, the absorb cross section, emission cross section and effective emission cross section are calculated. Compared with the spectra properties of Tm:LuAG and Tm:YAG, the distribution and transition of Tm~(3+) energy levels in different single crystals are discussed.
     In theoretical aspects, we mainly calculate the optical parameters of Tm~(3+) in different materials and build the end-pumped quasi-three-level mode of Tm laser system. First of all, according to the absorption and emission spectrum data, we calculate the intensity parameters of Tm~(3+) in GdVO_4 and YAP single crystals, and then the spectral parameters (Spontaneous emission transition rate, radiative lifetime, fluorescence branching ratio and integrated emission cross section) between the exited state and the lower state are given. The problem of which crystal and which level of Tm~(3+) is probable for laser emission is analyzed theoretically, the upconversion process and intensity detected in visible band are explained appropriately. Secondly, After getting the transition and energy transfer process of Tm~(3+) levels and considering the influence of upconversion and grand state dissipaton, we build the end-pumped quasi-three-level mode of Tm laser system. The equation between input power and output power is analyzed, the length of crystal, the concentration of Tm~(3+) and output coupler that contribute to the change of output power are given. The relationship between energy per q-switch pulse and modulate frequency are discussed with different uplevel lifetimes. At last, In different Tm laser operation modes, the frequency selective property and line width compression property of F-P etalon double-cavity and birefringence(BF) are analyzed. In addition, the temperature gradient of Tm:GdVO_4 and Tm:YAP crystal and the sympathetic vibration frequency of experimental platform are calculated by ANSYS software.
     In experimental aspects, we mainly make comparative study of Tm lasers in different operation modes such as single frequency, tunable, Q-switch and so on. All of these results supply the important reference data to how to selected Tm crystals in different application directions. First of all, single frequency Tm:GdVO_4, Tm:YAP,Tm:YAG and Tm:LuAG microchip lasers are proved and get detailed comparison. Single frequency Tm lasers are achieved by F-P etalon and double-cavity methods, widely tunable single frequency Tm:YAP laser with etalons and BF in the cavity is proved. Secondly, High power Tm:GdVO_4, Tm:YAP, Tm:YAG and Tm:LuAG lasers operating at continue-wave, widely tunable contimuewave and acousto-optic q-switch modes are compared and analyzed. The factors that affect output power such as crystal material, crystal quality, output coupler, crystal length and temperature control are also given. The thermal focal lengths of crystals are measured. In condition of q-swtich pulse output, the relationship among pump power, modulate frequency and pulse width is measured and discussed. Finally, a preliminary experiment of seed injected ring cavity Tm laser is proved and it gives reference data for the later laser system design and build.
引文
1 Tso Yee Fan, G. Huber, Robert L. Byer and P. Mitzscherlich. Spectroscopy and diode Lsaer-Pumped Operation of Tm, Ho: YAG. IEEE J. Quantum Electron., 1988, 24:924~933
    2 Haim Lotem, Yehoshua Kalisky, Jacob Kagan, D. Sagie. A 2μm Holmium Laser. IEEE J. Quantum Electron., 1988, 24: 1193~1200
