化工过程中的若干预测控制算法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球化市场的竞争日趋激烈、不可再生资源的日益减少和环境压力的不断加大,如今的生产企业对过程控制的性能和效益提出了更高的要求。预测控制技术以其对模型质量要求不高、控制性能好、易于处理约束和经济效益可观等特点,越来越受到工业控制界的关注。本文在前人基础上,从实际出发,对预测控制的若干问题进行了较为深入的研究,包括:
     (1)针对DMC算法对扰动估计能力弱的缺点,提出了一种扰动自适应DMC算法。采用时间序列(ARMA)模型描述不可测扰动的动态特性。考虑到扰动往往具有时变性,采用递推算法在线辨识ARMA模型,并对扰动的未来行为作出预估,提高了系统的模型预测精度,改善了DMC抑制扰动的能力。
     (2)提出一种基于多次迭代思想的递推伪线性回归(MIPLR)算法。递推辨识ARMA(X)模型,算法的准则函数不是参数向量的二次函数形式,所以相应的解析解不存在,传统的在线递推算法辨识精度不理想。MIPLR采用多次迭代思想,在每一次递推过程中通过多次迭代使结果更加逼近准则函数极小点。与原伪线性回归算法相比,在辨识ARMA(X)模型上MIPLR具有更好的辨识效果。
     (3)将扰动自适应的思想扩展到状态空间框架下的预测控制中,克服了基于输入-输出模型的DMC算法的不足。同时,考虑到数据与辨识模型的不确定性,改用Min-Max形式描述MPC算法的控制作用优化命题,并将在线辨识过程中的误差数据引入Min-Max命题,使在线辨识与控制作用鲁棒优化求解紧密结合起来,提高了算法的鲁棒性。进一步地,将此Min-Max问题转换为一个等效的非线性Min问题,并采用多步线性化方法实现快速求解,解决了传统Min-Max方法在线计算负荷高的问题。
     (4)将经典控制理论中的反馈机制和闭环控制系统的概念引入粒子群算法,提出了一种闭环粒子群(CLPSO)算法。在CLPSO中,将每个粒子视作一个被控对象,对其构建一个闭环控制系统。迭代过程中将粒子的适应值作为被控变量,反馈给闭环回路,通过PID控制器调整更新惯性权重,然后再进行粒子的速度和位置的更新。CLPSO很好的满足了每个粒子的自身需求,极大的保证了种群中粒子的多样性,提高了PSO的搜索能力。
     (5)考虑到模型不确定性,用Min-Max优化命题描述工业多变量PID控制器和预测控制器参数整定问题,并给出了面向工程应用的性能指标。利用CLPSO求解该命题。仿真结果显示,所提方法具有良好的控制效果和鲁棒性。并且,运用该方法对化工厂PTA装置控制回路进行优化整定,得到了满意的控制效果。现场应用进一步证明了该方法的有效性。
     最后对全文进行了总结,并指出若干有待于今后进一步研究的内容。
With the increasing competiton in global market, decrease of non-renewable resources and high pressure in environment, process control is required to be more efficient and profitable. Model preditive control technique, due to its advantages of control performance, robustness and constraints handling, has become an important issue in the control engineering fields. Some problems of predictive control are researched in this dissertation, and the main research works are as follows:
     (1) A modified DMC algorithm that uses an adaptive disturbances model is proposed. The dynamics of unmeasured distubances are estimated by an ARMA process. An on-line recursive method is adopted to estimate the coefficients of ARMA process considering the time-varing feature of disturbances. With the adaptive disturbance model, the accuracy of model prediction in DMC is improved, and consequently, a better performance in disturbance rejection is abtained.
     (2) A novel multi-iteration pseudo-linear regression (MIPLR) method is proposed. In estimating ARMA(X) processes, the cost function of recursive identification algorithms is not a quadratic form of the model coefficients vector, thus no analytical solution is available and the performance of traditional methods is not satisfactory. This can be improved by introducing the concept of multi-iteration into recursive methods. MIPLR uses each data sample in multiple iterations, improving the model accuracy and convergence rate.
     (3) A robust model predictive control (RAMPC) technique with an adaptive disturbance model is developed. The dynamics of unmeasured disturbances are modeled by ARMA processes. In addition, the optimization in MPC is formulated as a Min-Max problem which takes into account data uncertainties. For lower computational burden, the Min-Max problem is reduced to a nonlinear Min one, and is solved by multi-step linearization method. Numerical simulations demonstrate the effectiveness of the proposed methods.
     (4) A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional-integral-derivative (PID) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity.
     (5) Tuning of general multivariable process controllers is formulated as a Min-Max optimization problem, considering model uncertainty. A novel engineering oriented performance index is proposed and CLPSO is employed to solve the problem. Simulation results demonstrate the superiority of CLPSO over other methods, and the applications to PTA equipment control loops prove the effectiveness of the proposed method.
     At the end of this dissertation, the author also gives some suggestions to the further research in these fields.
引文
[1] J. Richalet, A. Rault, J.L. Testud, J. Papon. Model predictive heuristic control: applications to industrial processes. Automatica 1978, 14, (5), 413-428.
    
    [2] R. Rouhani, R.K. Mehra. Model algorithmic control (MAC): basic theoretical properties. Automatica 1982, 18, (4), 401-414.
    
