人脸识别中特征提取方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特征提取是人脸识别的关键技术,其优劣直接影响到整个人脸识别系统的性能。其中,基于Fisher准则的线性鉴别分析(LDA)是特征提取中最为经典和广泛使用的一种方法,它以模式数据的可分性为目标,寻找最佳鉴别矢量使类内离散度最小的同时,类间离散度达到最大。但作为一种基于统计的代数特征提取技术,传统LDA在小样本情况下会碰到2个实际问题:一是分布矩阵“奇异性”问题;二是分布矩阵估计误差问题。
     最近的FRVT2006测试结果表明:在受控和配合的观测条件下,目前最好算法的识别率相比FRVT2002有了一个数量级以上的提高,已超过人类本身的识别能力。但是,在非控制和非配合条件下识别率却将近有一个数量级的下降。这些影响识别性能的非控制因素很多如:光照变化、姿态、表情等等,其中光照变化的影响尤其明显,如何提取对这些因素鲁棒的特征仍是一个极具挑战性的问题。
     本文的工作紧紧围绕克服上述3个问题而展开,并提出了有效的解决方案,主要贡献总结如下:
     1.综述了各种基于LDA的扩展方法
     在小样本情况下,传统LDA由于类内离散矩阵Sw的奇异性而无法计算。近年来提出了许多LDA扩展方法,如克服奇异性问题的方法:Fisherfaces、直接LDA、零空间LDA、正交LDA等,和降低估计误差问题影响的方法:扰动LDA法、双空间LDA、三空间正则法等。本文详细介绍了这些扩展方法,并作了一定的分析。
     2.理论分析了各种克服奇异性问题的LDA扩展方法之间的关系和特性
     从代数理论层面分析了各种LDA扩展方法之间的关系和特性,并得出结论如下:GSVD-LDA等价于ULDA; DLDA存在理论缺陷,其几乎没利用Sw零空间中的信息,若保留全部的鉴别矢量,DLDA将退化为类间离散矩阵的保留所有非零主成分的PCA,而没利用Sw,在类内数据变化大于类间变化的应用场合(如人脸识别),从分类意义上讲DLDA并非最优选择的方法。
     3.研究了降低分布矩阵估计误差影响的方法
     一些正则方法从类内离散矩阵Sw的特征谱角度出发认为分布矩阵估计误差引起的扰动对小和零特征值区域影响很大,那么,对其进行正则处理可降低分布矩阵估计误差影响,提高算法的稳定性。基于此思想,所研究算法采用了广义Fisher准则函数,以总体离散矩阵St为主要处理对象,将其非零特征空间进行分割并作加权处理,保留了St的小特征值部分中的鉴别信息,降低了分布矩阵估计误差的影响,达到了提高算法稳定性的目的。在PIE人脸库上的实验比较结果也表明其具有兼顾识别精度和计算代价的优点。
     4.提出了基于多尺度梯度角和LDA的鲁棒特征提取新方法
     正如在FERET测试和FRVT测试的结果所反映的,光照条件、姿态、表情、噪声等因素对识别性能的影响很大。从频域的角度讲,光照变化一般反映在低频部分,而表情、噪声等因素主要分布在高频部分,本文所提出的多尺度梯度角特征同时具备了小波的局部性、多分辨率特性和梯度角的抑制光照影响优点。在实现上,利用了反对称双正交小波的导数特性,可方便地计算多尺度梯度角。并且与LDA结合,使算法所提取的特征对各种因素的影响更鲁棒、更稳定。在人脸库Yale和YaleB上的对比实验结果表明:该方法不但可以有效抑制光照、表情、噪声等因素的影响,而且识别精度也比其它光照不变特征方法有了较大提高。
Feature extraction is a key technique for the face recognition, which directly impact on the performance of the entire system. Among them, linear discriminant analysis (LDA) based on Fisher criteria is the most classic and widely used method, which takes the separability of the patterns as its goal, and seeks an optimal linear transformation by maximizing the ratio of the between-class and within-class scatter matrices. However, as an algebra feature extraction based on statistical techniques, the traditional LDA in the case of small sample size will encounter two practical problems:one arises from the "singularity" of the distribution matrix; the other is due to the estimation error of the distribution matrix.
