基于偏芯结构的光纤布拉格光栅折射率传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅传感器越来越引起人们的关注,利用光纤光栅可以对温度、弯曲、压力、应变、加速度及折射率等参量进行测量,而且光纤光栅可以很好的实现准分布式测量。根据对当前折射率测量及光纤折射率传感器研究和应用的调研,我们设计和制作了一种结构简单的折射率传感器并且在实验上证明了这种结构可以进行环境折射率的测量。
     本论文在对光纤光栅的发展、分类及特点和应用进行文献调研的基础上,研究了光纤布拉格光栅的结构及工作原理;对光纤光栅的制作技术进行了比较分析,并采用193nmArF准分子激光器作为写入光源,采用相位掩模法制作了光纤布拉格光栅;通过对光纤光栅用于传感测量的原理进行了理论分析和仿真模拟,获得了不同的光纤模式对外界折射率不同的敏感程度,并给出了随外界折射率变化传感器输出信号的变化规律;利用Rsoft软件进行了不同模式对外界折射率的不同响应的模拟分析,设计了基于光纤偏芯与光纤布拉格光栅相结合的传感结构,并实现和制作了该种光纤折射率传感器;通过将所研制的传感器用于折射率测量的实验测试和结果分析,验证了该类传感器对于折射率测量的可行性。本论文的理论和实验研究证明,采用包层模式泄漏的方式可以有效地实现折射率的测量,而且模式对外界折射率的敏感程度随着模式阶数增加。在未来的工作中,我们将逐步设计和实现阶数可控的传感器结构进行该类传感器优化和灵敏度提高。
Fiber Bragg grating (FBG) sensors have generated great interests base on their unique advantages such as small structures, strong anti-jamming abilities, multiplexing capabilities. Currently, FBG sensors have been widely used for temperature, bending, strain, acceleration, and refractive index measurement as well as quasi-distributed measurement. According to the research of study and application of current refractive index and the optical fiber sensor, in this paper we design and develop a refractive index sensor structure. The sensor is fabricated and demonstrated for refractive index monitoring in experiment.
     This paper is based on the literature research of the development of fiber Bragg grating, classification, features and application; then the structure and principle of FBG is introduced in detail. Finally, the technology about fabrication of FBG is introduced in detail. The FBG is fabricated by using phase mask method, while193nm ArF excimer laser is used as a photo writing source. Through the theory analysis and simulation of fiber grating sensor, we know that there are different sensitive degree to external refractive index with different order modes, and receive the regular pattern of sensor output signal changes VS refractive index changes; Sensitivities of various optical wave modes are obtained by the Rsoft software. The proposed sensor approach by concatenating an FBG and a core-offset structure is a highly promising and simplified method for a wide range of refractive index sensing applications.; we demonstrated that this sensor is an effectively structure to measure refractive index though the result of this paper. Theory and experiment of this paper shows that using Leak modes is an effectively way to measure refractive index, and sensitive degree to external refractive index increase by mode order increased. In the future work, we will optimize and improve sensitivity of this sensor through gradually design the controllable order sensor structure.
引文
[1]苏艳阳,李锐,陈宇.传感技术综述[J].数字通信,2009,36(4):20-26.
    [2]李星蓉.光纤传感器在电力系统中的应用[J].电力系统通信,2008,29(189):49-52.
    [3]刘敏敏,周峰,杜志顺.光纤传感器在石油测井中的应用[J].光学与光电技术,2008,6(3):18-21.
    [4]荆振国,于精旭.用于高温油井测量的光纤温度和压力传感器系统[J].传感技术学报,2006,19(6):2450-2452.
    [5]廖廷彪.光纤光学[M].北京:清华大学出版社,2000.
    [6]郭风珍,于长泰.光纤传感技术与应用[M].杭州:浙江大学出版社,1992.
    [7]李艳萍,张丽红,伦翠芬.反射式强度调制型光纤压力传感器的研究.传感技术学报,2005,18(1):180-183.
    [8]马乃兵,骆飞,孟爱东.基于反射式强度调制的智能光纤温度检测系统[J].测控技术,1999,18(3):22-24.
    [9]付松年,苏立国,游佰强.新型反射式光纤位移传感器的分析与设计[J].传感器技术,2001,20(3):15-17.
    [10]王书涛,车仁生.光谱吸收式光纤甲烷气体传感器及其信号处理方法[J].光电工程,2006,33(1):112-115.
    [11]郑小平,廖延彪.偏振调制光纤传感器长期稳定性研究现状[J].激光与红外,1999,29(6):363-367.
    [12]王玉田,林晓琳,杨妮.基于光频率调制的光纤涡街流量计的研究[J].传感技术学报,2007,20(4):790-793.
    [13]粱长垠.相位调制型光纤压力传感器与智能检测系统[J].传感器技术,2001,20(9):47-48.
    [14]朱启荣,杨国标,曾伟明.新型多功能光纤传感器研究及应用[J].现代科学仪器,2008,(5):17-19.
    [15]赵育良,李开端.光纤传感器在测量领域的发展与应用[J].新技术新仪器,2001,21(6):22-25.
    [16]黄民双,梁大开等.应用于智能结构的光纤传感新技术研究[J].航空学报,2001,22(4):326-329.
    [17]Hill K 0, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Applied Physics Letters,1978, 32(10):647-649.
    [18]Meltz G, Morey W W, Glenn W H. Formation of Bragg grating in optical fiber by a transverse holographic method [J]. Optics Letters,1989,14(15):823-825.
    [19]Hill K 0, Meltz G. Bragg grating fabricated in monomode photosensitive optical fiber by UV expose through a phase mask [J]. Applied Physics Letters,1993,62(10): 1035-1037.