    3 M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields. Thermal modeling of continuous-wave end-pumped solid-state lasers. Appl. Phys. Lett., 1990, 56:1831~1833
    4 B.T. McGuckin, R.T.Menzies, H.Hemmati. Efficient energy extraction from a diode-pumped Q-switched Tm, Ho: YliF4 laser. Appl. Phys. Lett., 1991, 59: 2926~2928
    5 P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen. Performance of a Diode-Pumped High PRF Tm, Ho: YLF Laser. IEEE J. Quantum Electron., 1992, 28:1029~1032
    6 S. R. Bowman and B. J. Feldman. Demonstration and analysis of a holmium quasi-two level laser. SPIE. 1992, Solid State Lasers III, 1627: 46~54
    7 H. Z.binden, J. E. Balmer. Q-switched Nd: YLF laser end lpumped by a diode-laser bar. Opt. Lett., 1990, 15: 1014~1016
    8 D. C. Shannon and R. W. Wallace High-power Nd: YAG laser end pumped by a cw, 10mm×1μm aperture, 10-W laser–diode bar. Opt. Lett., 1991, 16: 318~320
    9 Mahendra G. Jani, Roger J. Reeves, Richard C. Powell. Alexandrite-laser excitation of a Tm: Ho: Y3Al5O12 laser. J. Opt. Soc. Am. B., 1991, 8: 741~746
    10 Paul J. M. Suni, Sammy W. Henderson. 1mJ/ Pulse Tm: YAG laser pumped by a 3-W diode laser. Opt. Lett., 1991, 16: 317~319
    11 Hamid Hemmati, and James R. Lesh. High Repetition-Rate Q-Switched and Intracavity Doubled Diode-Pumped Nd: YAG Laser. IEEE J. Quantum Electron., 1992, 28: 1018~1020
    12 T.Y.Fan, G. Huber, L.Robert. Byer and P. Mitzscherlich. Spectroscopy andDiode Lsaer-Pumped Operation of Tm,Ho:YAG. IEEE J. Quantum Electron., 1988, 24: 924~933
    13 H.Hemmati. 2.07μm CW Diode-laser-pumped Tm,Ho:YLF Room Temperature Laser. Opt. Lett., 1989, 14: 435~437
    14 B.T.McGuckin, R.T.Menziesn and H.Hemmati. Efficient Energy Extraction from A Diode-pumped Q-switched Tm, Ho:YliF4 Laser. Appl. Phys. Lett., 1991, 59: 2926~2928
    15 B.T.McGuckin and R.T.Menzies. Efficient CW Diode-Pumped Tm,Ho:YLF Laser with Tunability Near 2.067μm. IEEE J. Quantum Electronics., 1992, 28: 1025~1028
    16 S.W.Henderson, C.P.Hale, J.R.Magee, M.J.Kavaya and A.V.Huffaker. Eyesafe Coherent Laser Radar. System at 2.1μm Using Tm,Ho:YAG Lasers. Opt. Lett., 1991, 16: 773~775
    17 J.Yu, U.N.Singh, N.P.Barnes, and M.Petros. 125-mJ Diode-pumped Injection-seeded Ho:Tm:YLF Laser. Opt. Lett., 1998, 23: 780~782
    18 U.N.Singh. Development of High-Pulse Energy Ho:Tm:YLF Coherent Transmitters. SPIE, 1998, 3380: 70~74
    19 U.N.Singh, J.Yu, M.Petros, N.P.Barnes, J.A.Williams-Byrd, G.E.Lockard, and E.A.modlin. Injection-seeded, Room-temperature, Diode-pumped Ho:Tm:YLF Laser with Output Energy of 600mJ at 10Hz. OSA Trends in Optics and Photonics Series, 1998,19: 194~196
    20 J.A.Williams-Byrd, U.N.Singh, N.P.Barnes, G.E.Lockard, E.A.Modlin, and J.Yu. Room-temperature, Diode-pumped Ho:Tm:YLF Laser Amplifiers Generating 700 mJ at 2μm. OSA Trends in Optics and Photonics Series. 1997, 10: 199~201
    21 P.A.Budni, L.A.Pomeranz, M.L.Lemons, P.G.Schunemann, T.M.Pollak, E.P.Chicklis. 10W Mid-IR Holmium Pumped ZnGeP2 OPO. In Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series, 1998,19: 90~92
    22 L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M. Pollak, E. P. Chicklis. Power Scaling Performance of Tm:YLF and Tm:YALO Lasers. Advanced Solid State Lasers (ASSL), 1999, 26: 458~462
    23 P. A. Budni, M. L. Lemons, J. R. Mosto, E. P. Chicklis. High-Power/ High-Brightness Diode-Pumped 1.9μm Thulium and Resonantly Pumped 2.1μm Holmium. IEEE J. Quantum Electronics, 2000, 6: 629~63
    24 C. P. Wyss, W. Luthy, H. P. Weber, V. I. Vlasov, Yu. D. Zavartsev. Emission properties of a Tm3+: GdVO4 microchip laser at 1.9μm. Appl. Phy. B., 1998, 67: 545~548
