高维问题中的小样本学习
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小样本学习(Small Sample Learning,SSL)是模式识别领域中非常重要的研究主题。在可穿戴设备、移动互联网以及视频监控等智能应用方面受到了广泛关注。这些应用有一个共同的特点:嵌入在一个高维空间中可用于训练模型的样本非常少。在过去的几十年,研究人员提出了很多算法来减少这个问题带来的影响,并学习得到一个鲁棒的模型。本文目的在于进一步改善在实际应用问题中嵌入在高维空间的小样本学习的有效性和稳定性。我们考虑这个问题的如下几个方面并提出了对应的解决策略:
     首先,提出了排序信息保留鉴别分析(Rank Preserving DiscriminantAnalysis,RPDA)来探索排序信息对鉴别学习的性能提升。具体说来,RPDA采用块配准框架对类内样本的局部排序信息以及类间样本的鉴别信息进行建模。然而,同其他监督流形学习算法一样,RPDA算法仍有一些超参数,难以选择到最优的设置。我们进一步提出了一个新的降维算法—集成流形排序信息保留(Ensemble Manifold Rank Preserving,EMRP)来回避这一问题。EMRP寻求多个配准矩阵最优的线性组合来近似存在数据中的本质流形。我们将这两种算法应用于基于加速度的人体行为识别以得到鲁棒和高效的低维表达。
     然后,提出了稀疏排序信息保留(Rank Preserving Sparse Learning,RPSL)。该方法考虑保留排序信息和获得稀疏投影矩阵两个方面,因此RPSL可以减少集中测量现象的影响以及获得计算上的简约性。另外,为了有助于随后的分类,建模过程也考虑了分类错误最小化。通过一系列等价变换,我们将RPSL的目标函数转换为基于Lasso惩罚的最小平方问题。另外,在我们基于Kinect的场景分类研究中,我们对RGB-D图像样本提取SIFT特征,并采用局部约束线性编码对其进行特征表达,随后采用RPSL和一个简单分类器对场景进行分类。与其他经典的降维算法相比较,RPSL得到模型有着较好的解释性,另外在测试阶段可以节约计算方面的资源。
     其次,提出了一个全新的半监督分类器—Hessian正则化支撑向量机(HessianRegularized Support Vector Machines,HesSVM)。我们详细论证了利用Hessian正则化对边缘分布紧支集局部几何特性进行建模的合理性,并且证明了再生核希尔伯特空间中的HesSVM等效于核主成分学习的主分量张成的空间进行HesSVM学习。另外,我们提出了在云计算环境下进行图像标注的框架:通过Hamming压缩感知将压缩后的图像传输到云上,随后采用HesSVM进行语义标注。我们在公开的PASCALVOC’07数据集上验证了HesSVM分类器对大规模图像标注的有效性。
     最后,研究了弱监督度量学习。我们注意到KISS度量学习小样本训练中存在对协方差矩阵的逆估计不稳定的情况,从而会导致性能变差等问题。本文提出了正则光滑KISS度量学习(Regularized Smoothing KISS,RS-KISS),该方法将光滑和正则化技术无缝的结合用于估计协方差矩阵。RS-KISS算法优于KISS算法,是因为RS-KISS能够采用有效的办法放大协方差矩阵中小特征值估计不足,以及减少协方差矩阵中大特征值被高估的情况。另外,KISS的协方差矩阵采用的是极大似然估计。一般认为随着训练样本数量的增加,基于最小分类误差准则的鉴别学习比经典的极大似然估计更加可靠。因此我们进一步提出一个新的算法—最小分类误差KISS度量学习(MinimumClassification Error KISS,MCE-KISS)。这两个方法在VIPeR和ETHZ数据集上进行了充分试验。结果表明MCE-KISS算法准确性更高,而RS-KISS计算更加有效。因此,我们需要依据实际情况选择适用的算法。
Small sample learning (SSL) is a hot topic in pattern recognition. It has receivedintensive attention because of its widespread use in intelligent systems, such as wearablecomputing, mobile and internet entertainment, and video surveillance. These applicationsshare a common characteristic, namely that the sample embedded in a high-dimensional spaceand available for model training is of small size; this is known as the ‘small sample size’(SSS)problem. Over the past few decades, many algorithms have been proposed to reduce the SSSeffect and learn robust models. This thesis aims to further improve the efficiency and stabilityof SSL in practice, specifically by exploiting SSL for data embedded in high-dimensionalspaces. We consider the following aspects of this problem and propose the followingsolutions:
     First, we propose rank-preserving discriminant analysis (RPDA) to exploit rank orderinformation and improve discriminant learning. In particular, RPDA encodes local rankinformation of within-class samples, and discriminative information of between-class samples,under the ‘Patch Alignment Framework’. However, like other supervised manifold dimensionreduction algorithms, RPDA has several hyper-parameters, the optimal settings for which arenot trivial to choose. We therefore propose a new dimension reduction algorithm to avoid thisproblem, termed ensemble manifold rank preserving (EMRP). EMRP finds the optimal linearcombination of the alignment matrices to approximate the intrinsic manifold in the data. Weapply these two schemes to acceleration-based human activity recognition, and achieve arobust and effective low-dimensional representation.