    [3] Cutler, CR. Dynamic matrix control - an optimal multivariable control algorithm with constraints. University of Houston, Houston, 1983.
    
    [4] D.W. Clarke, C. Mohtadi, P.S. Tuffs. Generalized predictive control. Par 1: The basic algorithm. Part 2: Extensions and interpretations. Automatica 1987, 23, 137-160.
    
    [5] H.B. Kuntze, A. Jacubasch, J. Richalet. On the predictive functional control of an elastic industrial roboot. In Proceedings of the 25th CDC, Athens, Greece, 1986; pp 1877-1881.
    
    [6] J. Richalet, S. Abu el Ata-Doss, D. Arber, H.B. Kuntze, A. Jacubash, W. Schill. Predictive functional control: application to fast and accurate robots. In Proceedings of the 10th IFAC World Congress, Munich, Germany, 1987; pp 251-258.
    
    [7] 席裕庚.预测控制.国防工业出版社:北京,1993.
    
    [8] M. Morari, J.H. Lee. Model predictive control: past, present and future. Comp. Chem. Eng. 1999,23, 667-682.
    
    [9] Zhu, Y.C. Multivariable process identification for MPC: the asymptotic method and its applications. J. Process Control 1998, 8, (2), 101-115.
    
    [10] S.W. Sung, J.H. Leeb. Pseudo-random binary sequence design for finite impulse response identification. Control Engineering Practice 2003, 11, 935-947.
    
    [11] M. Liu, Q.G. Wang, B. Huang, C.C. Hang. Improved identification of continuous-time delay processes from piecewise step tests. J. Process Control 2007, 17,51-57.
    
    [12] Tulleken, H.J.A.F. Generalized binary noise test-signal concept for improved identification-experiment design. Automatica 1990, 26, (1), 37-49.
    
    [13] Y.C. Zhu, F. Butoyi. Case studies on closed-loop identification for MPC. Control Engineering Practice 2002,10, 403-417.
    
    [14] C.W. Koung, J.F. MacGregor. Design of identification experiments for robust control. A geometric approach for bivariate processes. Ind. Eng. Chem. Res. 1993, 32, 1658-1666.
    
    [15] C.W. Koung, J.F. MacGregor. Identification for robust multivariable control: the design of experiments. Automatica 1994, 30, (10), 1541-1554.
    
    [16] Qin, S.J. An overview of subspace identification. Comp. Chem. Eng. 2006, 30, 1502-1513.
    
    [17] Larimore, W.E. System identification, reduced-order filtering and modeling via canonical variate analysis. In Proceedings of the American Control Conference, Dorato, H. S. R. a. T., Ed. San Francisco, USA, 1983; pp 445-451.
    
    [18] V. Michel, D. Patrick. Subspace model identification, Part 1: the output-error state space identification class of algorithms. Int. J. Control 1992, 56, (5), 1187-1210.
    
    [19] Van Overshcee Peter, De Moor Bart. N4SID: subspace algorithms for the identification of combined deterministic - stochastic systems. Automatica 1994, 30, (1), 75-93.
    
    [20] E.P. Gatzke, E.S. Meadows, C. Wang, F.J. Doyle. Model based control of a four-tank system. Comp. Chem. Eng. 2000,24, 1503-1509.
    
    [21] S.C. Patwardhan, S.L. Shah. From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers. J. Process Control 2005,15, (7), 819-835.
    
    [22] P. Misra, M. Nikolaou. Input design for model order determination in subspace identification. AIChE J 2003,49, (8), 2124-2132.
    
    [23] A. Micchi, G. Pannocchia. Comparison of input signals in subspace identification of multivariable ill-conditioned systems. J. Process Control 2008, 18, 582-593.
    
    [24] I.H. Song, S.B. Lee, H.K. Rhee, M. Mazzotti. Identification and predictive control of a simulated moving bed process: purity control. Chem. Eng. Sci. 2006, 61, 1973-1986.
    
    [25] J.A. Rossiter, L. Yao. Application of MPC to a non-linear power generation model. In Proceedings of the IEE control, Cambridge, UK, 2000.
    
    [26] R. Kadali, B. Huang, A. Rossiter. A data driven subspace approach to predictive controller design. Control Engineering Practice 2003, 11, 261-278.
    
    [27] Y.C. Zhu, Paul P.J. van den Bosch. Optimal closed-loop identification test design for internal model control. Automatica 2000, 36, 1237-1241.
    
