取向Pb(Zr_(1-x)Ti_x)O_3和BiFeO_3薄膜的残余应力及其效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ABO_3型钙钛矿氧化物是具有许多突出物理性能的重要的功能材料体系,其在信息存储技术、多态记忆原件、变频器、传感器、卫星通讯、滤光器、促动器和微机电系统中均具有重要的潜在应用价值。Pb(Zr_(1-x)Ti_x)O_3是ABO_3型钙钛矿氧化物家族的典型代表,由于其表现出优越的压电性能、铁电性能、介电性能及热释电性能,因而已为国内外学者广泛研究。但是其相图中准同型相界近邻区域内真实相组成仍然没有被确切证实,尤其是单斜相的存在区间依旧存在极大争议及相互矛盾的结果,且同一成份Pb(Zr_(1-x)Ti_x)O_3单斜相的晶格常数相当分散,因而研究Pb(Zr_(1-x)Ti_x)O_3相图中准同型相界近邻区域内单斜相的存在范围及单斜相的的晶格常数对于Pb(Zr_(1-x)Ti_x)O_3相变行为的清楚理解及电学性能的优化具有重要的指导意义。残余应力及织构是薄膜的内在属性,其对铁电薄膜相变行为及晶格常数均具有重要影响,因而薄膜材料为Pb(Zr_(1-x)Ti_x)O_3准同型相变的研究提供了一个良好的平台。
     本文通过溶胶-凝胶工艺制备了准同型相界近邻区域内不同成份的Pb(Zr_(1-x)Ti_x)O_3薄膜,通过改变薄膜厚度来改变薄膜的残余应力,借助X射线ω扫描及ψ扫描技术表征薄膜的织构及残余应力,提出了一种基于X射线ψ扫描技术分析带有织构的薄膜相组成的方法,并系统的研究薄膜织构及残余应力对Pb(Zr_(1-x)Ti_x)O_3薄膜相变行为的影响规律。通过实验研究发现,经过500oC预烧并650oC晶化处理的薄膜均具有(100)及(111)混合织构,(100)取向晶粒的残余应力状态为残余拉应力,而(111)取向晶粒的残余应力状态为残余压应力,这是由薄膜与衬底之间的晶格错配及不同取向晶粒间残余应力平衡作用共同导致的。通过对薄膜相变行为的研究发现,Pb(Zr_(1-x)Ti_x)O_3薄膜中不同取向晶粒的相组成存在明显差异。Pb(Zr_(0.58)Ti_(0.42))O_3、Pb(Zr_(0.55)Ti_(0.45))O_3及Pb(Zr_(0.54)Ti_(0.46))O_3薄膜中(100)取向晶粒的相组成为MA相,(111)取向晶粒的相组成为MB相,且随着薄膜厚度增加即残余应力的减小,MA相与MB相赝立方晶格a/c逐渐趋于1。对于Pb(Zr_(0.52)Ti_(0.48))O_3薄膜及Pb(Zr_(0.51)Ti_(0.49))O_3薄膜,当薄膜厚度小于200nm时,(100)取向晶粒的相组成为MA相,当薄膜厚度大于200nm时,(100)取向晶粒的相组成为MA相和四方相的混合相,且随着薄膜厚度的增加,MA→四方相相变量逐渐增加;(111)取向晶粒的相组成均为MB相和菱方相的混合相,且随着薄膜厚度增加,MB相→菱方相相变量逐渐增加;MA相与MB相赝立方晶格a/c随薄膜厚度增加逐渐趋于1。分析其原因,我们认为,(100)取向晶粒及(111)取向晶粒残余应力状态的不同导致了两种取向晶粒相组成的差异,且薄膜厚度增加导致的残余应力减小诱发了单斜相晶格常数比的变化。对单斜相而言,晶格常数比的变化意味着其自发极化方向的改变,这证明了单斜相自发极化方向对残余应力的敏感性。本文关于Pb(Zr_(1-x)Ti_x)O_3薄膜相变行为的研究结果说明残余应力是导致单斜相晶格常数分散的重要原因。
     BiFeO_3是另一种典型的ABO_3型钙钛矿氧化物,其是唯一的在室温下具有铁电性及反铁磁性的单相多铁材料,并且BiFeO_3外延薄膜表现出巨大的自发极化及压电性能,但是BiFeO_3大的漏电流及高的结晶温度阻碍了其在功能器件中的应用。种子层能够有效的降低薄膜的漏电流及结晶温度,并能诱发薄膜织构,所以本文在不引入杂质的前提下在BiFeO_3薄膜与衬底之间制备Bi_2O_3种子层。通过研究发现,(111)Pt/Ti/SiO_2/Si衬底上无Bi_2O_3种子层的BiFeO_3薄膜没有织构,当晶化温度为650oC时,薄膜晶化不完全;带有Bi_2O_3种子层的BiFeO_3薄膜具有混合织构,且其在500oC下晶化良好;当外加100kV/cm电场时,Bi_2O_3种子层使BFO薄膜漏电流密度降低了两个数量级。上述结果说明Bi_2O_3种子层能诱发BiFeO_3薄膜混合织构的形成,并能有效的降低BiFeO_3薄膜的晶化温度及漏电流,这是由于,Bi_2O_3种子层能够为BiFeO_3提供了更多的形核质点,进而降低了BiFeO_3薄膜的结晶温度,此外,Bi_2O_3种子层在BiFeO_3薄膜与衬底之间起到了界面阻挡层的作用,降低了薄膜的漏电流,从而提高了薄膜的介电性能。
ABO_3 type perovskite oxides exhibit many excellent physical properties, such as ferroelectric property, dielectric property, electro-optical effect, pyroelectric property, giant pizeoelectric property and magnetoelectric coupling effect. These excellent properties are essential to its potential application in actuators, sensors, and micro-electromechanical systems (MEMS).