     Second, we propose rank-preserving sparse learning (RPSL), which preserves the rankorder information and obtains a sparse projection matrix, and in doing so reduces theconcentration of the measured phenomena and obtains parsimony in computation. In addition,we consider minimization of classification error to facilitate classification. By utilizing aseries of equivalent transformations, we can transform the objective function of RPSL into alasso-penalized least squares problem. In addition, in our Kinect-based scene classificationstudies, we apply locality-constrained linear coding (LLC) to local SIFT features to representRGB-D samples, and classify scenes through the cooperation between RPSL and a simple classification method. Compared to other classical dimension reduction algorithms, RPSLresults in an interpretable model and saves computational costs in the testing stage.
     Third, we propose a novel semi-supervised classifier, termed the Hessian-regularizedsupport vector machine (HesSVM). We carefully explain the rationale for using Hessianregularization to encode the local geometry of the compact support of the marginaldistribution, and prove that using HesSVM in the reproducing kernel Hilbert space isequivalent to conducting HesSVM in the space spanned by the principal components of thekernel principal component analysis. In addition, we present a scheme for image annotation inthe cloud, in which mobile images compressed by Hamming-compressed sensing aretransmitted to the cloud, and semantic annotation is conducted in the cloud using a novelHesSVM. We conduct experiments on the PASCAL VOC’07dataset and demonstrate theeffectiveness of HesSVM for large-scale image annotation.
     Finally, we investigate weakly-supervised metric learning. We noticed that KISS metriclearning estimates the inverse of a covariance matrix to be unstable, and the resultingperformance can therefore be poor. Thus, we present regularized smoothing KISS metriclearning (RS-KISS), which seamlessly integrates smoothing and regularization techniques torobustly estimate covariance matrices. RS-KISS is superior to KISS because it can effectivelyenlarge underestimated small eigenvalues, and reduce overestimated large eigenvalues, in theestimated covariance matrix. In addition, the covariance matrices of KISS are estimated bymaximum likelihood (ML) estimation. It is known that with an increasing number of trainingsamples, discriminative learning based on the minimum classification error (MCE) is morereliable than classical ML estimation. Thus, a new scheme is presented, termed the minimumclassification error KISS (MCE-KISS). These two algorithms are used in thorough validatoryexperiments on the VIPeR and ETHZ datasets, and the results show that MCE-KISS is muchmore accurate and RS-KISS is computationally much more efficient. Therefore, onealgorithm needs to be chosen according to the practical situation.
引文
[1] Donoho D.L. High-dimensional data analysis: The curses and blessings of dimensionality[J]. AMS Math Challenges Lecture,2000:1-32.
    [2] Chen D., Cao X., Wen F., et al. Blessing of dimensionality: High-dimensional featureand its efficient compression for face verification [C].Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, IEEE,2013:3025-3032.
    [3] Guillaumin M., Mensink T., Verbeek J., et al. Tagprop: Discriminative metric learning innearest neighbor models for image auto-annotation [C].Proceedings of the IEEEInternational Conference on Computer Vision, IEEE,2009:309-316.
    [4] Everingham M., Van Gool L., Williams C.K., et al. The pascal visual object classes (voc)challenge [J]. International Journal of Computer Vision,2010,88(2):303-338.
    [5] Oliva A., Torralba A. Modeling the shape of the scene: A holistic representation of thespatial envelope [J]. International Journal of Computer Vision,2001,42(3):145-175.
    [6] Lowe D.G. Distinctive image features from scale-invariant keypoints [J]. InternationalJournal of Computer Vision,2004,60(2):91-110.
    [7] Chen L.-F., Liao H.-Y.M., Ko M.-T., et al. A new LDA-based face recognition systemwhich can solve the small sample size problem [J]. Pattern recognition,2000,33(10):1713-1726.
    [8] Dalal N., Triggs B. Histograms of oriented gradients for human detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2005:886-893.
    [9] Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invarianttexture classification with local binary patterns [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2002,24(7):971-987.
    [10] Hotelling H. Analysis of a complex of statistical variables into principal components [J].Journal of Educational Psychology,1933,24(6):417.
    [11] Fisher R.A. The use of multiple measurements in taxonomic problems [J]. Annals ofeugenics,1936,7(2):179-188.
    [12] Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlineardimensionality reduction [J]. Science,2000,290(5500):2319-2323.
    [13] Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500):2323-2326.
    [14] Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding andclustering [C].Proceedings of the Advances in Neural Information Processing Systems,2001:585-591.
    [15] Donoho D.L., Grimes C. Hessian eigenmaps: Locally linear embedding techniques forhigh-dimensional data [J]. Proceedings of the National Academy of Sciences,2003,100(10):5591-5596.
    [16] Zhang S., Kong Q., Lian S., et al. An improved HLLE algorithm based on themidpoint-nearest neighborhood selection [C].Proceedings of the IEEE InternationalConference on Automation and Logistics, IEEE,2012:185-190.
    [17] Zhang Z., Zha H. Principal manifolds and nonlinear dimension reduction via localtangent space alignment [J]. SIAM Journal of Scientific Computing,2005,26(1):313-338.
    [18] Coifman R.R., Lafon S. Diffusion maps [J]. Applied and computational harmonicanalysis,2006,21(1):5-30.
    [19] Jackson J.E. The User's Guide to Multidimensional Scaling [J]. Technometrics,1985,27(1):87-88.
    [20] He X., Cai D., Yan S., et al. Neighborhood preserving embedding [C].Proceedings of theIEEE International Conference on Computer Vision, IEEE,2005:1208-1213.
    [21] Kokiopoulou E., Saad Y. Orthogonal neighborhood preserving projections: Aprojection-based dimensionality reduction technique [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2007,29(12):2143-2156.