    [28] W.H. Kwon, A.E. Pearson. A modified quadratic cost problem and feedback stabilization of a linear system.IEEE Transactions on Automatic Control 1977,22,(5),838-842.
    [29]W.H.Kwon,A.E.Pearson.On feedback stabilization of time-varying discrete linear systems.IEEE Transactions on Automatic Control 1978,23,(3),479-481.
    [30]C.C.Chen,L.Shaw.On receding horizon feedback control Automatica 1982,18,349-352.
    [31]S.S.Keerthi,E.G Gilbert.Optimal,infinite horizon feedback laws for a general class of constrained discrete time systems:Stability and moving-horizon approximations.Journal of Optimization Theory and Application 1988,57,265-293.
    [32]P.O.M.Scokaert,D.W.Clarke.Stabilizing properties of constrained predictive control.In IEE Proc.Part D,1994;pp 295-304.
    [33]G.D.Nicolao,L.Magni,R.Scattolini.On the robustness of receding horizon control with terminal constraints.IEEE Transactions on Automatic Control 1996,41,(3),451-453.
    [34]Zheng,A.Stability of model predictive control with time-varying weights.Comp.Chem.Eng.1997,21,(12),1389-1393.
    [35]H.Chen,F.Allegower.A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability.Automatica 1998,34,(10),1205-1217.
    [36]J.Rawlings,K.Muske.The stability of constrained receding horizon control.IEEE Transactions on Automatic Control 1993,38,1512-1516.
    [37]Mosca,E.Optimal,predictive and adaptive control.Prentice Hall:1995.
    [38]D.Q.Mayne,J.B.Rawlings,C.V.Rao,P.O.M.Scokaert.Constrained model predictive control:stability and optimality.Automatica 2000,36,789-814.
    [39]L.O.Santos,L.T.Biegler.A tool to analyze robust stability for model predictive controllers.J.Process Control 1999,9,233-246.
    [40]L.O.Santos,L.T.Biegler,J.A.A.M.Castro.A tool to analyze robust stability for constrained nonlinear MPC.J.Process Control 2008,18,383-390.
    [41]P.D.Couchman,M.Cannon,B.Kouvaritakis.Stochastic MPC with inequality stability constraints.Automatica 2006,42,2169-2174.
    [42]Zafiriou,E.Robust model predictive control of processes with hard constraints.Computers chem.Engng 1990,14,(4),359-371.
    [43]H.Genceli,M.Nikolaou.Robust stability analysis of constrained l_1-norm model predictive control.AIChE J 1993,39,(12),1954-1965.
    [44]Xi,Y.New design method for discrete time multivariable predictive controllers. Int. J. Control 1989, 49, (1), 45-56.
    
    [45] J.A. Primbs, V. Nevistic. A framework for robustness analysis of constrained finite receding horizon control. In Proceedings of the American Control Conference, Philadelphia, PA, USA, 1998; pp 2718-2722.
    
    [46] Primbs, J.A. The analysis of optimization based controllers. In Proceedings of the American Control Conference, San Diego, California, USA, 1999; pp 3297-3301.
    
    [47] P.J. Campo, M. Morari. Robust model predictive control. In Proceedings of the American Control Conference, Minneapolis, Minnesota, USA, 1987; pp 1021-1026.
    
    [48] J.H. Lee, Z.H. Yu. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica 1997, 33, (5), 763-781.
    
    [49] A. Bemporad, M. Morari, V. Dua, E. Pistikopoulos. The explicit solution of model predictive control via multiparametric quadratic programming. In Proceedings of the American Control Conference, Chicago, USA, 2000; pp 872-876.
    
    [50] D.R. Ramirez, E.F. Camacho. On the piecewise linear nature of Min-Max model predictive control with bounded uncertainties. In Proceedings of the 40th Conference on Decision and control, Orlando,Florida, USA, 2001; pp 4845-4850.
    
    [51] D.R. Ramirez, E.F. Camacho. Characterization of Min-Max MPC with bounded uncertainties and a quadratic criterion. In Proceedings of the American Control Conference, Anchorage, AK, USA, 2002; pp 358-363.
    
    [52] E.C. Kerrigan, D.Q. Mayne. Optimal control of constrained piecewise affine systems with bounded disturbances. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 2002; pp 1552-1557.
    
    [53] P.O.M. Scokaert, D.Q. Mayne. Min-Max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control 1998, 43, (8), 1136-1142.
    
    [54] B. Kouvaritakis, J.A. Rossiter, J. Schuurmans. Efficient robust predictive control. IEEE Transactions on Automatic Control 2000,45, (8), 1545-1549.
    
    [55] K.Y. Rani, H. Unbehauen. Study of predictive controller tuning methods. Automatica 1997, 33, (12), 2243-2248.
    
    [56] A. Georgiou, C. Georgakis, W.L. Luyben. Nonlinear dynamic matrix control for high-purity distillation columns. AIChE J 1988, 34, 1287-1298.
    
    [57] P.R. Maurath, D.E. Seborg, D.A. Mellichamp. Predictive controller design by principal components analysis. In Proceedings of the American Control Conference, 1985; pp 1059-1065.
    [58] R.F. Hinde Jr, D.J. Cooper A pattern-based approach to excitation diagnostics for adaptive process control. Chem. Eng. Sci. 1994, 49, 1403-1415.
    
    [59] D.W. Clarke, C. Mohtadi. Properties of generalized predictive control. Automatica 1989, 25, 859-875.
    
    [60] P. Banerjee, S.L. Shah. Tuning guide-lines for robust generalized predictive control. In Proceedings of the 31st IEEE Conf. on Decision and Control, 1992; pp 3233-3234.
    
    [61] R. Shridhar, D.J. Cooper. A tuning strategy for unconstrained multivariable model predictive control. Ind. Eng. Chem. Res. 1998, 37, 4003-4016.
    
    [62] A. Jiang, A. Jutan. Response surface tuning methods in dynamic matrix control of a pressure tank system. Ind. Eng. Chem. Res. 2000, 39, 3835-3843.
    
    [63] A. Al-Ghazzawi, E. Ali, A. Nouh, E. Zafiriou. On-line tuning strategy for model predictive controllers. J. Process Control 2001, 11, 265-284.
    
    [64] Ali, Emad. Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic. J. Process Control 2003,13, 383-396.
    