     The recent FRVT2006 test results showed that:face recognition performance on still frontal images taken under controlled and cooperative conditions has improved by an order of magnitude since the FRVT 2002, and were more accurate than humans. However, under non-controlled and non-cooperative conditions there is almost an order of magnitude of the decline. There are a lot of non-controlled factors such as change in the illumination, post variation, expression variation, and so on, in which the effects of illumination variation is particularly serious. So, how to extract the robust features against these factors is still a challenging problem.
     In this thesis, we closely focused on our work to overcome the above-mentioned 3 problems, and to present an effective solution. And the main contributions are summarized as follows:
     1. Provided an overview of the LDA-based extensions
     In the case of small sample size, the traditional LDA fails due to the singularity of the within-class scatter matrix Sw. Recently, many LDA-based methods have been proposed:the ones overcoming the singularity problem such as Fisherfaces, direct LDA, null space LDA, orthogonal LDA, and etc, and the others reducing the impact of the estimation error of the distribution matrix such as Perturbation LDA, dual-space LDA, three space regularization method, and etc. This thesis described these extensions in detail and presented a certain analysis.
     2. Theoretical analysis of the characteristics and the relationship among LDA-based extensions dealing with the singularity problem
     We carried on the theoretical analysis of the characteristics and the relationship among LDA-based extensions and concluded as follows:GSVD-LDA is equivalent to ULDA; In undersampled cases DLDA nearly can make no use of the null space of Sw and may result in the loss of important discriminative information; DLDA is degenerated as PCA of the between-class scatter with all nonzero principal components if it keeps the complete projection vectors. As a result, DLDA is not an optimal choice for dimensionality reduction from the classification sense.
     3. Studied on the method reduced the impact of the estimation error of the distribution matrix
     From the matrix Sw's eigenspectrum analytic point of view, Some regularization methods thought that the perturbation caused by the estimation error of the distribution matrix has a large impact on the corresponding eigenspace of the small and zero eigenvalues, then the regularized process for these subspace can reduce the effect of the estimation error, and improves the stability of algorithm. Based on this idea, we adopted the generalized Fisher criteria, and used the total scatter matrix St as an operational object. Then the corresponding eigenspace of non-zero eigenvalues of St is partitioned and used different weighting factor. So the discriminant information inside the eigenspace of the small eigenvalues of St is reserved, and the algorithm stability is improved. The comparison results on PIE face database also showed that our algorithm can take into account the recognition accuracy and computational cost.
     4. Proposed an approach based on the multi-scale gradient angle and LDA for
     robust feature extraction
     As showed in the results of FERET and FRVT, the recognition performance will suffer from the effect of some factors such as illumination variation, expression variation, pose variation and noise. From the frequency domain point of view, the illumination variation generally reflected in the low-frequency part, and expression variation and noise are mainly distributed in the high-frequency part. The multi-scale gradient angular feature proposed in this thesis possessed two advantages:the localization and multi-resolution of wavelet transform and the illumination invariant of the gradient angle. Using the derivative characteristics of anti-symmetric biorthogonal wavelet, the multi-scale gradient angle can be calculated easily. Combined with the LDA, our algorithm based on the multi-scale gradient angle was more robust and stable. The experimental comparison results on Yale and YaleB showed that:our algorithm can decrease effectively the effect of illumination variation, expression variation and noise, and outperformed the other methods based on illumination invariant feature in the recognition accuracy.
引文
[1]谭铁牛.中国生物特征认证动态.2003.
    [2]Samal A, Iyengar P A. Automatic recognition and analysis of human faces and facial expressions:a survey. Pattern Recognition,1992,25(1):65-77.