    [22] He X., Niyogi P. Locality preserving projections [C].Proceedings of the Advances inNeural Information Processing Systems,2004:153.
    [23] de Ridder D., Kouropteva O., Okun O., et al. Supervised locally linear embedding[M]//KAYNAK O, ALPAYDIN E, OJA E, et al. Artificail Neural Networks and NeuralInformation Processing-Ican/Iconip2003.2003:333-341.
    [24] Xu D., Yan S., Tao D., et al. Marginal Fisher analysis and its variants for human gaitrecognition and content-based image retrieval [J]. IEEE Transactions on ImageProcessing,2007,16(11):2811-2821.
    [25] Zhang T., Tao D., Yang J. Discriminative locality alignment [C].Proceedings of theEuropean Conference on Computer Vision,2008:725-738.
    [26] Zou H., Hastie T., Tibshirani R. Sparse principal component analysis [J]. Journal ofComputational and Graphical Statistics,2006,15(2):265-286.
    [27] Hoyer P.O. Non-negative matrix factorization with sparseness constraints [J]. TheJournal of Machine Learning Research,2004,5:1457-1469.
    [28] Cai D., He X., Han J. Spectral regression: A unified approach for sparse subspacelearning [C].Proceedings of the IEEE International Conference on Data Mining, IEEE,2007:73-82.
    [29] Zhang T., Tao D., Li X., et al. Patch Alignment for Dimensionality Reduction [J]. IEEETransactions on Knowledge and Data Engineering,2009,21(9):1299-1313.
    [30] Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization[J]. Nature,1999,401(6755):788-791.
    [31] Zheng W.-S., Lai J., Liao S., et al. Extracting non-negative basis images using pixeldispersion penalty [J]. Pattern Recognition,2012,45(8):2912-2926.
    [32] Guan N., Tao D., Luo Z., et al. Non-negative patch alignment framework [J]. IEEETransactions on Neural Networks,2011,22(8):1218-1230.
    [33] He Z., Xie S., Zdunek R., et al. Symmetric nonnegative matrix factorization: Algorithmsand applications to probabilistic clustering [J]. IEEE Transactions on Neural Networks,2011,22(12):2117-2131.
    [34] Miller D.J., Uyar H.S. A mixture of experts classifier with learning based on bothlabelled and unlabelled data [C].Proceedings of the Advances in Neural InformationProcessing Systems,1996:571-577.
    [35] Vapnik V.N. Statistical learning theory [M].1998.
    [36] Bennett K., Demiriz A. Semi-supervised support vector machines [C].Proceedings of theAdvances in Neural Information Processing Systems,1999:368-374.
    [37] Belkin M., Niyogi P., Sindhwani V. Manifold regularization: A geometric framework forlearning from labeled and unlabeled examples [J]. The Journal of Machine LearningResearch,2006,7:2399-2434.
    [38] Melacci S., Belkin M. Laplacian support vector machines trained in the primal [J]. TheJournal of Machine Learning Research,2011,12:1149-1184.
    [39] Tao D., Jin L. Discriminative information preservation for face recognition [J].Neurocomputing,2012,91:11-20.
    [40] Cai D., He X., Han J. Semi-supervised discriminant analysis [C].Proceedings of theIEEE International Conference on Computer Vision, IEEE,2007:1-7.
    [41] Xing E.P., Jordan M.I., Russell S., et al. Distance metric learning with application toclustering with side-information [C].Proceedings of the Advances in Neural InformationProcessing Systems,2002:505-512.
    [42] Yang L., Jin R. Distance metric learning: A comprehensive survey [J]. Michigan StateUniversiy,2006,2:
    [43] Goldberger J., Roweis S., Hinton G., et al. Neighbourhood components analysis [J].Advances in Neural Information Processing Systems,2004:
    [44] Davis J.V., Kulis B., Jain P., et al. Information-theoretic metric learning [C].Proceedingsof the International Conference on Machine Learning, ACM,2007:209-216.
    [45] Zhang Y., Yeung D.-Y. Transfer metric learning by learning task relationships[C].Proceedings of the ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, ACM,2010:1199-1208.
    [46] Geng B., Tao D., Xu C. DAML: Domain adaptation metric learning [J]. IEEETransactions on Image Processing,2011,20(10):2980-2989.
    [47] Zheng W.-S., Gong S., Xiang T. Reidentification by Relative Distance Comparison [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):653-668.
    [48] Kostinger M., Hirzer M., Wohlhart P., et al. Large Scale Metric Learning fromEquivalence Constraints [C].Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition,2012:2288-2295.
    [49] Lespinats S., Verleysen M., Giron A., et al. DD-HDS: A method for visualization andexploration of high-dimensional data [J]. IEEE Transactions on Neural Networks,2007,18(5):1265-1279.
    [50] Wang J., Yang J., Yu K., et al. Locality-constrained linear coding for image classification[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2010:3360-3367.
    [51] Lee H., Ekanadham C., Ng A.Y. Sparse deep belief net model for visual area V2[C].Proceedings of the Advances in Neural Information Processing Systems,2007:873-880.
    [52] Ngiam J., Koh P.W., Chen Z., et al. Sparse Filtering [C].Proceedings of the Advances inNeural Information Processing Systems,2011:1125-1133.
    [53] Kim K.I., Steinke F., Hein M. Semi-supervised regression using hessian energy with anapplication to semi-supervised dimensionality reduction [C].Proceedings of theAdvances in Neural Information Processing Systems,2009:979-987.
