准气相反应法制备多孔氧化铝球形颗粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:Al2O3材料具有高强度、高硬度、抗腐蚀、耐高温、抗氧化性等特性,A1203粉体是制备催化剂及其载体、牙科材料、特种陶瓷的重要原料。多孔A1203球形颗粒不仅可以作为优良的催化剂及其载体,应用于药物缓释/控释制剂,又因为颗粒为多孔结构,可以节省原材料,降低生产成本;此外,由于A1203颗粒为球形,其流动性和成型性好,这样制出的块体具有良好的致密性。本论文首次采用一种新颖的准气相反应法,制备出新颖的具有多孔结构的氧化铝球形颗粒。
     首先,以氯化铝溶液和高纯氨气为原料,合成多孔氧化铝前驱物球形颗粒,研究了AlC13溶液浓度、系统真空度、NH3气流量等因素对前驱物颗粒形貌、大小和显微结构的影响,获得了较佳的合成工艺条件:AICl3溶液浓度为25wt%、系统真空度为-0.01MPa、NH3气流量为50L/H。在较佳的合成工艺下,合成出的多孔氧化铝前驱物颗粒的平均粒径为6.705μm,标准偏差3.224μm,球形度良好,显微结构为实心结构和空心结构两种。
     其次,探讨了多孔氧化铝前驱物球的干燥制度和煅烧制度。研究了烘箱干燥、室温干燥和微波干燥三种干燥方式对前驱物球性能的影响,并研究了500℃、800℃、1000℃和1200℃煅烧温度下对氧化铝球性能的影响。研究表明:在较佳的合成条件下合成出的氧化铝前驱物球,经过微波“低火”干燥12min,1200℃煅烧2h后,得到的多孔氧化铝球的平均粒径为2.68μm,形貌为球形,晶型为单斜结构的α-Al2O3。
     最后,研究了在准气相反应合成过程中的收集瓶内和干燥过程中对团聚状态的控制,分别加入不同分子量、不同含量的聚乙二醇对颗粒团聚状态的影响。结果表明:在收集瓶中和干燥过程中,分别加入质量分数为1.0%的聚乙二醇6000可以有效地控制团聚的发生。
     因此,通过本课题的研究,采用准气相反应法能够制备出多孔氧化铝球形颗粒,其较佳工艺条件为:AICl3溶液浓度为25wt%、系统真空度为-0.01MPa、NH3气流量为50L/H,微波“低火”干燥12min,1200℃煅烧2h。制备出的多孔氧化铝颗粒的平均粒径为2.68μm,形貌为球形,分散性好,其晶型为单斜结构的α-Al2O3。
Aluminia materials possess high strength and hardness, excellent corrosion, high temperature, oxidation resistances, and other characteristics. Aluminia powder is the raw materials of preparing Aluminia materials such as catalyst and its carrier, dental materials, special ceramics. Porous spherical Al2O3 particles not only serve as an excellent catalyst and its carrier, drug delivery/controlled release, but also can used less due to its low density, therefore lower production costs of Aluminia materials. Besides, spherical Al2O3 particles are favourable to forming of bulk Al2O3 densified. In this thesis, a novel quasi-gaseous state reaction method, for the first time, was used for preparation of a new porous alumina spherical particles.
     Firstly, porous alumina prescursor spherical particles were synthesized using aluminum chloride solution and high-purity ammonia gas as starting agents. Effects of AICl3 solution concentration, vacuum, and NH3 gas flow rate on precursor particle morphology, size and microstructure have been investigated, and optimum synthetic conditions have been attained:AICl3 solution concentration—25wt%, vacuum—-0.01MPa, NH3 gas flow—50L\h. Precursor particles synthesized with optimum synthetic conditions are:average size—6.705μm, standard deviation—3.224μm, well sphericity, solid or hollow microstructure.
     Secondly, the drying and calcination processes and the control of agglomeration were studied for alumina precursor spheres. Effects of dryings in the oven, at room temperature, and with microwave on the performance of the precursor have been investigated, also the effects of calcination temperatures at 500℃,800℃,1000℃and 1200℃on the performances of alumina spheres have been studied. The results show that a proper drying and calcining process for alumina precursor spheres synthesized by using optimum conditions is:first drying with microwave of "low fire" for 12 min., then calcining at 1200℃for 2h. Porous alumina particles, obtained through above drying and calcining processes, have the average diameter 2.68μm, spherical shape, solid and hollow microstructures, andα-Al2O3 crystalline type.