    [20]Martin J, Ouellette F. Novel Writing Technique of Long and Highly Reflective in-fiber Gratings [J]. Electronics Letters,1994,30(10):811-812.
    [21]Rourke H N, Baker S R, Byron K C, et al. Fabrication and Characterization of Long, Narrow-Band Fiber Gratings by Phase Mask Scanning [J]. Electronics Letters,1994, 30(16):1341-1342.
    [22]Mihailov S J, Smelser C W, Lu P, et al. Fiber Bragg gratings made with a phase mask and 800nm femtosecond radiation [J]. Optics Letters,2003,28(12):995-997.
    [23]Bernier M, Faucher D, Vallee R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtoseeond pulses at 800nm [J]. Optics Letters,2007,32(5):454-456.
    [24]Bernier M, Sheng Y L, et al. Ultrabroadband fiber Bragg gratings written with a highly chirped Phase mask and Infrared femtoseeond Pulses [J]. Optics Express,2009,17(5): 3285-3290.
    [25]陈玉,王幼民,许德章.光纤位移传感器的研制与应用[J].仪表技术与传感器,2007,(9):1-3.
    [26]Vohra S T, Davis M A, Dandridge A, et al. Sixteen Channel WDM Fiber Bragg Grating Dynamic Strain Sensing System For Composite Panel Slamming Tests [C]. Proceedings of the 12th International Conference on Optical Fiber Sensors. Williams burg. USA,1997.
    [27]Udd E, Clark T E, ANA S, et al. Sensor systems employing optical fiber gratings [P]. USP 5397 891,1995,03,14.
    [28]Udd E. Fiber with multiple overlapping gratings [P].USP 5627 927,1997,05,06.
    [29]Udd E, Haugse E D, Trego A. Fiber optic grating corrosion and chemical sensor [P]. USP 6144 026,2000.
    [30]Rao Y J, Henderson P J, Jackson D A, et al. Simultaneous strain, temperature and vibration measurement using a multiplexed in fiber Bragg grating/fiber Fabry Perot sensor system [J]. Electronics Letters,1997,33(24):2063-2064.
    [31]Kersey A D, Davism A, Patriek H J, et al. Fiber grating sensors [J]. Journal of Lightwave Technology,1997,15(8):1442-1463.
    [32]Mendez A. Applications of embedded optical fiber sensors in reinforced concrete buildings and structures [J]. The International Society for Optical Engineering,1989, 1170:60-69.
    [33]Sennhauser U, Bronnimann R, Nellen P M. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors [J]. Optical Engineering,1996,35(9):2570-2577.
    [34]Ferdinand P, Ferrsgu 0, Lechien J L, et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology:the European BRITE/EURAM STABILOS project [J]. Journal of Lightwave Technology,1995,13(7):1303-1313.
    [35]Henderson P J, Fisher N E, Jackson D A. Current Metering Using Fibre-Grating Based Interrogation of a Conventional Current Transformer [C]. Proceeding of the 12th International Conference on Optical Fiber Sensors. Williams burg, USA,1997.
    [36]Patrick H J, Kersey A D, Bucholtz F. Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction [J]. Journal of Lightwave Technology,1998, 16(9):1606-1612.
    [37]Heather J. Patrick, Alan D. Kersey, Frank bucholtz. Analysis of the response of long period fiber gratings to external index of refraction[J]. Light TechnOl.,1998, 16(9):1606-1612.
    [38]R. Falciai, A. G. Mignani, A. Vannini. Long period gratings as solution concentration sensors[J]. Sensors and Actuators B,2001,74(1-3):74-77.
    [39]Xuewen Shu. Lin Zhang. Ian Bennion. Sensitivity characteristics of long-period fiber gratings[J]. Lightwave TechnOl.,2002,20(2):255-266.
    [40]K. Zhou, X. Chen, L. Zhang et al.. High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings[J]. Electron. Lett.,2004,40(4):232-234.
    [41]D. A. Pereira,0. Frazao, J. L. Santos. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature[J]. Opt. Engng.,2004,43(2):299-304.
    [42]Wei Liang, Yanyi Huang, Yong Xu et al. Highly sensitive fiber Bragg grating refract ive index sensors[J]. Appl. Phys. Lett.,2005,86(15):151122-1-151122-3.
    [43]沈乐,郑史烈,章献民.侧面研磨光纤Bragg光栅的外部折射率敏感特性研究[J].光子学报,2005,34(7):1036-1038.
    [44]Weichong D, Tam H Y, Michael S Y, et al. Long-period fiber grating bending sensors in laminated composite structures [C], Proc SPIE,1998,3330:284-292.
    [45]Stephen W J, Ralph P T. Optical fiber long-period grating sensors:characteristics and application [J]. Measurement Science and Technology,2003.
    [46]Nori tomo H. Yasukazu S. Fiber Bragg grating temperature sensor for practical use [J]. ISA Transactions,2000,39:169-173.
    [47]Liyang S, Jacques A. Transverse load sensing with a tilted fiber Bragg grating compressed between conforming elastomers [C], Proc. SPIE 7753,775360, Ottawa, Canada, 2011.
    [48]ladicicco A, Cusano A, Cutolo A, et al. Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor [J]. IEEE Photonics Technology Letters,2004,16(4):1149-1151.
    [49]Ming H, Fawen G, Yongfeng L. Optical fiber refractometer based on cladding-mode Bragg grating [J]. Optics Letters,2010,5(3):399-401.
    [50]A-ping Z, Xiao-Ming T, Weng-Hong C, et al. Cladding-mode-assisted recouplings in concatenated Long-period and fiber Bragg gratings [J]. Optics Letters,2002,27(14): 1214-1216.
    [51]Kashyap R. Fiber Bragg Gratings [M]. Oxford, Elsevier,2010,119-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700