     Pb(Zr_(1-x)Ti_x)O_3 is a typical material of ABO_3 type perovskite oxides. Due to its outstanding pizeoelectric property, pyroelectric property and ferroelectric property, it has been widely studied for many years. But there are still some ambiguous problems about its phase diagram and phase structure. The most important one is that the real phase structure of PZT in the vicinity of morphotropic phase boundary (MPB) is still in controversy. In addition, the lattice constants of monoclinic phase (M phase) quite differ in the various literatures. Therefore, clearly demonstrating M phase existence region and dispersion of M phase lattice constant possess a guidance significance for better understanding of PZT phase transition behavior. Residual stress and texture, which are intrinsic properties of thin film material, can greatly affect PZT phase transition behavior and lattice constants. In view of this, thin film material provides a platform for PZT phase transition research.
     In this dissertation, PZT thin films with the composition nearby MPB have been prepared by sol-gel technology. The residual stress is changed via adjusting film thickness. XRDω-scan andψ-scan are emploied to characterize the texture and residual stress. Based on XRDψ-scan technology, a method is built to characterize the phase compositon of thin film with texture. The dependence of PZT phase transition on the texture and residual stress of thin film is studied in detail. The results show that PZT films with different composition entirely exhibit mixed textures of (100) and (111). Furthermore, the residual stress of (111)-oriented grains is compressive resulting from the lattice mismatch between PZT thin films and Pt substrate, and the residual stress of (100)-oriented grains is tensile due to the stress balance among different oriented grains. The research of phase transition of PZT thin films reveals the phase composition discrepancy of different oriented grains. For Pb(Zr0.58Ti0.42)O_3, Pb(Zr_(0.55)Ti_(0.45))O_3 and Pb(Zr_(0.54)Ti_(0.46))O_3 thin films, the phase composition of (100)-oriented grains is MA phase, and that of (111)-oriented grains is MB phase. As the film thickens, the M phase lattice constant ratio of c/a in pseudo cubic approaches 1 gradually, indicating the spontaneous polarization rotation of M phase. For Pb(Zr_(0.52)Ti_(0.48))O_3 and Pb(Zr_(0.51)Ti_(0.49))O_3 thin films with the thickness less than 200nm, the phase composition of (100)-oriented grains is MA phase. However, when the film thickness is more than 200nm, the phase composition of (100)-oriented grains is combined with MA phase and tetragonal phase (T phase), and the content of T phase increases gradually as the film thickens. The phase composition of (111)-oriented grains is the mixture of MB phase and rhombohedral phase (R phase). Moreover, the content of R phase increases gradually as the film thickens. The difference of phase composition between (100)- and (111)-oriented grains can be attributed to the different state of residual stress in different oriented grains. As the film thickens, the residual stress decreases, leading to the spontaneous polarization rotation of M phase, illustrating that the lattice constants of M phase is very sensitive to the variation of residual stress.
     BiFeO_3 (BFO), another typical material of ABO_3 type perovskite family, is the only multiferroic material with ferroelectric property and antiferromagnetic property at room temperature. In addition, it had been reported that epitaxial BFO thin film possesses giant spontaneous polarization and piezoelectric property. Unfortunately, the high crystallization temperature and large leakage current restrict its application in the field of function device. Seed layer is a very effective route to decrease the crystallization temperature and leakage current, and can also induce the formation of the film texture. In this dissertation, Bi_2O_3 as the seed layer was prepared through sol-gel technology. The results show that the BFO thin film without seed layer fails to be crystallized well even at the high annealing temperature of 650oC and exhibites no texture, but the BFO thin film with seed layer can be crystallized well at such a low temperature of 500oC and exhibites the mixed textures.When the external electric field is of 100kV/cm, the leakage current of BFO thin film falls by two orders of magnitude because of the presence of the Bi_2O_3 seed layer. Taking the above results into consideration, the Bi_2O_3 seed layer can induce the formation of film texture. Moreover, it can effectively decrease the crystallization temperature and leakage current of BFO thin film.The detailed explanation is as follows. The Bi_2O_3 seed layer can provide much more nucleation sites for BFO thin film at lower temperature. Therefore, the BFO thin film can be crystallized at relative low temperature. In addition, the Bi_2O_3 seed layer forms an interface layer between thin film and substrate. In this case, the seed layer decreases the leakage current and enhances the dielectric property of BFO thin film.