    [65] J.O. Trierweiler, S. Engell. The robust performance number: a new tool for control structure design. Comp. Chem. Eng. 1997,21, 409-414.
    
    [66] J.O. Trierweiler, L.A. Farina. RPN tuning strategy for model predictive control. J. Process Control 2003,13, (7), 591-598.
    
    [67] J.H Lee, Z.H. Yu. Tuning of model predictive control for robust performance. Computers chem. Engng. 1994,18, (1), 15-37.
    
    [68] Shinskey, F.G.Feedback Controllers for the Process Industries. McGraw - Hill: New York, 1994.
    
    [69] J.B. Rawlings, E.S. Meadows, K.R. Muske. Nonlinear model predictive control: a tutorial and survey. In Proceedings of the ADCHEM, Kyoto, Japan, 1994; pp 185-197.
    
    [70] P. Lundstrom, J.H.Lee; M.Morari, S.Skogestad. Limitations of dynamic matrix control. Computers chem. Engng 1995, 19, (4), 409-421.
    
    [71] M. Ohshima, H. Ohno, I. Hashimoto, M. Sasajima. Model predictive control with adaptive disturbance prediction and its application to fatty acid distillation column control. J. Process Control 1995, 5, (1), 41-48.
    
    [72] I.L. Chien, Y.T. Tang, T.S. Chang. Simple nonlinear controller for high-purit distillation columns. AIChE J 1997, 43, 3111-3116.
    