    [54] Steinke F., Hein M. Non-parametric regression between manifolds [C].Proceedings ofthe Advances in Neural Information Processing Systems,2008:1561-1568.
    [55] Yang X., Lianwen J. A naturalistic3D acceleration-based activity dataset&benchmarkevaluations [J].2010IEEE International Conference on Systems, Man and Cybernetics(SMC2010),2010:4081-4085.
    [56] Silberman N., Fergus R. Indoor scene segmentation using a structured light sensor [J].2011IEEE International Conference on Computer Vision Workshops (ICCV Workshops),2011:601-608.
    [57] Gray D., Brennan S., Tao H. Evaluating appearance models for recognition, reacquisition,and tracking [C].Proceedings of the IEEE International workshop on performanceevaluation of tracking and surveillance,2007.
    [58] Ess A., Leibe B., Van Gool L. Depth and appearance for mobile scene analysis[C].Proceedings of the International Conference on Computer Vision, IEEE,2007:1-8.
    [59] Gao X., Wang X., Tao D., et al. Supervised Gaussian process latent variable model fordimensionality reduction [J]. IEEE Transactions on Systems, Man, and Cybernetics, PartB: Cybernetics,2011,41(2):425-434.
    [60] Xiao B., Gao X., Tao D., et al. Photo-sketch synthesis and recognition based on subspacelearning [J]. Neurocomputing,2010,73(4):840-852.
    [61] Deschavanne P.J., Giron A., Vilain J., et al. Genomic signature: characterization andclassification of species assessed by chaos game representation of sequences [J].Molecular biology and evolution,1999,16(10):1391-1399.
    [62] Kruskal J.B. Nonmetric multidimensional scaling: A numerical method [J].Psychometrika,1964,29(2):115-129.
    [63] Lespinats S., Fertil B., Villemain P., et al. RankVisu: Mapping from the neighborhoodnetwork [J]. Neurocomputing,2009,72(13-15):2964-2978.
    [64] Demartines P., Hérault J. Curvilinear component analysis: A self-organizing neuralnetwork for nonlinear mapping of data sets [J]. IEEE Transactions on Neural Networks,1997,8(1):148-154.
    [65] Saul L.K., Roweis S.T. Think globally, fit locally: unsupervised learning of lowdimensional manifolds [J]. The Journal of Machine Learning Research,2003,4:119-155.
    [66] Lang K. Newsweeder: Learning to filter netnews [C].Proceedings of the InternationalConference on Machine Learning, Citeseer,1995.
    [67] Thurau C. Behavior histograms for action recognition and human detection [M]. HumanMotion–Understanding, Modeling, Capture and Animation. Springer.2007:299-312.
    [68] Kellokumpu V., Zhao G., Pietik inen M. Human activity recognition using a dynamictexture based method [C].Proceedings of the British Machine Vision Conference,2008:1-10.
    [69] Shao L., Mattivi R. Feature detector and descriptor evaluation in human actionrecognition [C].Proceedings of the ACM International Conference on Image and VideoRetrieval, ACM,2010:477-484.
    [70] Laptev I., Marszalek M., Schmid C., et al. Learning realistic human actions from movies[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2008:1-8.
    [71] Zhao G., Pietikainen M. Dynamic texture recognition using local binary patterns with anapplication to facial expressions [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2007,29(6):915-928.
    [72] Niebles J.C., Wang H., Fei-Fei L. Unsupervised learning of human action categoriesusing spatial-temporal words [J]. International Journal of Computer Vision,2008,79(3):299-318.
    [73] Sminchisescu C., Kanaujia A., Metaxas D. Conditional models for contextual humanmotion recognition [J]. Computer Vision and Image Understanding,2006,104(2):210-220.
    [74] Fathi A., Mori G. Action recognition by learning mid-level motion features[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2008:1-8.
    [75] Bian W., Tao D., Rui Y. Cross-domain human action recognition [J]. IEEE Transactionson Systems, Man, and Cybernetics, Part B: Cybernetics,2012,42(2):298-307.
    [76] He Z., Liu Z., Jin L., et al. Weightlessness feature—a novel feature for single tri-axialaccelerometer based activity recognition [C].Proceedings of the International Conferenceon Pattern Recognition, IEEE,2008:1-4.
    [77] Ravi N., Dandekar N., Mysore P., et al. Activity recognition from accelerometer data[C].Proceedings of the AAAI,2005:1541-1546.
    [78] Khan A.M., Lee Y.-K., Lee S.Y., et al. A triaxial accelerometer-based physical-activityrecognition via augmented-signal features and a hierarchical recognizer [J]. IEEETransactions on Information Technology in Biomedicine,2010,14(5):1166-1172.
    [79] Strachan S., Murray-Smith R., O'Modhrain S. BodySpace: inferring body pose fornatural control of a music player [C].Proceedings of the CHI'07extended abstracts onHuman factors in computing systems, ACM,2007:2001-2006.
    [80] Altun K., Barshan B., Tun el O. Comparative study on classifying human activities withminiature inertial and magnetic sensors [J]. Pattern Recognition,2010,43(10):3605-3620.
    [81] Bonomi A.G., Goris A., Yin B., et al. Detection of type, duration, and intensity ofphysical activity using an accelerometer [J]. Med Sci Sports Exerc,2009,41(9):1770-1777.