    [3]Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces:a survey. Proceedings of the IEEE.1995,83:705-740.
    [4]Rosenfeld A. Survey:Image analysis and computer vision:1996. Computer Vision and Image Understanding,1996,66(1):33-93.
    [5]Pentland A. Looking at people:sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(1):107-119.
    [6]周杰,卢春雨,张长水,et al.人脸识别方法综述.电子学报,2000,28(4):102-106.
    [7]刘党辉,沈兰荪,Lam K M.人脸识别研究进展.电路与系统学报,2004,9(1):85-94.
    [8]Zhao W, Chellappa R, Phillips P J, et al. Face Recognition:A Literature Survey. ACM computing survey,2003,35(4):399-458.
    [9]Adini Y, Moses Y, Ullman S. Face Recognition:The Problem of Compensating for changes in illumination Direction. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):721-732.
    [10]Zhang D. Biometric Security Research&Development.生物特征识别技术高级研讨班.北京.2003.
    [11]Phillips P J, Moon H. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
    [12]Philips P J, Grother P J, Micheals R J, et al. Face Recognition Vendor Test 2002: Evaluation report. National Institute of Standards and Technology,2003.
    [13]Chan H, Bledsoe W W. A man-machine facial recognition system:some preliminary results. Cal:Panoramic Research Inc.,1965.
    [14]Goldstein A J, Harmon L D, Lesk A B. Identification of human faces. Proceedings of the IEEE.1971,59:748-760.
    [15]Kanade T. Picture processing system by computer and recognition of human faces[Ph.D Dissertation]. Kyoto, Kyoto University,1973.
    [16]Harmon L D, Hunt W F. Automatic recognition of human face profile:Academic Press,1977.
    [17]Baron R. Mechanisms of human facial recognition. Int. J. Man-Machine Studies, 1989,2:283-310.
    [18]山世光.人脸识别中若干关键问题的研究[博士学位论文].北京,中国科学院,2004.
    [19]Kanade T. Computer recognition of human faces. Interdisciplinary Systems Research,1977,47.
    [20]Cox I J, Ghosn J, Yianilos P N. Feature-based face recognition using mixture-distance. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA.1996:209-216.
    [21]Brunelli R, Poggio T. Face recognition:features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
    [22]Turk M A, Pentland A P. Eigenfaces for Recognition. Cognitive Neuroscience, 1991,3(1):71-86.
    [23]Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [24]Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis. IEEE Transactions on Pattern Analysis,2002,13(6):1450-1464.
    [25]Liu C J, Wechsler H. Comparative assessment of independent component analysis (ICA) for face recognition. Proceedings of International Conference on Audio and Video based Biometric Person Authenticabon.1999:22-24.
    [26]He X-f, Yan S-c, Hu Y-x, et al. Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
    [27]He X-f. Locality Preserving Projections[Ph.D Dissertation]. The university of chicago,2005.
    [28]Phillips P J. Support vector machines applied to face recognition:MIT Press, 1998.
    [29]Guo G, Li S Z, Chan K. Face Recognition by Support Vector Machines. Proc.of the 4th Int Conf. on Auto. Face and Gesture Recognition. Grenoble.2000:196-201.
    [30]Yang M H, Ahuja N, Kriegman D. Face recognition using kernel eigenfaces. Proceedings of International Conference on Image Processing.2000,1:37-40.
    [31]Lu J, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 2003,14(1):117-126.
    [32]Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. Proceedings of the 1999 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing Ⅸ.1999:41-48.
    [33]Yang J, Frangi A F, Yang J Y, et al. KPCA plus LDA:a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
    [34]Luo L, Swamy M N S, Plotkin E I. A modified PCA algorithm for face recognition. Conference on Electrical and Computer Engineering. Canada. 2003,1:57-60.