引文
[1] Ahart M, Somayazulu M, Cohen R E, et al. Origin of morphotropic phase boundaries in ferroelectrics[J]. Nature, 2008, 451(7178): 545-U542.
    [2] Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. Academic, 1971:136.
    [3] Noheda B, Cox D E, Shirane G, et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O_3 solid solution[J]. Applied Physics Letters, 1999, 74(14):2059-2061.
    [4] Noheda B, Gonzalo J A, Cross L E, et al. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O_3[J]. Physical Review B, 2000, 61(13):8687-8695.
    [5] Yokota H, Zhang N, Taylor A E, et al. Crystal structure of the rhombohedral phase of PbZr1-xTixO_3 ceramics at room temperature[J]. Physical Review B, 2009, 80(10):104109-1~12.
    [6] Singh A K, Pandey D, Yoon S, et al. High-resolution synchrotron x-ray diffraction study of Zr-rich compositions of Pb(ZrxTi1-x)O_3 (0.525≤x≤0.60): Evidence for the absence of the rhombohedral phase[J]. Applied Physics Letters, 2007, 91(19):192904-1~3.
    [7] Pandey D, Singh A K, Baik S. Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O_3 ceramics[J]. Acta Crystallographica Section A: Foundations, 2008, 64:192-203.
    [8] Noheda B, Cox D E, Shirane G, et al. Stability of the monoclinic phase in the ferroelectric perovskite Pb(Zr1-xTix)O_3[J]. Physical Review B, 2000, 63(1): 014103-1~9.
    [9] Ragini, Ranjan R, Mishra S K, et al. Room temperature structure of Pb(ZrxTi1-x)O_3 around the morphotropic phase boundary region: A Rietveld study[J]. Journal of Applied Physics, 2002, 92(6):3266-3274.
    [10] Frantti J, Ivanov S, Eriksson S, et al. Phase transitions of Pb(ZrxTi1-x)O_3 ceramics[J]. Physical Review B, 2002, 66(6):064108-1~15.
    [11] Frantti J, Lappalainen J, Eriksson S, et al. Neutron diffraction studies of Pb(ZrxTi1-x)O_3 ceramics[J]. Japanese Journal of Applied Physics, 2000, 39(9B):5697-5703.
    [12]1Araujo E B, Lima E C, Guerra J D S, et al. Evidence for the monoclinic-tetragonal phase coexistence in Pb(Zr0.53Ti0.47)O_3 thin films[J]. Journal of Physics-Condensed Matter, 2008, 20(41):415203-1~5.
    [13]1Frantti J, Eriksson S, Hull S, et al. Composition variation and the monoclinic phase within Pb(ZrxTi1-x)O_3 ceramics[J]. Journal of Physics-Condensed Matter, 2003, 15(35):6031-6041.
    [14] Schonau K A, Schmitt L A, Knapp M, et al. Nanodomain structure of Pb(Zr1-xTix)O_3 at its morphotropic phase boundary: Investigations from local to average structure[J]. Physical Review B, 2007, 75(18):184117-1~10.
    [15]1Guo R, Cross L E, Park S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO_3[J]. Physical Review Letters, 2000, 84(23):5423-5426.
    [16]1Damjanovic D. A morphotropic phase boundary system based on polarization rotation and polarization extension[J]. Applied Physics Letters, 2010, 97(6):06292-1~3.
    [17] Chi Q G, Li W L, Feng B, et al. Low-temperature crystallization and orientation evolution of Nb-doped Pb(Zr,Ti)O_3 thin films using a Pb0.8Ca0.1La0.1Ti0.975O_3 seed layer[J]. Scripta Materialia, 2009, 60(4):218-220.
    [18] Freund L B, Suresh S. Thin film materials: stress, defect formation, and surface evolution[M]. Cambridge University, 2003.
    [19] Leclerc G, Poullain G, Yaicle C, et al. Substrate and orientation influence on electrical properties of sputtered La-doped PZT thin films[J]. Applied Surface Science, 2008, 254(13):3867-3872.
    [20]1Yun K Y, Noda M, Okuyama M, et al. Structural and multiferroic properties of BiFeO_3 thin films at room temperature[J]. Journal of Applied Physics, 2004, 96(6):3399-3403.
    [21]1Zhang J X, Li Y L, Wang Y, et al. Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO_3 thin films[J]. Journal of Applied Physics, 2007, 101(11):114105-1~6.
    [22]1Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO_3 multiferroic thin film heterostructures[J]. Science, 2003, 299(5613):1719-1722.
    [23]1Martin L W, Chu Y H, Ramesh R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films[J]. Materials Science Engineer Reports, 2010, 68(4-6):89-133.