    [82] Ermes M., Parkka J., Mantyjarvi J., et al. Detection of daily activities and sports withwearable sensors in controlled and uncontrolled conditions [J]. IEEE Transactions onInformation Technology in Biomedicine,2008,12(1):20-26.
    [83] Xue Y., Jin L. A naturalistic3D acceleration-based activity dataset&benchmarkevaluations [C].Proceedings of the IEEE International Conference on Systems Man andCybernetics, IEEE,2010:4081-4085.
    [84] Long X., Yin B., Aarts R.M. Single-accelerometer-based daily physical activityclassification [C].Proceedings of the Annual International Conference of the IEEEEngineering in Medicine and Biology Society, IEEE,2009:6107-6110.
    [85] Tao D., Jin L., Wang Y., et al. Rank preserving discriminant analysis for human behaviorrecognition on wireless sensor networks [J]. IEEE Transactions on Industrial Informatics,2014,10(1):813-823.
    [86] Van Laerhoven K., Schmidt A., Gellersen H.-W. Multi-sensor context aware clothing[C].Proceedings of the International Symposium on Wearable Computers, IEEE,2002:49-56.
    [87] Bao L., Intille S.S. Activity recognition from user-annotated acceleration data [M].Pervasive computing. Springer.2004:1-17.
    [88] Ghasemzadeh H., Jafari R. Physical movement monitoring using body sensor networks:A phonological approach to construct spatial decision trees [J]. IEEE Transactions onIndustrial Informatics,2011,7(1):66-77.
    [89] Miorandi D., Uhlemann E., Vitturi S., et al. Guest Editorial: Special section on wirelesstechnologies in factory and industrial automation, part I [J]. IEEE TransactionsonIndustrial Informatics,2007,3(2):95-98.
    [90][DB/OL]:http://www.hcii-lab.net/data/scutnaa/
    [91] Lu J., Plataniotis K.N., Venetsanopoulos A.N. Face recognition using LDA-basedalgorithms [J]. IEEE Transactions on Neural Networks,2003,14(1):195-200.
    [92] Dufrenois F., Noyer J.C. Formulating robust linear regression estimation as a one-classLDA criterion: Discriminative hat matrix [J]. IEEE Transactions on Neural Networks andLearning Systems,2013,24(2):262-273.
    [93] Tao D., Li X., Wu X., et al. Geometric mean for subspace selection [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2009,31(2):260-274.
    [94] Cai D., He X., Zhou K., et al. Locality Sensitive Discriminant Analysis [C].Proceedingsof the International Joint Conferences on Artificial Intelligence,2007:708-713.
    [95] Kwapisz J.R., Weiss G.M., Moore S.A. Activity recognition using cell phoneaccelerometers [J]. ACM SigKDD Explorations Newsletter,2011,12(2):74-82.
    [96] Tentori M., Favela J. Activity-aware computing for healthcare [J]. IEEE PervasiveComputing,2008,7(2):51-57.
    [97] Wang X., Rosenblum D., Wang Y. Context-aware mobile music recommendation fordaily activities [C].Proceedings of the ACM international conference on Multimedia,ACM,2012:99-108.
    [98] Geng B., Tao D., Xu C., et al. Ensemble Manifold Regularization [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2012,34(6):1227-1233.
    [99] Hyv rinen A., Karhunen J., Oja E. Independent component analysis [M]. John Wiley&Sons,2004.
    [100] Candès E.J., Li X., Ma Y., et al. Robust principal component analysis?[J]. Journal ofthe ACM,2011,58(3):11.
    [101] Gao X., Wang N., Tao D., et al. Face Sketch–Photo synthesis and retrieval using sparserepresentation [J]. IEEE Transactions on Circuits and Systems for Video Technology,2012,22(8):1213-1226.
    [102] Gao X., Zhang K., Tao D., et al. Image super-resolution with sparse neighborembedding [J]. IEEE Transactions on Image Processing2012,21(7):3194-3205.
    [103] Naikal N., Yang A.Y., Sastry S.S. Informative feature selection for object recognitionvia sparse PCA [C].Proceedings of the IEEE International Conference on ComputerVision, IEEE,2011:818-825.
    [104] Clemmensen L., Hastie T., Witten D., et al. Sparse discriminant analysis [J].Technometrics,2011,53(4):
    [105] Efron B., Hastie T., Johnstone I., et al. Least angle regression [J]. The Annals ofstatistics,2004,32(2):407-499.
    [106] Ye J. Least squares linear discriminant analysis [C].Proceedings of the InternationalConference on Machine learning, ACM,2007:1087-1093.
    [107] Li F.-F., Pietro P. A bayesian hierarchical model for learning natural scene categories[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2005:524-531.
    [108] Zhou T., Tao D., Wu X. Manifold elastic net: a unified framework for sparse dimensionreduction [J]. Data Mining and Knowledge Discovery,2011,22(3):340-371.
    [109] Chen Y., Wang J.Z., Krovetz R. Content-based image retrieval by clustering[C].Proceedings of the ACM SIGMM international workshop on Multimediainformation retrieval, ACM,2003:193-200.
    [110] Quelhas P., Monay F., Odobez J.-M., et al. A thousand words in a scene [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2007,29(9):1575-1589.
    [111] Gao X., Gao F., Tao D., et al. Universal Blind Image Quality Assessment Metrics ViaNatural Scene Statistics and Multiple Kernel Learning [J]. IEEE Transactions on NeuralNetworks and Learning Systems,2013,24(12):2013-2026.