    25 L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M. Pollak, E. P. Chicklis. Power scaling Performance of Tm: YLF and Tm: YALO Lasers. OSA. Advanced Solid-State Lasers, 1999: 458~462
    26 P. A. Budni, M. L. Lemons, J. R. Mosto, E. P. Chicklis. High-Power/ High-Brightness Diode-Pumped 1.9μm Thulium and Resonantly Pumped 2.1μm Holmium. IEEE J. Quantum Electronics, 2000, 6: 629~634
    27 E.C.Honea, R.J.Beach, S.B.Sutton, J.A.Speth, S.C.Mitchell, J.A.Skidmore, M.A. Emanuel, and S.A.Payne. 115-W Tm:YAG Diode-Pumped Solid-State Laser. IEEE J. Quantum Electronics, 1997, 33: 1592~1600
    28 J. I. Mackenzie, S.So, D. P. Shepherd, W. A. Clarkson, Comparison of Laser Performance for Diode-pumped Tm:YLF of Various Doping Concentrations. OSA Trends in Optics and Photonics Series - Advanced Solid-State Photonics, ASSP 2005, Proceedings, 2005, 98: 202~207
    29 L. Espen, N. Stephane, A. Gunnar, S. Knut, S, R. Gunnar. High-power Fiber-laser-pumped Mid-infrared Laser Sources. SPIE, 2006, 6397: 639704
    30 S. So, J. I. MacKenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton. A Power-scaling Strategy for Longitudinally Diode-pumped Tm:YLF lasers. Applied Physics B, 2006, 84: 389-393
    31 S.R.Bowman and B.J.Feldman. Demonstration and Analysis of A Holmium Quasi-two Level Laser. SPIE, 1992, 1627: 46~54
    32 C. Bollig, R. A. Hayward, W. A. Clarkson, D. C. Hanna. 2-W Ho: YAG Laser Intracavity Pumped by A Diode-pumped Tm: YAG Laser. Opt. Lett., 1998, 23: 1757~1759
    33 P.A.Budni, M.L.Lemons, J.R.Mosto, E.P.Chicklis. High-Power/ High-brightness Diode-Pumped 1.9μm Thulium and Resonantly Pumped 2.1μm Holmium. IEEE J. Quantum Electronics, 2000, 6: 629~634
    34 P.A.Budni, C.R.Ibach, S.D.Setzler, E.J.Gustafson, R.T.Castro,E.P.Chicklis. 50-mJ, Q-switched, 2.09-μm Holmium Laser Resonantly Pumped by ADiode-pumped 1.9-μm Thulium Laser. Opt. Lett., 2003, 28: 1016~1018
    35 C. Kieleck, A.Hirth, M. Schellhorn. Performances of Ho:YAG Laser Intracavity pumped by A Diode-pumped Tm:YLF Laser. SPIE, 2004, 5478: 8~14
    36 C. Kieleck, A. Hirth. Investigations of A Q-switched Ho:YAG Laser Intracavity -pumped by A Diode-pumped Tm:YLF Laser. SPIE, 2004, 5460: 56~63
    37 D. Y. Shen, J. Sahu, W. A. Clarkson. Efficient Holmium-doped Solid-state Lasers Pumped by a Tm-doped Silica fiber Laser. SPIE, 2004, 5620: 46~55
    38 L. Espen, N. Stephane, A. Gunnar, S. Knut, S, R. Gunnar. High-power Fiber-laser-pumped Mid-infrared Laser Sources. SPIE, 2006, 6397: 639704
    39 I. Elder, D. Thorne, I. Jones, D. Bell. Thulium Fiber Laser Pumped mid-IR Source. Proceedings of SPIE, 2006, 6397: 639703-1~639703-9
    40 M.Schellhorn. Performance of a Ho:YAG Thin-disc Laser Pumped by a Diode-pumped 1.9μm Thulium Laser. Applied Physics B, 2006, 85: 549~552
    41 Leonard J., Daniel J., Thulium Laser Pumped Mid-Ir Source with Braoadbanded Output, P.C.T., 2004
    42 P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, E. P. Chicklis, Efficient mid-infrared laser using 1.9-μ-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, 2000,17: 723-728
    43 Gianluca Galzerano,Francesco Cornacchia, Daniela Parisi,Alessandra Toncelli, Mauro Tonelli, Paolo Laporta. Widely tunable 1.94um Tm:BaYF laser , Opt. Lett., 2005,30: 854~856.
    44 M.V.Oconnor, M.A.Watson, D.P. Shepherd, D.C.Hanna, Use of a birefringent filter for tuning a synchronously pumped optical parametric oscillator, Appl. Phy. B, 2004, 79: 15~23.