    [24]1Shanthy S, Singh S K. Multiferroic BiFeO_3 films: Candidate for room temperature micro biosensor[J]. Integrated Ferroelectrics, 2008, 9:77-85.
    [25]1Chu Y H, Zhan Q, Martin L W, et al. Nanoscale domain control in multiferroic BiFeO_3 thin films[J]. Advanced Materials, 2006, 18:2307-2311.
    [26] Xiao X H, Zhu J, Li Y R, et al. Greatly reduced leakage current in BiFeO_3 thin film by oxygen ion implantation[J]. Journal of Physics D: Applied Physics, 2007, 40(18):5775-5777.
    [27]2Yang H, Wang Y Q, Wang H, et al. Oxygen concentration and its effect on the leakage current in BiFeO_3 thin films[J]. Applied Physics Letters, 2010, 96(1):012909-1~3.
    [28] Janolin P E. Strain on ferroelectric thin films[J]. Journal of Materials Science, 2009, 44(19):5025-5048.
    [29] Lai B K, Kornev I, Bellaiche L, et al. Phase diagrams of epitaxial BaTiO_3 ultrathin films from first principles[J]. Applied Physics Letters, 2005, 86(13):132904-1~3.
    [30] Vanderbilt D, Cohen M. Monoclinic and triclinic phases in higher-order Devonshire theory[J]. Physical Review B, 2001, 63(9):094108-1~10.
    [31] Li Y L, Chen L Q. Temperature-strain phase diagram for BaTiO_3 thin films[J]. Applied Physics Letters, 2006, 88(7):072905-1~3.
    [32]1Pertsev N A, Zembilgotov A G, Tagantsev A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical Review Letters, 1998, 80(9):1988-1991.
    [33]1Bellaiche L, Garcia A, Vanderbilt D. Finite-temperature properties of Pb(Zr1-xTix)O_3 alloys from first principles[J]. Physical Review Letters, 2000, 84(23):5427-5430.
    [34]1Fu H, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J]. Nature, 2000, 403: 281-283.
    [35] Wu Z G, Krakauer H. First-principles calculations of piezoelectricity and polarization rotation in Pb(Zr0.5Ti0.5)O_3[J]. Physical Review B, 2003, 68(1):014112-1~7.
    [36] Rossetti G A, Zhang W, Khachaturyan A G. Phase coexistence near the morphotropic phase boundary in lead zirconate titanate (PbZrO_3-PbTiO_3) solidsolutions[J]. Applied Physics Letters, 2006, 88(7):072912-1~3.
    [37] Ragini, Mishra S K, Pandey D, et al. Evidence for another low-temperature phase transition in tetragonal Pb(ZrxTi1-x)O_3 (x=0.515, 0.520) [J]. Physical Review B, 2001, 64(5):054104-1~6.
    [38] Ranjan R, Ragini, Mishra S K, et al. Antiferrodistortive phase transition in Pb(Ti0.48Zr0.52)O_3: A powder neutron diffraction study[J]. Physical Review B, 2002, 65(6):060102-1~4.
    [39]1Souza A G, Lima K C V, Ayala A P, et al. Monoclinic phase of PbZr0.52Ti0.48O_3 ceramics: Raman and phenomenological thermodynamic studies[J]. Physical Review B, 2000, 61(21):14283-14286.
    [40] Lima K C V, Souza A G, Ayala A P, et al. Raman study of morphotropic phase boundary in PbZr1-xTixO_3 at low temperatures[J]. Physical Review B, 2001, 63(18):184105-1~5.
    [41]2Frantti J, Lappalainen J, Lantto V, et al. Low-temperature Raman studies of Pb(ZrxTi1-x)O_3 and Pb1-3y/2NdyTiO_3 ceramics[J]. Japanese Journal of Applied Physics, 1999, 38(9B):5679-5682.
    [42]2Bouzid A, Bourim E M, Gabbay M, et al. PZT phase diagram determination by measurement of elastic moduli[J]. Journal of the European Ceramic Society, 2004, 25:3213-3221.
    [43] Oh S H, Jang H M. Three-dimensional phase diagram of the Pb(Zr,Ti)O_3 system under hydrostatic pressure[J]. Ceramic International, 2000, 26(5):565-569.
    [44] Souza A G, Lima K C V, Ayala A P, et al. Raman scattering study of the PbZr1-xTixO_3 system: Rhombohedral-monoclinic-tetragonal phase transitions[J]. Physical Review B, 2002, 66(13):132107-1~4.
    [45]1Woodward D I, Knudsen J, Reaney I M. Review of crystal and domain structures in the PbZrxTi1-xO_3 solid solution[J]. Physical Review B, 2005, 72(10):104114-1~8.
    [46] Kornev I A, Bellaiche L, Janolin P E, et al. Phase diagram of Pb(Zr,Ti)O_3 solid solutions from first principles[J]. Physical Review Letters, 2006, 97(15):157601- 1~4.