    [112] Ude A., Dillmann R. Vision-based robot path planning [M]. Springer,1994.
    [113] Wu J., Rehg J.M. CENTRIST: A visual descriptor for scene categorization [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2011,33(8):1489-1501.
    [114] Monay F., Gatica-Perez D. On image auto-annotation with latent space models[C].Proceedings of the ACM international conference on Multimedia, ACM,2003:275-278.
    [115] Tao D., Jin L., Liu W., et al. Hessian Regularized Support Vector Machines for MobileImage Annotation on the Cloud [J]. IEEE Transactions on Multimedia,2013,15(4):833-844.
    [116] Tamura H., Mori S., Yamawaki T. Textural features corresponding to visual perception[J]. IEEE Transactions on Systems, Man and Cybernetics,1978,8(6):460-473.
    [117] Huang K., Tao D., Yuan Y., et al. Biologically inspired features for scene classificationin video surveillance [J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B:Cybernetics,2011,41(1):307-313.
    [118] Opelt A., Fussenegger M., Pinz A., et al. Weak hypotheses and boosting for genericobject detection and recognition [C].Proceedings of the European Conference onComputer Vision, Springer,2004:71-84.
    [119] Swain M.J., Ballard D.H. Color indexing [J]. International Journal of Computer Vision,1991,7(1):11-32.
    [120] Mindru F., Tuytelaars T., Gool L.V., et al. Moment invariants for recognition underchanging viewpoint and illumination [J]. Computer Vision and Image Understanding,2004,94(1):3-27.
    [121] Pass G., Zabih R., Miller J. Comparing images using color coherence vectors[C].Proceedings of the ACM international conference on Multimedia, ACM,1997:65-73.
    [122] Van De Sande K.E., Gevers T., Snoek C.G. Evaluating color descriptors for object andscene recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1582-1596.
    [123] Mao J., Jain A.K. Texture classification and segmentation using multiresolutionsimultaneous autoregressive models [J]. Pattern Recognition,1992,25(2):173-188.
    [124] Song D., Tao D. Biologically inspired feature manifold for scene classification [J].Image Processing, IEEE Transactions on,2010,19(1):174-184.
    [125] Wu D., Shao L. Silhouette Analysis-Based Action Recognition Via Exploiting HumanPoses [J]. Circuits and Systems for Video Technology, IEEE Transactions on,2013,23(2):236-243.
    [126] Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features [C].Proceedings ofthe European Conference on Computer Vision, Springer,2006:404-417.
    [127] Huang D., Shan C., Ardabilian M., et al. Local binary patterns and its application tofacial image analysis: a survey [J]. IEEE Transactions on Systems, Man, andCybernetics, Part C,2011,41(6):765-781.
    [128] Han J., Shao L., Xu D., et al. Enhanced computer vision with microsoft kinect sensor: Areview [J]. IEEE Transactions on Cybernetics,2013,43(5):
    [129] Janoch A., Karayev S., Jia Y., et al. A category-level3d object dataset: Putting the kinectto work [M]. Consumer Depth Cameras for Computer Vision. Springer.2013:141-165.
    [130] Lai K., Bo L., Ren X., et al. A large-scale hierarchical multi-view rgb-d object dataset[C].Proceedings of the IEEE International Conference on Robotics and Automation,IEEE,2011:1817-1824.
    [131] Bo L., Ren X., Fox D. Depth kernel descriptors for object recognition [C].Proceedingsof the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,2011:821-826.
    [132] Lazebnik S., Schmid C., Ponce J. Beyond bags of features: Spatial pyramid matchingfor recognizing natural scene categories [C].Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition, IEEE,2006:2169-2178.
    [133] Yang J., Yu K., Gong Y., et al. Linear spatial pyramid matching using sparse coding forimage classification [C].Proceedings of the IEEE Conference on Computer Vision andPattern Recognition, IEEE,2009:1794-1801.
    [134] Yu K., Zhang T., Gong Y. Nonlinear Learning using Local Coordinate Coding[C].Proceedings of the Advances in Neural Information Processing Systems,2009:1.
    [135] Paris S., Durand F. A fast approximation of the bilateral filter using a signal processingapproach [M]. European Conference on Computer Vision. Springer.2006:568-580.
    [136] Fan R.-E., Chang K.-W., Hsieh C.-J., et al. LIBLINEAR: A library for large linearclassification [J]. The Journal of Machine Learning Research,2008,9:1871-1874.
    [137] Hu H., Zhang P., Ma Z. Direct kernel neighborhood discriminant analysis for facerecognition [J]. Pattern recognition letters,2009,30(10):902-907.
    [138] Ma Z., Chen J., Lian S. Constraints on the Neighborhood Size in LLE [J]. IEICETRANSACTIONS on Information and Systems,2011,94(8):1636-1640.
    [139] Chen J., Ma Z., Liu Y. Local coordinates alignment with global preservation fordimensionality reduction [J]. IEEE Transactions on Neural Networks and LearningSystems,2013,24(1):106-117.
    [140] Tao D., Liang L., Jin L., et al. Similar Handwritten Chinese Character Recognition byKernel Discriminative Locality Alignment [J]. Pattern Recognition Letters,2014,35:186-194.
    [141] Scholkopf B., Smola A., Müller K.-R. Kernel principal component analysis[C].Proceedings of the Advances in kernel methods-support vector learning, Citeseer,1999.
    [142] Zhou T., Tao D., Wu X. NESVM: a fast gradient method for support vector machines[C].Proceedings of the IEEE International Conference on Data Mining, IEEE,2010:679-688.