    [35]Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
    [36]Nastar C, Moghaddam B, Pentland A. Flexible Images:Matching and Recognition Using Learned Deformations. Computer Vision and Image Understanding,1997,65(2):179-191.
    [37]Lu J, Plataniotisk K N, Venetsanopoulos A N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recognition Letters,2005,26(2):181-191.
    [38]Yu H, Yang J. A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognition,2001,34(10):2067-2070.
    [39]Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(1):4-13.
    [40]Howland P, Park H. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):995-1006.
    [41]Chen L F, Liao H Y M, Ko M T, et al. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000,33(10):1713-1726.
    [42]Huang R, Liu Q, Lu H, et al. Solving the small sample size problem of LDA. Proceeding International Conference on Pattern Recognition. USA:IEEE. 2002,3:29-32.
    [43]Ye J. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 2005,6(Apr):483-502.
    [44]Friedman J H. Regularized discriminant analysis. Journal of the American Statistical Association,1989,84(405):165-175.
    [45]Hong Z Q, Yang J Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 1991,24(4):317-324.
    [46]Zhao W, Chellappa R, Krishnaswamy A. Discriminant analysis of principal components for face recognition. Proceedings of 3rd IEEE International Conference on Automatic Face and Gesture Recognition.1998:336-341.
    [47]Zheng W-s, Lai J H, Yuen P C, et al. Perturbation LDA:Learning the difference between the class empirical mean and its expectation Pattern Recognition,2008.
    [48]Tian Q, Barbero M, Gu Z H, et al. Image classification by the Foley-Sammon transform. Opt. Eng.,1986,25(7):834-840.
    [49]Ye J, Janardan R, Li Q, et al. Feature extraction via generalized uncorrelated linear discriminant analysis. Proceedings International Conference on Machine Learning. USA:ACM.2004,69:895-902.
    [50]Wang X-g, Tang X-o. Dual-Space Linear Discriminant Analysis for Face Recognition. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. USA:IEEE.2004,2:Ⅱ-564-Ⅱ-569
    [51]Cootes T F, Taylor C J, Cooper D H, et al. Active Shape Models-Their Training and Application. Computer Vision and Image Understanding,1995,61(1):38-59.
    [52]Cootes T F, Edwards G J, Taylor C J. Active Appearance Models. Proc. European Conf. Computer Vision.1998,2:484-498.
    [53]Edwards G J, Cootes T F, Taylor C J. Advances in Active Appearance Models. The Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999,1:137-142.
    [54]Georghiades A S, Kriegman D J, Belhumeur P N. Illumination Cones For Recognition Under Variable Lighting:Faces. Proc. of IEEE CVPR.1998:52-58.
    [55]Georghiades A S, Belhumeur P N, Kriegman D J. From Few to Many:Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(6):643660-643139.
    [56]Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(9):1063-1073.
    [57]Kohonen T. Self-organization and associative memory. Springer,1988.
    [58]Ranganath S, Arun K. Face recognition using transform features and neural networks. Pattern Recognition,1997,30(10):1615-1622.
    [59]Lin S H, Kung S Y, Lin L J. Face recognition/detection by probabilistic decision-based neural network. IEEE Transactions on Neural Networks, 1997,8(1):114-132.
    [60]Lee S Y, Ham Y K, Park R H. Recognition of human front faces using knowledge-based feature extraction and neuro-fuzzy algorithm. Pattern Recognition, 1996,29(11):1863-1876.
    [61]Lawrence S, Giles C L, Tsoi A C, et al. Face recognition:a convolutional neural network approach. IEEE Transactions on Neural Networks,1997,8(1):98-113.
    [62]Wiskott L, Fellous J M, Kuiger N, et al. Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):775-779.
    [63]Buhmann J, Lades M, Malsburg C V D. Size and distortion invariant object recognition by hierarchical graph matching. Proceedings of International Joint Conference on Neural Networks.1990,2:411-416.
    [64]Lades M, Vorbruggen J, Buhmann J, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computer, 1993,42(3):300-311.