    [73] F. Zhao, Y. P. Gupta. A simplified predictive control algorithm for disturbance rejection.ISA Trans.2005,44,187-198.
    [74]Gupta,Y.P.A simplified predictive control approach for handling constraints through linear programming.Comput Ind.1993,21,255-265.
    [75]Gupta,Y.P.Characteristic equations and robust stability of a simplified predictive control algorithm.Can.J.Chem.Eng.1993,71,617-624.
    [76]M.Morari,J.H.Lee.Model predictive control:the good,the bad,and the ugly.In Proceedings of the 4th International Conference on Chemical Process Control,Elsevier.Amsterdam,1991;pp 419-444.
    [77]M.C.Wellons,T.F.Edgar.The generalized analytical predictor for chemical process control.Ind.Eng.Chem.Res.1987,26,1523-1536.
    [78]Samo Gerksic,Stanko Strmcnik,Ton van den Boom.Feedback action in predictive control:An experimental case study.Control Engineering Practice 2008,16,321-332.
    [79]B.J.Odelson,A.Lutz,J.B.Rawlings.The autocovariance least-squares method for estimating covariances:application to model-based control of chemical reactors.IEEE Trans.Cont.Sys.Tech 2006,14,(3),532-540.
    [80]K.R.Muske,T.A.Badgwell.Disturbance modeling for offset-free linear model predictive control.J.Process Control 2002,12,617-632.
    [81]G Pannocchia,J.B.Rawlings.Disturbance model for offset-free model-predictive control.AIChE J 2003,49,(2),426-437.
    [82]A.Bemporad,M.Morari.The explicit linear quadratic regulator for constrained systems.Automatica 2002,38,(1),3-20.
    [83]P.Dua,K.Kouramas,V.Dua,E.N.Pistikopoulos.MPC on a chip-Recent advances on the application of multi-parametric model-based control.Comp.Chem.Eng.2008,32,754-765.
    [84]S.Mariethoz,M.Morari.Explicit model predictive control of a PWM inverter with an LCL filter.IEEE Trans.Ind.Elec.2009,56,(2),389-399.
    [85]U.Maeder,R.Cagienard,M.Morari.Explicit model predictive control.ADVANCED STRATEGIES IN CONTROL SYSTEMS WITH INPUT AND OUTPUT CONSTRAINTS 2007,346,237-271.
    [86]B.Kouvaritakis,M.Cannon.Who needs QP for linear MPC anyway?Automatica 2002,38,879-884.
    [87]Z.Y.Wan,M.V.Kothare.An efficient off-line formulation of robust model predictive control using linear matrix inequalities.Automatica 2003,39,837-846.
    [88]K.U.Klatt,W.Marquadt.Perspectives for process systems engineering-Personal views from academia and industry.Comp.Chem.Eng.2009,33,536-550.
    [89]Y.Wang,S.Boyd.Fast model predictive control using online optimization.In Proceedings of the 17th IFAC World Congress,Seoul,Korea,2008;pp 6974-6979.
    [90]M.Morari,M.Baric.Recent development in the control of constrained hybrid systems.Comp.Chem.Eng.2006,30,1619-1631.
    [91]M.Diehl,H.G.Bock,J.P.Schloder,R.Findeisen,Z.Nagy,F.Allgower.Real-time optimization and nonlinear model predictive control of process governed by differential-algebraic equations.J.Process Control 2002,12,(4),577-585.
    [92]L.Wirsching,J.Albersmeyer,P.Kuehl,M.Diehl,H.Bock.An adjoint-based numerical method for fast nonlinear model predictive control.In Proceedings of the 17th IFAC World Congress,Seoul,Korea,2008;pp 1934-1939.
    [93]张群亮,席裕庚.基于线性集结的预测控制器.控制理论与应用2006,23,(5),763-767.
    [94]李德伟,席裕庚,秦辉.预测控制等效集结优化策略的研究.自动化学报2007,33,(3),302-308.
    [95]M.Athans,K.Castanou,P.Dunn,C.S.Greene,W.H.Lee,N.R.Sandell,A.S.Willsky.The stochastic control of the F-8C aircraft using a multiple model adaptive control(MMAC) method-part 1:equilibrium flight.IEEE Transactions on Automatic Control 1977,22,(5),768-780.
    [96]B.Aufderheide,B.W.Bequette.Extension of dynamic matrix control to multiple models.Comp.Chem.Eng.2003,27,1079-1096.
    [97]D.Dougherty,D.Cooper.A practical multiple model adaptive strategy for multivariable model predictive control.Control Engineering Practice 2003,11,649-664.
    [98]N.N.Nandola,S.Bhartiya.A multiple model approach for predictive control.J.Process Control 2008,18,131-148.
    [99]J.Shamma,M.Athans.Guaranteed properties of gain scheduled control for linear parameter varying plants.Automatica 1991,27,(3),559-564.
    [100]A.Banerjee,Y.Arkun.Model predictive control of plant transitions using a new identification technique for interpolating nonlinear models.J.Process Control 1998,8,(5),441-457.
    [101]V.Verdult,M.Verhaegen.Subspace identification of multivariable linear parameter-varying systems.Automatica 2002,38,(5),805-815.
    [102]V.Verdult,M.Verhaegen.Kernel methods for subspace identification of multivariable LPV and bilinear systems.Automatica 2005,41,(9),1557-1565.
    [103]M.V.Kothare,B.Mettler,M.Morari,P.Bendotti,CM.Falinower.Level control in the steam generator of a nuclear power plant.IEEE Trans.Cont.Sys.Tech 2000,8,(1),55-69.
    [104]Y.Lu,Y.Arkun.Quasi-Min-Max MPC algorithms for LPV systems.Automatica 2000,36,527-540.
    [105]M.V.Kothare,V.Balakrishnan,M.Morari.Robust constrained model predictive control using linear matrix inequalities.Automatica 1996,32,(10),1361-1379.
    [106]S.M.Lee,J.H.Park.Output feedback model predictive control for LPV systems using parameter dependent Lyapunov function.Appl Math.Comput.2007,190,671-676.
    [107]J.V.Salcedo,M.Martinez,C.Ramos,J.M.Herrero.Predictive LPV control of a liquid-gas seperation process.Advances in Engineering Software 2007,38,466-474.
    [108]孙浩,席裕庚,施颂椒.非线性系统基于I/O扩展线性化的预测控制算法.控制理论与应用1991,8,(3),261-267.
    [109]张智焕,王树青,荣冈.基于精确线性化的MIMO双线性系统预测函数控制.控制理论与应用 2003,20,(3),477-480.
    [110]J.Abonyi,L.Nagy,F.Szeifert.Fuzzy model-based predictive control by instantaneous linearization.Fuzzy Sets and Systems 2001,120,109-122.
    [111]B.Kouvaritakis,M.Cannon,J.A.Rossiter.Nonlinear model based predictive control.Int.J.Control 1999,72,(10),919-928.
    [112]Y.I.Lee,B.Kouvaritakis,M.Cannon.Constrained receding horizon predictive control for nonlinear systems.Automatica 2003,38,(12),2093-2102.
    [113]K.R.Muske,J.W.Howse,GA.Hansen.Lagrangian solution methods for nonlinear model predictive control.In Proceedings of the American Control Conference,Chicago,Illinois,USA,2000;pp 4239-4243.
    [114]F.Martinsen,L.T.Biegler,B.A.Foss.Application of optimization algorithms to nonlinear MPC.In Proceedings of the 15th IFAC World Congress,Barcelona,2002.
    [115]X.F.Zhu,D.E.Seborg.Nonlinear predictive based on Hammerstein models.Control Theory and Applications 1994,11,(5),564-575.
    [116]Bai,E.W.A blind approach to Hammerstein model identification.IEEE Trans.Signal Process 2002,50,(7),1610-1619.
    [117]Y.Liu,E.W.Bai.Iterative identification of Hammerstein systems.Automatica 2007,43,(2),346-354.
    [118]K.P.Fruzzetti,A.Palazoglu,K.A.McDonald.Nonlinear model predictive control using Hammerstein models.J.Process Control 1997,7,31-41.
    [119]A.L.Cervantes,O.E.Agamennoni,J.L.Figueroa.A nonlinear model predictive control system based on wiener piecewise linear models.J.Process Control 2003,13,(7),655-666.
    [120]徐小平,钱富才,王峰.一种辨识Wiener-Hammerstein模型的新方法.控制与决策2008,23,(8),929-934.
    [121]Zhu,Y.C.Estimation of an N-L-N Hammerstein-Wiener model.Automatica 2002,38,(9),1607-1614.
    [122]P.Crama,J.Schoukens.Hammerstein-Wiener system estimator initialization.Automatica 2004,40,(9),1543-1550.
    [123]F.J.Doyle,B.A.Ogunnaike,R.K.Pearson.Nonlinear model-based control using second-order Volterra models.Automatica 1995,31,(5),697-714.
    [124]F.Dorado,C.Bordons.Constrained nonlinear predictive control using Volterra models.In Proceedings of the 10th IEEE Conference on Emerging Technologies and Factory Automation,ETFA,2005.
    [125]K.Y.Zhu,X.F.Qin,T.Y.Chai.A new decoupling design of self-tuning multivariable generalized predictive control.International Journal of Adaptive Control and Signal Processing 1999,13,(3),183-196.
    [126]L.J.Chen,K.S.Narendra.Nonlinear adaptive control using neural networks and multiple models.Automatica 2001,37,(8),1245-1255.
    [127]石宇静,柴天佑.基于神经网络与多模型的非线性自适应广义预测解耦控制.控制理论与应用2008,25,(4),634-640.
    [128]H.Sarimveis,G.Bafas.Fuzzy model predictive control of non-linear processes using genetic algorithms.Fuzzy Sets and Systems 2003,139,59-80.
    [129]A.Nunez,D.Saez,S.Oblak,I.Skrjanc.Fuzzy-model-based hybrid predictive control.ISA Trans.2009,48,24-31.
    [130] X. Du, Y. Xi, S. Li. Distributed model predictive control for large-scale systems. In Proceedings of the American Control Conference, Arlington, VA, USA, 2001; pp 3142-3143.
    