    [143] Lawson C.L., Hanson R.J. Solving least squares problems [M]. SIAM,1974.
    [144] Lawrence N.D., Jordan M.I. Semi-supervised Learning via Gaussian Processes[C].Proceedings of the Advances in Neural Information Processing Systems,2004:753-760.
    [145] Sun S. Multi-view Laplacian support vector machines [M]. Advanced Data Mining andApplications. Springer.2011:209-222.
    [146] Tong S., Chang E. Support vector machine active learning for image retrieval[C].Proceedings of the Proceedings of the ninth ACM international conference onMultimedia, ACM,2001:107-118.
    [147] Morik K., Brockhausen P., Joachims T. Combining statistical learning with aknowledge-based approach: a case study in intensive care monitoring [M]. TechnicalReport, SFB475: Komplexit tsreduktion in Multivariaten Datenstrukturen, Universit tDortmund.1999.
    [148] Joachims T., Finley T., Yu C.-N.J. Cutting-plane training of structural SVMs [J].Machine Learning,2009,77(1):27-59.
    [149] Shalev-Shwartz S., Singer Y., Srebro N., et al. Pegasos: Primal estimated sub-gradientsolver for svm [J]. Mathematical programming,2011,127(1):3-30.
    [150] Eells J., Lemaire L. Selected topics in harmonic maps [M]. American MathematicalSoc.,1983.
    [151] Barnard K., Duygulu P., Forsyth D., et al. Matching words and pictures [J]. The Journalof Machine Learning Research,2003,3:1107-1135.
    [152] Papadopoulos S., Zigkolis C., Kompatsiaris Y., et al. Cluster-based landmark and eventdetection on tagged photo collections [J]. IEEE Multimedia,2010:
    [153] Duygulu P., Barnard K., de Freitas J.F., et al. Object recognition as machine translation:Learning a lexicon for a fixed image vocabulary [M]. European Conference onComputer Vision. Springer.2002:97-112.
    [154] Quinlan J.R. Induction of decision trees [J]. Machine learning,1986,1(1):81-106.
    [155] Wang C., Blei D., Li F.-F. Simultaneous image classification and annotation[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2009:1903-1910.
    [156] Shi R., Lee C.-H., Chua T.-S. Enhancing image annotation by integrating conceptontology and text-based bayesian learning model [C].Proceedings of the InternationalConference on Multimedia, ACM,2007:341-344.
    [157] He X., Cai D., Han J. Learning a maximum margin subspace for image retrieval [J].IEEE Transactions on Knowledge and Data Engineering,2008,20(2):189-201.
    [158] Lin Y.-Y., Liu T.-L., Chen H.-T. Semantic manifold learning for image retrieval[C].Proceedings of the ACM international conference on Multimedia, ACM,2005:249-258.
    [159] Bilenko M., Basu S., Mooney R.J. Integrating constraints and metric learning insemi-supervised clustering [C].Proceedings of the International Conference on Machinelearning, ACM,2004:11.
    [160] Shao Y., Zhou Y., He X., et al. Semi-supervised topic modeling for image annotation[C].Proceedings of the ACM international conference on Multimedia, ACM,2009:521-524.
    [161] Mell P., Grance T. The NIST definition of cloud computing [J]. National Institute ofStandards and Technology,2009,53(6):50.
    [162] Vaquero L.M., Cáceres J., Morán D. The challenge of service level scalability for thecloud [J]. International Journal of Cloud Applications and Computing,2011,1(1):34-44.
    [163] Zhang Q., Cheng L., Boutaba R. Cloud computing: state-of-the-art and researchchallenges [J]. Journal of Internet Services and Applications,2010,1(1):7-18.
    [164] Armbrust M., Fox A., Griffith R., et al. A view of cloud computing [J]. Communicationsof the ACM,2010,53(4):50-58.
    [165] Foster I. Service-oriented science [J]. Science,2005,308(5723):814-817.
    [166] Gao Y., Jin L., He C., et al. Handwriting character recognition as a service: A newhandwriting recognition system based on cloud computing [C].Proceedings of theInternational Conference on Document Analysis and Recognition, IEEE,2011:885-889.
    [167] Bresnahan J., Keahey K., LaBissoniere D., et al. Cumulus: an open source storage cloudfor science [C].Proceedings of the International Workshop on Scientific CloudComputing, ACM,2011:25-32.
    [168] Iosup A., Ostermann S., Yigitbasi M.N., et al. Performance analysis of cloud computingservices for many-tasks scientific computing [J]. IEEE Transactions on Parallel andDistributed Systems,2011,22(6):931-945.
    [169] Candes E.J., Tao T. Near-optimal signal recovery from random projections: Universalencoding strategies?[J]. IEEE Transactions on Information Theory,2006,52(12):5406-5425.
    [170] Donoho D.L. Compressed sensing [J]. IEEE Transactions on Information Theory,2006,52(4):1289-1306.
    [171] Boufounos P.T., Baraniuk R.G.1-bit compressive sensing [C].Proceedings of theAnnual Conference on Information Sciences and Systems IEEE,2008:16-21.
    [172] Zhou T., Tao D. Hamming compressed sensing [J]. arXiv preprint arXiv:11100073,2011:
    [173][DB/OL]:www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
    [174] Guillaumin M., Verbeek J., Schmid C. Multimodal semi-supervised learning for imageclassification [C].Proceedings of the IEEE Conference on Computer Vision and PatternRecognition, IEEE,2010:902-909.