    [47] Sani A, Noheda B, Kornev I A, et al. High-pressure phases in highly piezoelectric PbZr0.52Ti0.48O_3[J]. Physical Review B, 2004, 69(2):020105-1~4.
    [48]2Oh S H, Jang H M. Enhanced thermodynamic stability of tetragonal-phase field in epitaxial Pb(Zr,Ti)O_3 thin films under a two-dimensional compressive stress[J]. Applied Physics Letters, 1998, 72(12):1457-1459.
    [49] Kanno I, Yokoyama Y, Kotera H. Two-dimensional thermodynamic theory of epitaxial Pb(Zr,Ti)O_3 thin films[J]. Physical Review B, 2004, 69(6) :064103-1~7.
    [50] Oh S H, Jang H M. Epitaxial Pb(Zr,Ti)O_3 thin films with coexisting tetragonal and rhombohedral phases[J]. Physical Review B, 2001, 63 (13):132101-1~4.
    [51]1Haun M J, Furman E, Zhuang Z Q, et al. Thermodynamic Theory of the Lead Zirconate-Titanate Solid-Solution System[J]. Ferroelectrics, 1989, 94 :313-313.
    [52] Pertsev N A, Kukhar V G, Kohlstedt H, et al. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1-xTix)O_3 thin films[J]. Physical Review B, 2003, 67(5):054107-1~10.
    [53] Kelman M B, Schloss L F, McIntyre P C, et al. Thickness-dependent phase evolution of polycrystalline Pb(Zr0.35Ti0.65)O_3 thin films[J]. Applied Physics Letters, 2002, 80(7):1258-1260.
    [54]1Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO_3-CoFe2O4 nanostructures[J]. Science, 2004, 303(5658):661-663.
    [55] Wan J G, Wang X W, Wu Y J, et al. Magnetoelectric CoFe2O4-Pb(Zr,Ti)O_3 composite thin films derived by a sol-gel process[J]. Applied Physics Letters, 2005, 86(12):122501-1~3.
    [56] Zhou J P, He H C, Shi Z, et al. Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O_3 double-layer thin film prepared by pulsed-laser deposition[J]. Applied Physics Letters, 2006, 88(1):013111-1~3.
    [57] Li L J, Li J Y, Shu Y C, et al. The magnetoelectric domains and cross-field switching in multiferroic BiFeO_3[J]. Applied Physics Letters, 2008, 93(19):192506-1~3.
    [58] Li Y B, Sritharan T, Zhang S, et al. Multiferroic properties of sputtered BiFeO_3 thin films[J]. Applied Physics Letters, 2008, 92(13):132908-1~3.
    [59] Prellier W, Singh M P, Murugavel P. The single-phase multiferroic oxides: from bulk to thin film[J]. Journal of Physics-Condensed Matter, 2005, 17(30):R803-R832.
    [60] Ruette B, Zvyagin S, Pyatakov A P, et al. Magnetic-field-induced phase transition in BiFeO_3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order[J]. Physical Review B, 2004, 69(6):064114-1~7.
    [61] Kubel F, Schmid H. Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO_3[J]. Acta Crystallographica Section B: Structural Science, 1990, 46:698-702.
    [62] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO_3 films at room temperature[J]. Nature Materials, 2006, 5(10):823-829.
    [63] Chu Y H, Martin L W, Holcomb M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic[J]. Nature Materials, 2008, 7(6):478-482.
    [64] Nakashima S, Yun K Y, Nakamura Y, et al. Ferroelectric and magnetoelectric properties of BiFeO_3 thin films prepared on a membrane structure[J]. Journal of Korean Physics Society, 2007, 51(2):882-886.
    [65] Ravindran P, Vidya R, Kjekshus A, et al. Theoretical investigation of magnetoelectric behavior in BiFeO_3[J]. Physical Review B, 2006, 74(22):224412- 1~18.
    [66] Lebeugle D, Colson D, Forget A, et al. Electric-field-induced spin flop in BiFeO_3 single crystals at room temperature[J]. Physical Review Letters, 2008, 100(22):227602-1~4.
    [67]2Caicedo J M, Zapata J A, Gomez M E, et al. Magnetoelectric coefficient in BiFeO_3 compounds[J]. Journal of Applied Physics, 2008, 103(7):07E306-1~3.
    [68] Cheng Z X, Wang X L. Room temperature magnetic-field manipulation of electrical polarization in multiferroic thin film composite BiFeO_3/La2/3Ca1/3MnO_3[J]. Physical Review B, 2007, 75(17):172406-1~4.
    [69]2Clark S J, Robertson J. Band gap and Schottky barrier heights of multiferroic BiFeO_3[J]. Applied Physics Letters, 2007, 90(13):132903-1~3.
    [70]2Dho J H, Qi X D, Kim H, et al. Large electric polarization and exchange bias in multiferroic BiFeO_3[J]. Advanced Materials, 2006, 18(11):1445-1148.
    [71] Qi X D, Dho J, Tomov R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO_3[J]. Applied Physics Letters, 2005, 86(6):062903-1~3.