    [131] S. Li, Y. Zhang, Q. Zhu. Nash-optimization enhanced distributed model predictive control applied to a shell benchmark problem. Information Science 2005, 170,329-349.
    
    [132] E. Camponogara, D. Jia, B.H. Krogh, S. Talukdar. Distributed model predictive control. IEEE Control System Magazines 2002, 22, 44-52.
    
    [133] A.N. Venkat, J.B. Rawlings, S.J. Wright. Stability and Optimality of distributed model predictive control. In Proceedings of the 46th IEEE Conference on Decision and Control, Seville, Spain, 2005; pp 6680-6685.
    
    [134] D. Jia, B. Krogh. Min-max feedback model predictive control for distributed control with communication. In Proceedings of the American Control Conference, Anchorage, AK, USA, 2002; pp 4507-4512.
    
    [135] J.B. Rawlings, B.T. Stewart. Coordinating multiple optimization-based controllers: New opportunities and challenges. J. Process Control 2008,18, 839-845.
    
    [136] M. Baglietto, T. Parisini, R. zoppoli. Neural approximators and team theory for dynamic routing: A receding-horizon approach. In Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, 1999; pp 3283-3288.
    
    [137] A. Alessio, A. Bemporad. Stability conditions for decentralized model predictive control under packet drop communication. In Proceedings of the American Control Conference, Seattle, Washington, USA, 2008; pp 3577-3582.
    
    [138] Astrom, K.J. State of the art and needs in process identification. In Proceedings of the AIChE Symp. Ser, 1976; pp 184-194.
    
    [139] Astrom, K.J. Introduction to stochastic control theory. Academic Press: San Diego, California, 1970.
    
    [140] Harris, T.J. Assessment of control loop performance. Can. J. Chem. Eng. 1989, 67, (10), 856-861.
    
    [141] B. Huang, S.L. Shah, K.Y. Kwok. Good, bad or optimal? performance assessment of MIMO processes. Automatica 1997, 33, (6), 1175-1183.
    
    [142] B. Ko, T.F. Edgar. Performance assessment of multivariable feedback control systems. Automatica 2001, 37, 899-905.
    