    [65]Vivek E P, Sudha N. Gray Hausdorff Distance Measure for Comparing Face Images. IEEE Transactions on Information Forensics and Security, 2006,1(3):342-349.
    [66]Hu M K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,8(2):179-187.
    [67]Kanan H R, Faez K, Gao Y. Face recognition using adaptively weighted patch PZM array from a single exemplar image per person. Pattern Recognition, 2008,41(12):3799-3812.
    [68]Yu H-c, Bennamoun M. Complete invariants for robust face recognition. pattern recognition,2007,40(5):1579-1591.
    [69]Phillips P J, Moon H. The FERET evaluation methodology for face recognition algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(10):1090-1104.
    [70]Sim T, Baker S, Bsat M. The CMU Pose, Illumination, and Expression (PIE) Database. Processing of the IEEE International Conference on Automatic Face and Gesture Recognition.2002.
    [71]Martinez A R, Benavente R. The AR face database. Barcelona, Spain:Computer Vision Center (CVC) Technical Report,1998.
    [72]Samaria F S, Harter A C. Parameterisation of a Stochastic Model for Human Face Identification. Proceedings of the Second IEEE Workshop on Applications of Computer Vision.1994:138-142
    [73]S.Georghiades A, N.Belhumeur P, J.Kriegman D. From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6).
    [74]Gao W, Cao B, Shan S, et al. The CAS-PEAL Large-Scale Chinese Face Database and Evaluation Protocols. Technical Report No. JDL_TR_04_FR_001:Joint Research & Development Laboratory, CAS,2004.
    [75]Messer K, Matas J, Kittler J, et al. XM2VTSDB:The extended M2VTS database. Second International Conference on Audio and Video-based Biometric Person Authentication,1999.
    [76]Grother P, Micheals R, Phillips P J. Face Recognition Vendor Test 2002 Performance Metrics. Lecture Notes in Computer Science, vol.2688. Berlin/ Heidelberg:Springer 2003.
    [77]Phillips P J, Scruggs W T, O'Toole A J, et al. FRVT 2006 and ICE 2006 large-scale results. Gaithersburg:National Institute of Standards and Technology, 2007.
    [78]Kirby M, Sirovich L. Application of Karhunen-Loeve procedure for the characterization of Human Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):103-108.
    [79]Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics,1936,7:178-188.
    [80]Wilks S S. Mathematical Statistics. In:Wiley, editor. New York,1962. p.577-578.
    [81]Duda R, Hart P. Pattern Classification and Scene Analysis. In:Wiley, editor. New York,1973.
    [82]Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer,1975,24(3):281-289.
    [83]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(6):978-983.
    [84]Swets D L, Weng J. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [85]Krzanowski W J, Jonathan P, Mccarthy W V, et al. Discriminant analysis with singular covariance matrices:methods and applications to spectroscopic data. Applied Statistics,1995,44(11):101-115.
    [86]杨琼,丁晓青.对称主分量分析及其在人脸识别中的应用.计算机学报,2003,26(9):1146-1151.
    [87]Jin Z, Yang J Y, Hu Z S, et al. Face recognition based on the uncorrelated discriminant transformation. Pattern Recognition,2001,34(7):1405-1416.
    [88]Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing Ⅸ,1999:41-48.
    [89]Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation,2000,12(10):2385-2404.
    [90]Lu J W, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on neural networks, 2003,14(1):117-126.
    [91]Cevikalp H, Neamtu M, Wilkes M. Discriminative common vector method with kernels. IEEE Transactions on neural networks,2006,17(6):1550-1565.
    [92]张贤达.矩阵分析与应用.北京:清华大学出版社,2005.
    [93]Jiang Y-f, Guo P. Comparative Studies of Feature Extraction Methods with Application to Face Recognition. IEEE International Conference on Systems, Man and Cybernetics.2007:3627-3632.