    45 Ian F. Elder, John Payne. Diode-pumped, room-temperature Tm: YAP laser, Appl. Opt. 1997, 36: 8606~8610
    46 K. Scholle, E. Heumann, and G. Huber,Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,Laser Phy. Lett. , 2004,6: 285~290
    47 Rudiger Paschotta, Nick Moore, W. Andrew Clarkson, Anne C. Tropper, David C. Hanna, and Gwenael Maze, 230 mW of Blue Light From aThulium-Doped Upconversion Fiber Laser,1997,3: 1100~1102
    48 R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell,and C. E. Mungan,‘Observation of laser-induced fluorescent cooling of a solid, Nature ,1995,377: 500~503
    49 C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, Advances in laser cooling of thulium-doped glass, J. Opt. Soc. Am. B, 2003, 20: 1066~1074
    50 Vladimir A. Jerez and Cid B. de Araújoa , Dynamics of energy transfer and frequency upconversion in Tm3+ doped fluoroindate glass , J. Appl. Phy. , 2004,96: 2529~2534
    51 Daisuke Matsuura, Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals, Appl. Phy. Lett., 2002,81: 4526~4528
    52 Taiju Tsuboi, Hideyuki Murayama, Kiyoshi Shimamura, Low temperature luminescence of Tm3+ ions in LiYF4 crystal, Journal of Alloys and Compounds, 2006,11: 776~779
    53 T. Monteiro, A. J. Neves, M. J. Soares, M. C. Carmo, and M. Peres, Up conversion from visible to ultraviolet in bulk ZnO implanted with Tm ions , Appl. Phy. Lett., 2005,87: 192108-1~792108-2
    54王东亮,宋峰,谭浩,上转换的实质及变换的讨论,光散射学报, 2002,14:116~120
    55张庆礼,殷绍唐,王爱华,肖敬忠. GGG系列激光晶体研究进展.量子电子学报, 2002,19: 481~484.
    56宋平新,赵志伟,徐晓东,姜本学,邓佩珍,徐军. Tm: YAG晶体的研究进展.人工晶体学报, 2005, 34: 131~135。
    57 Jacob I. Mackenzie, Cheng Li, David P. Shepherd, Modeling of High-Power Continuous-Wave Tm:YAG Side-Pumped Double-Clad Waveguide Lasers,IEEE J. Quantum Electron, 2002, 38: 222~230.
    58 D.F. Desousa1, V. Peters, G. huber , A. Toncelli, D. Parisi, M. Tonelli. Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF, Appl. Phys. B , 2003, 77: 817~822.
    59 P. Camy, J.L. Doualan , S. Renard, A. Braud, V. Menard, R. Moncorg. Tm:CaF2 for 1.9 um laser operation. Optics Communications, 2004,236: 395–402
    60 F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, M. Tonelli. Efficient, diode-pumped Tm:BaYF vibronic laser. OPTICS EXPRESS, 2004,12: 1982~1989
    61 Y. Urata and S. Wada. 808nm diode pumped continuous-wave Tm:GdVO4 laser at room temperature. Appl. Opt., 2005, 44: 3087~3091.
    62 Yufeng Li, Baoquan Yao, and Yuezhu Wang“Diode-pumped CW Tm:GdVO_4 laser at 1.9μm”Chinese Opt. Lett., 2006, 4: 175~176.
    63 S.K. Lin, W. Xiong, L.T. Li, Y.P. Xie. Synthesis of the Raw Material, Growth and Spectral properties of Tm3+/Yb3+ Codoped GdVO4 Crystal. J. Cryst. Growth, 2004, 270: 133~136.
    64 R. Lisiecki, P. Solarz, G. Dominiak-Dzik, and W. Ryba-Romanowski. Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals. Phy. Rev. (B), 2006, 74: 035103.