    [72] Wang C, Takahashi M, Fujino H, et al. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO_3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect[J]. Journal of Applied Physics, 2006, 99(5):054104-1~5.
    [73] Li Y W, Hu Z G, Yue F Y, et al. Oxygen-vacancy-related dielectric relaxation in BiFeO_3 films grown by pulsed laser deposition[J]. Journal of Physics D: Applied Physics, 2008, 41(21):215403-1~4.
    [74]2Singh S K, Maruyama K, Ishiwara H. The influence of La-substitution on the micro-structure and ferroelectric properties of chemical-solution-deposited BiFeO_3 thin films[J]. Journal of Physics D: Applied Physics, 2007, 40(9):2705-2709.
    [75]2Das S R, Bhattacharya P, Choudhary R N P, et al. Effect of La substitution on structural and electrical properties of BiFeO_3 thin film[J]. Journal of Applied Physics, 2006, 99(6):066107-1~3.
    [76]1Wang Y, Nan C W. Enhanced ferroelectricity in Ti-doped multiferroic BiFeO_3 thin films[J]. Applied Physics Letters, 2006, 89(5):052903-1~3.
    [77]1Hongri L, Yuxia S. Substantially enhanced ferroelectricity in Ti doped BiFeO_3 films[J]. Journal of Physics D: Applied Physics, 2007, 40(23):7530-7533.
    [78] Kawae T, Terauchi Y, Tsuda H, et al. Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO_3 thin films[J]. Applied Physics Letters, 2009, 94(11):112904-1~3.
    [79]1Singh S K, Ishiwara H, Maruyama K. Room temperature ferroelectric properties of Mn-substituted BiFeO_3 thin films deposited on Pt electrodes using chemical solution deposition[J]. Applied Physics Letters, 2006, 88(26):262908-1~3.
    [80]2Singh S K, Maruyama K, Ishiwara H. Reduced leakage current in La and Ni codoped BiFeO_3 thin films[J]. Applied Physics Letters, 2007, 91(11) :112913-1~3.
    [81]2Habouti S, Solterbeck C H, Es-Souni M. LaMnO_3 effects on the ferroelectric and magnetic properties of chemical solution deposited BiFeO_3 thin films[J]. Journal of Applied Physics, 2007, 102(7):074107-1~4.
    [82] Wu J G, Wang J. Effects of SrRuO_3 buffer layer thickness on multiferroic (Bi0.90La0.10)(Fe0.95Mn0.05)O_3 thin films[J]. Journal of Applied Physics, 2009,106(5):054115-1~5.
    [83] You L, Chua N T, Yao K, et al. Influence of oxygen pressure on the ferroelectric properties of epitaxial BiFeO_3 thin films by pulsed laser deposition[J]. Physical Review B, 2009, 80(2):024105-1~5.
    [84]2Bea H, Bibes M, Barthelemy A, et al. Influence of parasitic phases on the properties of BiFeO_3 epitaxial thin films[J]. Applied Physics Letters, 2005, 87(7):072508-1~3.
    [85]2Yuan G L, Martin L W, Ramesh R, et al. The dependence of oxygen vacancy distributions in BiFeO_3 films on oxygen pressure and substrate[J]. Applied Physics Letters, 2009, 95(1):012904-1~3.
    [86]2Pabst G W, Martin L W, Chu Y H, et al. Leakage mechanisms in BiFeO_3 thin films[J]. Applied Physics Letters, 2007, 90(7):072902-1~3.
    [87] Kim J K, Kim S S, Kim W J, et al. Enhanced ferroelectric properties of Cr-doped BiFeO_3 thin films grown by chemical solution deposition[J]. Applied Physics Letters, 2006, 88(13):132901-1~3.
    [88]2Yang K G, Zhang Y L, Yang S H, et al. Structural, electrical, and magnetic properties of multiferroic Bi1-xLaxFe1-yCoyO_3 thin films[J]. Journal of Applied Physics, 2010, 107(12):124109-1~6.
    [89] Kim J S, Yang C H, Yoon S G, et al. The low temperature processing for removal of metallic bismuth in ferroelectric SrBi2Ta2O9 thin films[J]. Applied Surface Science, 1999, 140(1-2):150-155.
    [90] Lufaso M W, Vanderah T A, Pazos I M, et al. Phase formation, crystal chemistry, and properties in the system Bi2O_3-Fe2O_3-Nb2O5[J]. Journal of Solid State Chemistry, 2006, 179(12):3900-3910.
    [91] Morozov M I, Lomanova N A, Gusarov V V. Specific features of BiFeO_3 formation in a mixture of bismuth(III) and iron(III) oxides[J]. Russian Journal of General Chemistry, 2003, 73(11):1676-1680.
    [92]2Siwach P K, Singh H K, Singh J, et al. Anomalous ferromagnetism in spray pyrolysis deposited multiferroic BiFeO_3 films[J]. Applied Physics Letters, 2007, 91(12):122503-1~3.