    [175] Weinberger K.Q., Saul L.K. Distance Metric Learning for Large Margin NearestNeighbor Classification [J]. The Journal of Machine Learning Research,2009,10:207-244.
    [176] Kimura F., Takashina K., Tsuruoka S., et al. Modified quadratic discriminant functionsand the application to Chinese character recognition [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1987,(1):149-153.
    [177] Friedman J.H. Regularized discriminant analysis [J]. Journal of the American statisticalassociation,1989,84(405):165-175.
    [178] Juang B.-H., Hou W., Lee C.-H. Minimum classification error rate methods for speechrecognition [J]. IEEE Transactions on Speech and Audio Processing,1997,5(3):257-265.
    [179] Schwartz W.R., Davis L.S. Learning Discriminative Appearance-Based Models UsingPartial Least Squares [C].Proceedings of the Brazilian Symposium on ComputerGraphics and Image Processing,2009:322-329.
    [180] Hastie T., Tibshirani R., Friedman J., et al. The elements of statistical learning: datamining, inference and prediction [J]. The Mathematical Intelligencer,2005,27(2):83-85.
    [181] Lee J.-E., Jin R., Jain A.K. Rank-based distance metric learning: An application toimage retrieval [C].Proceedings of the IEEE Conference on Computer Vision andPattern Recognition, IEEE,2008:1-8.
    [182] Dornaika F., Bosaghzadeh A. Exponential Local Discriminant Embedding and ItsApplication to Face Recognition [J]. IEEE Transactions on Cybernetics,2013,43(3):921-934.
    [183] Venkat I., De Wilde P. Robust Gait Recognition by Learning and Exploiting Sub-gaitCharacteristics [J]. International Journal of Computer Vision,2011,91(1):7-23.
    [184] Cappelli R., Ferrara M., Maio D. A Fast and Accurate Palmprint Recognition SystemBased on Minutiae [J]. IEEE Transactions on Systems Man and Cybernetics PartB-Cybernetics,2012,42(3):956-962.
    [185] Bak S., Corvee E., Bremond F., et al. Person re-identification using haar-based anddcd-based signature [C].Proceedings of the IEEE International Conference on AdvancedVideo and Signal Based Surveillance, IEEE,2010:1-8.
    [186] Cheng D.S., Cristani M., Stoppa M., et al. Custom Pictorial Structures forRe-identification [C].Proceedings of the British Machine Vision Conference,2011:6.
    [187] Lin D.-T., Huang K.-Y. Collaborative pedestrian tracking and data fusion with multiplecameras [J]. IEEE Transactions on Information Forensics and Security,2011,6(4):1432-1444.
    [188] Gray D., Tao H. Viewpoint Invariant Pedestrian Recognition with an Ensemble ofLocalized Features [C].Proceedings of the European Conference on Computer Vision,2008:262-275.
    [189] Farenzena M., Bazzani L., Perina A., et al. Person re-identification by symmetry-drivenaccumulation of local features [C].Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, IEEE,2010:2360-2367.
    [190] Fogel I., Sagi D. Gabor filters as texture discriminator [J]. Biological Cybernetics,1989,61(2):103-113.
    [191] Schmid C. Constructing models for content-based image retrieval [C].Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition,2001:39-45.
    [192] Forssén P.-E. Maximally stable colour regions for recognition and matching[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2007:1-8.
    [193] Hamdoun O., Moutarde F., Stanciulescu B., et al. Person re-identification inmulti-camera system by signature based on interest point descriptors collected on shortvideo sequences [C].Proceedings of the ACM/IEEE International Conference onDistributed Smart Cameras,2008:1-6.
    [194] Friedman J., Hastie T., Tibshirani R. Special invited paper. additive logistic regression:A statistical view of boosting [J]. Annals of statistics,2000:337-374.
    [195] Hirzer M., Beleznai C., Roth P.M., et al. Person re-identification by descriptive anddiscriminative classification [C].Proceedings of the Scandinavian Conference on ImageAnalysis, Ystad, Sweden, Springer,2011:91-102.
    [196] Bak S., Corvee E., Bremond F., et al. Person Re-identification Using Spatial CovarianceRegions of Human Body Parts [C].Proceedings of the IEEE International Conference onAdvanced Video and Signal-Based Surveillance,2010.
    [197] Joachims T. Optimizing search engines using clickthrough data [C].Proceedings of theACM SIGKDD international conference on Knowledge discovery and data mining,ACM,2002:133-142.
    [198] Prosser B., Zheng W.-S., Gong S., et al. Person Re-Identification by Support VectorRanking [C].Proceedings of the British Machine Vision Conference,2010.
    [199] Hirzer M., Roth P.M., K stinger M., et al. Relaxed pairwise learned metric for personre-identification [C].Proceedings of the European Conference on Computer Vision,Springer,2012:780-793.
    [200] Li W., Wang X. Locally aligned feature transforms across views [C].Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition, IEEE,2013:3594-3601.
    [201] Mignon A., Jurie F. PCCA: A new approach for distance learning from sparse pairwiseconstraints [C].Proceedings of the IEEE Conference onComputer Vision and PatternRecognition, IEEE,2012:2666-2672.
    [202] Zou H., Hastie T. Regularization and variable selection via the elastic net [J]. Journal ofthe Royal Statistical Society: Series B (Statistical Methodology),2005,67(2):301-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700