    [94]Liu J, Chen S-c, Tan X-y. A study on three linear discriminant analysis based methods in small sample size problem. Pattern Recognition,2008,41(1):102-116.
    [95]Ye J-p, Xiong T. Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis. Journal of Machine Learning Research, 2006,7(Jul):1183-1204.
    [96]Park H, Park C H. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition,2008,41 (3):1083-1097.
    [97]Gao H, Davis J W. Why direct LDA is not equivalent to LDA. Pattern Recognition,2006,39(5):1002-1006.
    [98]Zheng Y-J, Guo Z-B, Yang J, et al. DLDA/QR:A Robust Direct LDA Algorithm for Face Recognition and Its Theoretical Foundation. Lecture Notes in Computer Science,2007,4426:379-387.
    [99]厉小润,赵光宙,赵辽英.改进的核直接Fisher描述分析与人脸识别.浙江大学学报(工学版),2008,42(4):583-589.
    [100]Zhao W, Chellappa R, Phillips P J. Subspace Linear Discriminant Analysis for Face Recognition.1999.
    [101]Dai D Q, Yuen P C. Regularized discriminant analysis and its application to face recognition. Pattern Recognition,2003,36(3):845-847.
    [102]Jiang X-d, Mandal B, Kot A. Eigenfeature Regularization and Extraction in Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(3):383-394.
    [103]Das K, Nenadic Z. An efficient discriminant-based solution for small sample size problem. Pattern Recognition,2008.
    [104]Das K, Osechinskiy S, Nenadic Z. A Classwise PCA-based Recognition of Neural Data for Brain-Computer Interfaces.29th Annual International Conference of Engineering in Medicine and Biology Society. USA:IEEE.2007:6519-6522.
    [105]Zou X, Kittler J, Messer K. Illumination Invariant Face Recognition:A Survey. First IEEE International Conference on Biometrics:Theory, Applications, and Systems.2007:1-8.
    [106]Bowyer K W, Chang K, Flynn P. A survey of approaches to three-dimensional face recognition. Proceedings of the 17th International Conference on Pattern Recognition:IEEE.2004,1:358-361
    [107]Kong S G, Heo J, Abidi B R, et al. Recent advances in visual and infrared face recognition-a review Computer Vision and Image Understanding, 2005,97(1):103-135
    [108]Gonzalez R C, Woods R E. Digital Image Processing:Prentice Hall,2007.
    [109]Shan S-g, Gao W, Cao B, et al. Illumination normalization for robust face recognition against varying lighting conditions. IEEE International Workshop on Analysis and Modeling of Faces and Gestures.2003:157-164
    [110]Du S, Ward R. Wavelet-based illumination normalization for face recognition. IEEE International Conference on Image Processing.2005,2:Ⅱ-954-957
    [111]Hallinan P W.A low-dimensional representation of human faces for arbitrary lighting conditions. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1994:995-999.
    [112]Belhumeur P N, Kriegman D J. What Is the Set of Images of an Object under All Possible Illumination Conditions? International Journal of Computer Vision, 1998,28(3):245-260.
    [113]Georghiades A S, Kriegman D J, Belhurneur P N. Illumination cones for recognition under variable lighting:Faces. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1998:52-59.
    [114]Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
    [115]Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):218-233
    [116]Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance:determining the illumination from images of a convex lambertain object. Journal of the Optical Society of American,2001,18(10):2448-2459.
    [117]Zhang L, Samaras D. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(3):351-363
    [118]Adini Y, Moses Y, Ullman S. Face recognition:the problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):721-732
    [119]Chen H F, Belhumeur P N, Jacobs D W. In search of illumination invariants. Computer Vision and Pattern Recognition,2000. Proceedings. IEEE Conference on. 2000,1:254-261
    [120]Gao Y, Leung M K H. Face recognition using line edge map. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(6):764-779
    [121]Wei S-D, Lai S-H. Robust face recognition under lighting variations. Proceedings of the 17th International Conference on Pattern Recognition.2004,1:354-357.