    [93]2Liu H J, Yang P, Yao K, et al. Twinning rotation and ferroelectric behavior of epitaxial BiFeO_3 (001) thin film[J]. Applied Physics Letters, 2010, 96(1):012901-1~3.
    [94]2Das R R, Kim D M, Baek S H, et al. Synthesis and ferroelectric properties of epitaxial BiFeO_3 thin films grown by sputtering[J]. Applied Physics Letters, 2006, 88(24):242904-1~3.
    [95] Zhao Q X, Ma J K, Wei D Y, et al. Epitaxial SrRuO_3/BiFeO_3/SrRuO_3 heterostructure sputtered at low temperature[J]. Journal of Crystal Growth, 2011, 316(1):71-74.
    [96] Zhong Z Y, Singh S K, Sugiyama Y, et al. Ferroelectric Properties of Cr-Doped BiFeO_3 Films Crystallized below 500 degrees[J]. Japanese Journal of Applied Physics, 2009, 48(10):101402-1~5.
    [97] Zheng R Y, Gao X S, Zhou Z H, et al. Multiferroic BiFeO_3 thin films deposited on SrRuO_3 buffer layer by rf sputtering[J]. Journal of Applied Physics, 2007, 101(5):054104-1~5.
    [98]2Voigt W. Lehrbuch der Kristallphysik[M]. Teubner, 1910:369.
    [99] Fei W D, Liu C Q, Ding M H, et al. Characterization of fiber texture by omega-scan x-ray diffraction[J]. Review of Scientific Instruments, 2009, 80(9):093903-1~6.
    [100] van Leeuwen M, Kamminga J D, Mittemeijer E J. Diffraction stress analysis of thin films: Modeling and experimental evaluation of elastic constants and grain interaction[J]. Journal of Applied Physics, 1999, 86(4):1904-1914.
    [101]1Sakamaki Y, Fukazawa H, Wakiya N, et al. Effect of film thickness on electrical properties of chemical solution deposition-derived Pb(ZrxTi1-x)O_3/LaNiO_3/Si[J]. Japanese Journal of Applied Physics. Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46(10B):6925-6928.
    [102] Huang Z, Zhang Q, Whatmore R W. Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method[J]. Journal of Applied Physics, 1999, 85(10):7355-7361.
    [103] He H C, Ma J, Wang J, et al. Orientation-dependent multiferroic properties in Pb(Zr0.52Ti0.48)O_3-CoFe2O4 nanocomposite thin films derived by a sol-gel processing[J]. Journal of Applied Physics, 2008, 103(3):034103-1~5.
    [104] He H C, Ma J, Lin Y H, et al. Influence of relative thickness on multiferroic properties of bilayered Pb(Zr0.52Ti0.48)O_3-CoFe2O4 thin films[J]. Journal of Applied Physics, 2008, 104(11):114114-1~6.
    [105]1Gong W, Li J F, Chu X C, et al. Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films[J]. Journal of the European Ceramic Society, 2004, 24(10-11):2977-2982.
    [106] Lian L, Sottos N R. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films[J]. Journal of Applied Physics, 2000, 87(8):3941-3949.
    [107] Chen S Y, Sun C L. Ferroelectric characteristics of oriented Pb(Zr1-xTix)O_3 films[J]. Journal of Applied Physics, 2001, 90(6):2970-2974.
    [108] Chae B G, Yang Y S, Lee S H, et al. Comparative analysis for the crystalline and ferroelectric properties of Pb(Zr,Ti)O_3 thin films deposited on metallic LaNiO_3 and Pt electrodes[J]. Thin Solid Films, 2002, 410(1-2):107-113.
    [109]1Jesson D E, Pennycook S J, Baribeau J M. Direct Imaging of Interfacial Ordering in Ultrathin (Simgen)P Superlattices[J]. Physical Review Letters, 1991, 66(6):750-753.
    [110] Floro J A, Hearne S J, Hunter J A, et al. The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films[J]. Journal of Applied Physics, 2001, 89(9):4886-4897.
    [111] Doerner M F, Nix W D. Stresses and Deformation Processes in Thin-Films on Substrates[J]. Critical Reviews in Solid State and Materials, 1988, 14(3):225-268.
    [112] Liu C Q, Fei W D, Li W L. Theory of magnetoelectric coupling in 2-2-type magnetostrictive/piezoelectric composite film with texture[J]. Journal of Physics D: Applied Physics, 2008, 41(12):125404-1~7.
    [113] Lee J W, Park G T, Park C S, et al. Enhanced ferroelectric properties of Pb(Zr,Ti)O_3 films by inducing permanent compressive stress[J]. Applied Physics Letters, 2006, 88(7):072908-1~3.
    [114] Liu C Q, Fei W D, Li W L. Effects of texture and residual stress on the transition of ferroelectric perovskite thin films with C-axis polarization[J]. Thin Solid Films, 2008, 516(6):1265-1270.