    [143] C.T. Seppala, T.J. Harris. Time series methods for dynamic analysis of multiple controlled variables. J. Process Control 2002, 12, 257-276.
    [144]T.J.Harris,W.Yu.Analysis of multivariable controllers using degree of freedom data.Int.J.Adaptive Control Signal Process 2003,17,569-588.
    [145]P.Patwardhan,S.L.Shah.Performance diagnostics of model based controllers.J.Process Control 2002,12,413-427.
    [146]S.J.Qin,J.Yu.Recent developments in multivariable controller performance monitoring.J.Process Control 2007,17,221-227.
    [147]F.Loquasto,D.Seborg.Model predictive controller monitoring based on pattern classification and PCA.In Proceedings of the American Control Conference,2003;pp 1968-1973.
    [148]J.Schafer,A.Cinar.Multivariable MPC system performance assessment,monitoring,and diagnosis.J.Process Control 2004,14,113-129.
    [149]J.G Ziegler,N.B.Nichols.Optimum settings for automatic controllers.Trans.ASME 1942,64,759-768.
    [150]C.Hang,K.J.Astrom,W.K.Ho.Relay auto-tuning in the presence of static load disturbance.Automatica 1993,29,(2),563-564.
    [151]K.J.Astrom,T.Hagglund,A.Wallenborg.Automatic tuning of digital controllers with applications to HVAC plants.Automatica 1993,29,(5),1333-1343.
    [152]柴天佑,张贵军.基于给定的相角裕度和幅值裕度PID参数自整定新方法.动化学报 1997,23,(2),167-172.
    [153]W.K.Ho,K.W.Lim,W.Xu.Optimal gain and phase margin tuning for PID controllers.Automatica 1998,34,(8),1009-1014.
    [154]A.S.McGormack,K.R Godfrey.Rule-based auto-tuning based on frequency domain identification.IEEE Trans.Cont.Sys.Tech 1998,6,(1),43-61.
    [155]Bristol,E.H.An alternative to parameter identification in adaptive control.Automatica 1977,13,197-202.
    [156]D.E.Rivera,M.Morari,S.Skogestad.Internal model control for PID controller design.Ind.Eng.Chem.Res.1986,25,(1),252-265.
    [157]Skogestad,S.Simple analytic rules for model reduction and PID controller tuning.J.Process Control 2003,13,291-309.
    [158]Holland,J.H.Adaption in nature and artificial system.MIT Press:1991.
    [159]J.Zhang,H.S.H.Chung,A.W.L.Lo,T.Huang.Extended Ant Colony Optimization Algorithm for Power Electronic Circuit Design.IEEE TRANSACTIONS ON POWER ELECTRONICS 2009,24,(1),147-162.
    [160]S.Kirkpatrick,J.C.D.Gelatt,M.P.Vecchi.Optimization by simulated annealing.Science 1983,220,671-680.
    [161]R.C.Eberhart,J.Kennedy.Particle Swarm Optimization.In IEEE Int.Conf.on Neural Networks,IEEE:Piscataway,1995;pp 1942-1948.
    [162]R.C.Eberhart,J.Kennedy,A New Optimizer Using Particle Swarm Theory.In Sixth International Symposium on Micro Machine and Human Science,IEEE:Nagoya,Japan,1995;pp 29-43.
    [163]Lieslehto,J.PID controller tuning using evolutionary programming.In Proceedings of the American Control Conference,Arlington,VA,USA,2001;pp 2828-2833.
    [164]Chang,W.D.A multi-crossover genetic approach to multivariable PID controllers tuning.Expert Syst.Appl.2007,33,620-626.
    [165]J.Zhao,T.P.Li,J.X.Qian.Application of particle swarm optimization algorithm on robust PID controller tuning.In Proceedings of the 1st International Conference on Natural Computation,Changsha,PEOPLES R CHINA,2005;pp 948-957.
    [166]C.R.Cutler,A.Morshedi,J.Haydel,An industrial perspective on advanced control.In AIChE annual meeting,Washington,DC,1983.
    [167]P.Grosdidier,B.Froisy,M.Hammann.The IDCOM-M controller.In Proceedings of the 1988 IFAC workshop on model based process control,T.J.McAvoy,Y.A.,E.Zafiriou,Ed.Pergamon Press:Atlanta,GA,1988;pp 31-36.
    [168]钱积新,赵均,徐祖华.预测控制.化学工业出版社2007.
    [169]浙江大学控制系系统工程研究所.Front-APC 核心术参考手册.2002.06.
    [170]S.J.Qin,T.A.Badgwell.A survey of industrial model predictive control technology.Control Engineering Practice 2003,11,(7),733-764.
    [171]S.Karra,R.Shaw,S.C.Patwardhan,S.Noronha.Adaptive model predictive control of multivariable time-varying systems.Ind.Eng.Chem.Res.2008,47,2708-2720.
    [172]Ljung,L.System Identification:Theory for the User.2nd Edition ed.;Prentice Hall:1999.
    [173]Zhu,Y.C.Multivariable System Identification for Process Control.Elsevier Science:Oxford,2001.
    [174]S.Li,K.Y.Lim,D.G Fisher.A state space formulation for model predictive control.AIChEJ 1989,35,241-249.
    [175]Liuping Wang,Peter C.Young.An improved structure for model predictive control using non-minimal state space realisation.J.Process Control 2006,16,355-371.
    [176]Maciejowski,J.M.Predictive control with constraints.Prentice Hall:London,2002.
    [177]L.Ljung,T.Soderstrom.Theory and practice of recursive identification.The MIT press:1983.
    [178]Solo,V.Time series recursions and stochastic approximation.The Australian National University,Canberra,1978.
    [179]H.Robbins,S.Monro.A stochastic approximation method.Annals of Mathematical Statistics 1951,22,400-407.
    [180]I.L.Chien,H.P.Huang,J.C.Yang.A simple multiloop tuning method for PID controllers with no proportional kick.Ind.Eng.Chem.Res.1999,38,1456-1468.
    [181]Q.Xiong,W.J.Cai.Effective transfer function method for decentralized control system design of multi-input multi-output processes.J.Process Control 2006,16,773-784.
    [182]L.E.Ghaoui,H.Lebret.Robust solutions to least-squares problems with uncertain data.SIMAX 1997,18,(4),1035-1064.
    [183]S.Chandrasekaran,G.H.Golub,M.Gu,A.H.Sayed.Worst-case parameter estimation with bounded model uncertainties.SIMAX1998,19,(1),235-252.
    [184]W.C.Li,L.T.Biegler.Multistep,Newton-type control strategies for constrained,nonlinear processes.Chem.Eng.Res.Des.1989,67,562-577.
    [185]王伟,张晶涛,柴天佑.PID参数先进整定方法综述.自动化学报2000,26,(3),347-355.
    [186]M.S.Chiu,Y.Arkun.A methodology for sequential design of robust decentralized control systems.Automatica 1992,28,(5),997-1001.
    [187]A.P.Loh,C.C.Hang,C.K.Quek,V.U.Vasnani.Autotuning of multiloop proportional-integral controllers using relay feedback.Ind.Eng.Chem.Res.1993,32,1102-1107.
    [188]S.H.Shen,C.C.Yu.Use of relay-feedback test for autotuning of multivariable systems.AIChE J 1994,40,627-646.
    [189]M.Hovd,S.Skogestad.Improved independent design of robust decentralized controllers.J.Process Control 1993,3,(1),43-51.
    [190]M.Hovd,S.Skogestad.Sequential design of decentralized controllers.Automatica 1994,30,(10),1601-1607.
    [191]Q.G Wang,B.Zou,T.H.Lee,B.Qiang.Auto-tuning of multivariable PID controllers from decentralized relay feedback.Automatica 1997,33,(3),319-330.
    [192]Wang,Q.G A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers.J.Process Control 2007,17,(1),59-72.
    [193]P.Nordfeldt,T.Hagglund.Decoupler and PID controller design of TITO systems.J.Process Control 2006,16,(9),923-936.
    [194]R.Shridhar,D.J.Cooper.A novel tuning strategy for multivariable model predictive control.ISA Trans.1998,36,(4),273-280.
    [195]W.Wojsznis,J.Gudaz,T.Blevins,A.Mehta.Practical approach to tuning MPC.ISA Trans.2003,42,(1),149-162.
    [196]Angeline,P.J.Evolutionary Optimization versus Particle Swarm Optimization and Philosophy and Performance Difference.In Proceedings of the 7th Annual Conf.on Evolutionary Programming,San Diego,USA,1998;pp 601-610.
    [197]B.Niu,Y.L.Zhu,X.X.He,X.P.Zeng.MCPSO:a multi-swarm cooperative particle swarm optimizer.Appl.Math.Comput.2007,185,(2),1050-1062.
    [198]M.Lovbjerg,T.K.Tasmussen,T.Krink.Hybrid Particle Swarm Optimizer with Breeding and Subpopulations.In Third Genetic and Evolutionary Computation Congress,San Diego,USA,2001;pp 469-476.
    [199]R.C.Eberhart,Y.Shi.Particle Swarm Optimization:Development,Applications and Resources.In IEEE on Evolutionary Computation,Seoul,Korea,2001;pp 81-86.
    [200]Y.Shi,R.C.Eberhart.A Modified Particle Swarm Optimizer.In IEEE Int.Conf.on Evolutionary Computation,Anchorage,Alaska,1998;pp 69-73.
    [201]R.C.Eberhart,Y.Shi.Tracking and Optimizing Dynamic Systems with Particle Swarms.In IEEE Congress on Evolutionary Computation,IEEE:Seoul,Korea,2001;pp 94-97.
    [202]A.Chatterjee,P.Siarry.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization.Comput.Oper.Res.2006,33,(3),859-871.
    [203]吴麒.自动控制原理.清华大学:北京,1990.
    [204] R.K. Wood, M.W. Berry. Terminal composition control of a binary distillation column. Chem. Eng. Sci. 1973, 28, (9), 1707-1717.
    