    [122]Yang C-H T, Lai S-H, Chang L-W. Robust face matching under different lighting conditions. Proceedings of 2002 IEEE International Conference on Multimedia and Expo.2002,2:149-152.
    [123]Land E H, McCann J J. Lightness and Retinex Theory. Journal of the Optical Society of American,1971,61(1):1-11.
    [124]Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing,1997,6(3):451-462
    [125]Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scences. IEEE Transactions on Image Processing,1997,6(7):965-976.
    [126]Shashua A, Riklin-Raviv T. The quotient image:class-based re-rendering and recognition withvarying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):129-139.
    [127]Wang H-t, Li S Z, Wang Y-s. Face recognition under varying lighting conditions using self quotient image. Sixth IEEE International Conference on Automatic Face and Gesture Recognition.2004:819-824.
    [128]Zhang Y-y, Tian J, He X-g, et al. MQI Based Face Recognition Under Uneven Illumination Advances in Biometrics International Conference:Springer. 2007,4642:290-298.
    [129]Srisuk S, Petpon A. A Gabor Quotient Image for Face Recognition under Varying Illumination. Proceedings of the 4th International Symposium on Advances in Visual Computing. Las Vegas, NV Springer-Verlag 2008,5359:511-520
    [130]Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 1996,29(1):51-59.
    [131]Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
    [132]Ahonen T, Hadid A, Pietik"ainen M. Face Recognition with Local Binary Patterns.2004:469-481.
    [133]Heusch G, Rodriguez Y, Marcel S. Local binary patterns as an image preprocessing for face authentication.7th International Conference on Automatic Face and Gesture Recognition.2006:6-14.
    [134]Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher liner discriminant model for face recognition. IEEE Transactions on Image Processing,2002,11(4):467-475.
    [135]Gao Y, Wang Y-s, Zhu X-s, et al. Weighted Gabor features in unitary space for face recognition.7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK.2006:79-84.
    [136]Savvides M, Abiantun R, Heo J, et al. Partial & Holistic Face Recognition on FRGC-II data using Support Vector Machine. Conference on Computer Vision and Pattern Recognition Workshop.2006:48.
    [137]Haar A. [Ph.D Dissertation].1910.
    [138]Meyer Y. Principe d'incertitude,bases hilbertiennes et algebras d'operateurs. Bourbaki Seminar,1985-1986(662).
    [139]Battle G. A block spin construction of ondelettes. Part I:Lemarie functions Communications in Mathematical Physics,1987,110(4):601-615.
    [140]Lemarie P G. ondelettes a localization exponentielles. J. Math. Pures Appl, 1988,67:227-236.
    [141]Mallat S G. Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Transactions on Acoustics, Speech and Signal Processing 1989,37(12):2091-2110
    [142]Mallat S G. A Theory for Multiresolution Signal Decomposition:The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):675-593.
    [143]Daubechies I. Orthonomal bases of compactly supported wavelets. Communications on pure and applied mathematics,1988,41(7):909-996.
    [144]Coifman R, Meyer Y, Quake S, et al. Signal processing and compression with wavelet packets. Proceedings of the conference on wavelets. Marseilles.1991.
    [145]Candes E J, Donoho D L. Ridgelets:a key to higher-dimensional intermittency? Philosophical transactions-Royal Society.Mathematical, physical and engineering sciences 1999,357(1760):2495-2509.
    [146]Candes E J, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. In:Schumaker LL, editor. Curves and Surfaces. Nashville, TN:Vanderbilt University Press,2000.
    [147]王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社,2006.
    [148]Nastar C, Ayache N. Frequency-based Non-grid Motion Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(11):1067-1079
    [149]Ahonen T, Hadid A, Pietikainen M. Face Recognition with Local Binary Patterns proceedings of the 8th European Conference on Computer Vision, ECCV 2004. Prague, Czech Republic:Springer.2004,3021:469-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700