    65 M. Higuchia, K. Kodairaa, Y. Uratab, S. Wadac, H. Machida, Float zone growth and spectrosc opic characterization of Tm:GdVO4 single crystals, Journal of Crystal Growth 2004, 265: 487~493
    66宋峰,郭红沧,张万林,张潮波,商美茹,张光寅. Tm:YVO4晶体的光谱参数计算.光谱学与光谱分析, 2002, 22: 1~4
    67 I. F. Elder, M. J. P. Payne. Lasing in diode-pumped Tm: YAP, Tm, Ho: YAP and Tm, Ho: YLF. Opt. Commun., 1998, 145: 329~339
    68 A.O. Matkovskiia,b,*, D.I. Savytskiia,c, D.Yu. Sugaka,c, I.M. Solskii. Growth and properties of YAlO3:Tm single crystals for 2-um laser operation. Journal of Crystal Growth, 2002,241: 455~462
    69 P. C. erny, G.J. Valentine, D. Burns. Actively stabilised diode pumped Tm:YAlO laser. Electron. Lett., 2004 , 40: 17~18.
    70 Hamit Kalaycioglu, Alphan Sennaroglu, Adnan Kurt. Influence of Doping Concentration on the Power Performance of Diode-Pumped Continuous-Wave Tm:YAlO Lasers. IEEE J. of Quantum Electronics, 2005 ,11: 667~673
    71 Jean-Paul Foing, Emmanuel Scheer. Comparison of diode pumped Tm3+ doped silicate lasers. Advanced Solid State Lasers. Walter R. Bosenberg Martin M. Fejer, 1998, 19: 514~517
    72 Haumesser P H and GauméR. Spectroscopic and crystal-field analysis ofnew Yb-doped laser materials. J. Phys.: Condens. Matter, 2001, 13: 5427~5450
    73 Troshin A E and Kisel V E, Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal”, Appl. Phys. B, 2007, 86 : 287~290
    74 Mateos X, Petrov V and Liu J, Efficient 2-μm Continuous-Wave Laser Oscillation of Tm3+:KLu(WO4)2, IEEE J. Quantum Electron., 2006, 42: 1008~1012
    75 Kaminskii A A, Gruber J B and Bagaev S N, et, Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic a-KY(WO4)2 and a-KGd(WO4)2 crystals, Phys. Review B, 2002, 65: 125108
    76宋增福.原子光谱及晶体光谱原理与应用,科学出版社, 1987
    77张思远.稀土激光晶体及其发展.人工晶体学报, 1997, 26: 212~216
    78苏锵,梁宏斌,陶冶.稀土离子的高能光谱.中国稀土学报, 2001,19:481~485
    79宋平新,赵志伟,徐晓东.Tm: YAG晶体的生长及吸收特性.人工晶体学报, 2004, 33: 376~379.
    80 K. Scholle, E. Heumann, and G. Huber. Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applicatios. Laser Phys. Lett., 2004, 6: 285~290.
    81徐东勇,臧竞存.上转换激光和上转换发光材料的研究进展.人工晶体学报, 2001, 30: 203~206
    82 Taiju Tsuboi, Kiyoshi Shimamura. Up-conversion processes in Ho3+/Tm3+ -codoped LiYF4 crystals. SPIE, 2004, 5460: 187~194