    [115] Oh S H, Jang H M. Ferroelectric phase transitions and three-dimensional phase diagrams of a Pb(Zr,Ti)O_3 system under a hydrostatic pressure[J].Journal of Applied Physics, 1999, 85(5):2815-2820.
    [116] Reuss A, Angew Z. Berechnung der fliessgrenze von Mishkristallen auf Grund der Plastizitatsbeding fur Einkristalle[J]. Mathematics Mechanics, 1929, 9:49-58.
    [117] Meda L, Dahmen K H, Hayek S, et al. X-ray diffraction residual stress calculation on textured La2/3Sr1/3MnO_3 thin film[J]. Journal of Crystal Growth, 2004, 263(1-4):185-191.
    [118] Abadias G, Tse Y Y. Diffraction stress analysis in fiber-oriented TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture[J]. Journal of Applied Physics, 2005, 95:2414-2428.
    [119] Leeuwen M V, Kamminga J D, Mittemeijer E J. Diffraction stress analysis of thin films: Modeling and experimental evaluation of elastic constants and grain interaction[J]. Journal of Applied Physics, 1999, 86:1904-1914.
    [120]1Berlincourt D A, Cmolik C, Jaffe H. Piezoelectric properties of polycrystalline lead titanate zirconate compositions[J]. Proceedings of the Institute of Radio Engineers, 1960, 48:220-229.
    [121] Rouquette J, Haines J, Bornand V, et al. Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic Pb(Zr0.52Ti0.48)O_3[J]. Physical Review B, 2005, 71(2):024112-1~10.
    [122]2Topolov V Y, Turik A V. A new monoclinic phase and features of stress relief in PbZr1-xTixO_3 solid solutions[J]. Journal of Physics-Condensed Matter, 2001, 13(33):L771-L775.
    [123] Wang Z J, Aoki Y, Yan L J, et al. Crystal structure and microstructure of lead zirconate titanate (PZT) thin films with various Zr/Ti ratios grown by hybrid processing[J]. Journal of Crystal Growth, 2004, 267(1-2):92-99.
    [124] Jang H W, Baek S H, Ortiz D, et al. Strain-induced polarization rotation in epitaxial (001) BiFeO_3 thin films[J]. Physical Review Letters, 2008, 101(10):107602-1~4.
    [125]王煜明.非晶体及晶体缺陷的X射线衍射[M].北京:科学出版社,1988:106-120.
    [126]2Lawless W N. Specific heats of paraelectrics, ferroelectrics, and antiferroelectrics at low temperatures[J]. Physical Review B, 1976, 14(1):134-143.
    [127] Wang J N, Li W L, Feng B, et al. Residual stress of Pb(ZrxTi1-x)O_3 films with mixed textures[J]. Journal of Alloys and Compounds, 2010, 506(1):167-171.
    [128] Yan L, Li J F, Cao H, et al. Low symmetry phase in Pb(Zr0.52Ti0.48)O_3 epitaxial thin films with enhanced ferroelectric properties[J]. Applied Physics Letters, 2006, 89(26):262905-1~3.
    [129] Lee K S, Kim Y K, Baik S, et al. In situ observation of ferroelectric 90 degrees-domain switching in epitaxial Pb(Zr,Ti)O_3 thin films by synchrotron x-ray diffraction[J]. Applied Physics Letters, 2001, 79(15):2444-2446.
    [130] Fu Z, Wu A Y, Vilarinho P M. Effect of seed layer thickness on texture and electrical properties of sol-gel derived (Ba0.8Sr0.2)TiO_3 thin films[J]. Chemistry of Materials, 2006, 18(14):3343-3350.
    [131] Park N J, Field D P, Nowell M M, et al. Effect of film thickness on the evolution of annealing texture in sputtered copper films[J]. Journal of Electronic Materials, 2005, 34(12):1500-1508.
    [132] Rojac T, Kosec M, Budic B, et al. Strong ferroelectric domain-wall pinning in BiFeO_3 ceramics[J]. Journal of Applied Physics, 2010, 108(7):074107-1~8.
    [133] Zhong Z Y, Ishiwara H. Variation of leakage current mechanisms by ion substitution in BiFeO_3 thin films[J]. Applied Physics Letters, 2009, 95(11):112902-1~3.
    [134] Chaudhuri A R, Krupanidhi S B. dc leakage behavior in vanadium-doped bismuth titanate thin films[J]. Journal of Applied Physics, 2005, 98(9):094112-1~6.
    [135] Rose A. Space-Charge-Limited Currents in Solids[J]. Physical Review, 1955, 97:1538-1544.
    [136] Ranjith R, Prellier W, Cheah J W, et al. dc leakage behavior and conduction mechanism in (BiFeO_3)(m)(SrTiO_3)(m) superlattices[J]. Applied Physics Letters, 2008, 92(23):232905-1~3.
    [137] Zafar S, Jones R E, Jiang B, et al. The electronic conduction mechanism in barium strontium titanate thin films[J]. Applied Physics Letters, 1998, 73(24):3533-3535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700