    [205] Luyben, W.L. A simple method for tuning SISO controllers in a multivariable system. Ind. Eng. Chem. Proc. Des. Dev 1986, 25, 654-660.
    
    [206] Ricker, N.L. Model predictive control: state of the art. In Proceedings of the 4th international conference on chemical process control, Y. Arkun, W. H. R., Ed. Elsevier: Amsterdam, Holland, 1991.
    
    [207] C.E. Garcia, M. Morari. Internal model control I. a unifying review and some new results. Ind. Eng. Chem. Proc. Des. Dev 1982,21, 308-323.
    
    [208] Fisher, D.G.Process control: an overview and personal perspective. Can. J. Chem. Eng. 1991, 69, 5-26.
    
    [209] B.A. Ogunnaike, J.B. Lemaire, M. Morari, W.H. Ray. Advanced multivariable control of a pilot plant distillation column. AIChE J 1983,29, 632-640.
    
    [210] L. Desborough, T.J. Harris. Performance assessment measures for univariate feedback control. Can. J. Chem. Eng. 1993, 70, 1186-1197.
    
    [211] N. Stanfelj, T.E. Marlin, J.F. MacGregor. Monitoring and diagnosis of process control performance: The single-loop case. Ind. Eng. Chem. Res. 1993, 67, (10), 856-861.
    
    [212] C.B. Lynch, G.A. Dumont. Control loop performance monitoring. IEEE Trans. Cont. Sys. Tech 1996,4, (2),185-192.
    
    [213] Huang, B. Multivariate statistical methods for control loop performance assessment. University of Alberta, Edmonton, 1997.
    
    [214] L. Desborough, T.J. Harris. Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 1993, 71, 605-616.
    
    [215] D. Chen, D.E. Seborg. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 2002, 41, 4807-4822.
    
    [216] Goodhart, S.G.Advanced process control using DMCplus. In UKACC International conference on control, IEE: University of Wales, Swansea, UK, 1998; pp 439-444.
    
    [217] A. Krishnan, K.A. Kosanovich, M.R. De Witt, M.B. Creech. Robust model predictive control of an industrial solid phase polymerizer. In Proceedings of the American Control Conference, Philadelphia, Pennsylvania, USA, 1998; pp 3386-3390.
    
    [218] Richalet, J. Industrial applications of model based predictive control. Automatica 1993,29,(5),1251-1274.
    [219]方崇智,萧德云.过程辨识.清华大学出版社:北京,1988.
    [220]Rissanen,J.Minimum description length principles.Wiley:New York,1985;Vol.Ⅴ.
    [221]徐祖华.模型预测控制理论及应用研究.浙江大学,杭州,2004.
    [222]冯少辉.模型预测控制工程软件关键技术及应用研究.浙江大学,杭州,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700