    83 G.S. Ofelt. Intensities of crystal spectra of Rare-Earth ions. J. Chem. Phys., 1962, 37: 511~520
    84 B.R.Judd. Optical absorption intensities of Rare-Earth Ions. Physical Review.1962, 127: 750~761
    85 Thangavel Thevar and Norman P. Barnes. Diode-pumped, continuous-wave Tm:YAIO3 laser. Appl. Opt., 2006, 45: 3352~3355.
    86 Ki-Soo Lim, P. Babu and Sun-Kyun Lee. Infrared to visible up-conversion in thulium and holmium doped lutetium aluminum garnet. Journal of Luminescence 2003, 102: 737~743
    87 Jacquemet M, Jacqument C and Janel N. Efficient laser action of Yb:LSOand Yb:YSO oxyorthosilicates crystals under high-power diode-pumping. Appl. Phys. B, 2005, 80: 171~178
    88 Nissan.S,R.Reisfeld. Eigenstates and Radiative Transition Probabilities for Tm3+(4f12) in phosphate., Chem. Phys. Lett., 1977, 49:49~53
    89 J.A.Caird, L.G.Deshazer and J.Nella. Characteristics of room-temperature 2.3μm laser emission from Tm3+ in YAG and YAlO3. IEEE J. Quant. Electron., 1975, 11:874~881
    90 Amaranath G, Baddhudu S and Bryant FJ. Absorption and Photoluminescence spectra of Tm doped fluorophosphates glasses. Spectrochimica Acta., 1992, 48:1515~1522
    91 J.A. Caird and L.G. De Shazev. Characteristicss of relaxation processes of rare earth ions in crystal. J. Luminoscence , 1970, 1: 106~121
    92 Hamit Kalaycioglu, Alphan Sennaroglu, Adnan Kurt and Gonul Ozen. Spectroscopic analysis of Tm:LuAG. J. Phys.: Condens.Matter, 2007,19:036208
    93 S.R.Bowman and B.J.Feldman. Demonstration and Analysis of A Holmium Quasi-two Level Laser. SPIE, 1992, 1627: 46~54
    94 F. Cornacchia and L. Palatella. Temperature dependence of impurity quenched luminescence in Tm3+:LiLuF4. Journal of Phys and Chem of solids.,2002,63:197~205
    95陈晓波,何琛娟等.掺Tm钒酸钇的光学性能.物理学报,2001,50:1371~1377
    96宋峰,苏静,谭浩,等.钨酸钇钠晶体中Tm3+的光谱特性.物理学报, 2004, 53:3591-3595
    97 Raymond J. Beach. Optimization of Quasi-Three Lenel End-Pumped Q-switched Lasers. IEEE J. Quantum Electron., 1995, 31:1606~1613
    98 L.B. Shaw, R.S.F.Chang and N. Djeo. Measurement of upconversin energytransfer probabilities in Ho:YAG and Tm:YAG. Phys. Rev., 1994, 50:6609~6619
    99杨永明,文建国,王石语,蔡德芳,过振. LD端面泵浦Nd:YAG激光器中的热透镜焦距, 2005, 12: 1769~1772
    100 Gunnar RUstad and Knut Stenersen, Modeling of Laser-pumped Tm and Ho Lasers Accounting for Upconversion and Ground-State Depletion. J.Quantum Electron., 1996 32: 1645~1656
    101 Pavel cerny, Jiri Oswald, Jan Sulc, Helena Jelinkova, Yoshiharu Urata and Mikio Higuchi, Multi-watt and tunable diode-pumped operation of Tm:GdVO4 crystal grown by a floating zone method, CLEO 2005, TuB6
    102 Hamit Kalaycioglu, Alphan Sennaroglu and Adnan Kurt. Influence of Doping Concentration on the Power Performance of Diode-Pumped Continuous-Wave Tm:YAP Lasers. J. Quantum Electron., 2005 11:667~673
    103 R. C. Stoneman and Leon Esterowitz. Efficient 1.94-pm Tm:YALO Laser. J. Quantum Electron., 19955 1:78~81
    104 G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros and J. C. Mc Carthy. Differential Absorption Measurements of Atmospheric Water Vapor with A Coherent LIDAR at 2050.532nm. Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, 1999:69~71
    105 Erickson L E and Szabo A. Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity. Appl. Phys. Lett., 1971,18:433~437
    106 G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald and J. C. Mc Carthy. Frequency Stabilization of A Ho, Tm:YLF Laser to Absorption Lines Of Carbon Dioxide. Appl. Opt., 2000, 39:3664~3669
    107 G..J.Koch, B.W.Barnes, M.Petros, J.Y.Beyon, F.Amzajerdian J.R.Yu and R.E.Davis. Coherent Differential Absorption LIDAR Measurements of CO2. Appl.Opt., 2004, 43:5092~5099
    108 U. N. Singh. Development of High-pulse Energy Ho, Tm:YLF Coherent Transmitters. SPIE, 1998, 3380: 70~74.
    109 D.Y. Shen, W. A.Clarkson, L.J. Cooper and R.B. Wiliams. Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser Opt. Lett., 2004, 29:2396~2398
    110 H. Fukuoka, M. Kadoya, K.Asaba, K.Asai, K. Mizutani and Itabe, T.Injection seeded Tm,Ho:YLF laser, Process. of SPIE, 2001, 4153:455 ~ 462
    111 Z.J. Zhang, Technique for the alignment of a ring laser cavity. Optics and Laser Technology, 1998, 20:321~322
    112 Kumar, Aniruddha, Nilaya, J.Padma and Biswas Dhruba J. Sinple techniquefor alignment of a dispersive ring laser cavity, Optics and Laser Technology, 2005, 37:1~2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700