     Finally, effects of molecular weight and concentration of polyethylene glycol(PEG), added in collection bottle in quasi-gas reaction synthesis and drying process, repectively, on particle clusters have been investigated. The results show that for any one of two adding ways, using 3.0wt% of PEG 6000 can effectively prevent the clusters formation, and adding in drying process is better than doing in collection bottle.
     Therefore, porous alumina spherical particles can be prepared using quasi-gas reaction process, and a proper process is:AICl3 solution concentration—25wt%, vacuum—-0.01MPa, NH3 gas flow rate—50L\H, drying with "low fire" microwave for 12min., and calcining at 1200℃for 2h. The porous alumina spheres prepared by above process possess average size 2.68μm, spherical shape, well dispersion, solid and hollow microstructures, crystalline structure of the monoclinicα-Al2O3
引文
[1]翟庆洲.纳米技术.北京:兵器工业出版社,2006
    [2]张立德.超微粉体制备与应用.北京:中国石化出版社,2001:49-60
    [3]吴俊,王龙彪,黄清安等.纳米材料的进展.电镀与涂饰,1999:12-4
    [4]张志馄,崔作霖.纳米技术与纳米材料.北京:国防工业出版社,2000:35-42
    [5]朱红.纳米材料化学及其应用.北京:清华大学出版社,北京交通大学出版社,2009
    [6]曹新,赵振华.纳米科技时代—奇迹、财富与未来.北京:经济科学出版社,2001:107-129
    [7]张立德,牟季美.纳米材料学.辽宁科技出版社,1994
    [8]张立德.纳米材料.北京:化学工业出版社,2000
    [9]李新勇,李树本.纳米半导体研究进展.化学进展,1996,9(3):231-239
    [10]苏品书.超微粒子材料技术.中国台湾:复汉出版社,1989
    [11]蔡树芝,张立德.纳米非晶氮化硅键态结构的X射线径向分布函数研究[J].物理学报,1992,41(10):1620
    [12]尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001
    [13]Igor L, David B. Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences. Journal of the American Ceramic Society,1998,81(8):1995-2012
    [14]Zhou R S, Robert L S. Structures and transformation mechanisms of the η、γ and θ transition aluminas. Acta crystallographica section B,1991,47:617-630
    [15]李继光,孙旭东,张民等.碳酸铝热分解制备氧化铝超细粉末.无机材料学报,1998,6:803-807
    [16]Ronalda M. Evaluated materialprorties forasintereda-Al2O3. The American Ceranucsociety, 1997,80(8):1919-1928
    [17]张美鸽.高纯氧化铝制备技术的进展.功能材料,1993:7-21
    [18]张永刚,闰裴.纳米氧化铝的制备及应用.无机盐工业,2004,1:23-26
    [19]侯万国,孙德军,张春光.应用胶体化学.北京:科学出版社,1998
    [20]Vollath D, Sickafus K E. Synthesis of nanosized ceramic oxide powders by microwave plasma reactions. Nana structured Materials,1992,1(5):427-437
    [21]Shi J L, Lin Z X. The flow characterisitics of hot-pressing of beta-Al2O3. Ceramics International, 1989,15(2):107-112
    [22]孟季茹,赵磊,梁国正等.无机非金属纳米微粒的制备方法.化工新型材料,2000,28(4):23-27
    [23]Thiruchitrambalam. M, Palkar. V. R, V. Gopinathan. Hydrolysis of aluminium metal and sol-gel processing of nano alumina. Materials Letters.2004,8:3063-3066
    [24]Alipour. A, Jazayeri. H, Nemati. H, M. Mohammadpour Amini. Preparation of submicron alumina from aluminum 2-methoxyethoxide. Materials Letters,2001,48:15-48
    [25]Victor Neil J C. J. Influence of water/alkoxide ratio on the properities of Ru/Al2O3 xerogel catalysts. Journal of Molecular Catalysis A:Chemical.1999,149:283-297
    [26]Yu Z Q, Wang C X. Preparation and thermal stability of Eu2O3-doped Al2O3 nanometer-sized powder using the modified bimetallic alkoxides. Journal of Crystal Growth,2003,256:210-218
    [27]牛国兴,何坚铭,陈晓银.不同添加物和制备方式对A1203热稳定性的影响.催化学报.1999,20(5):535-540
    [28]王敬先,刘勇,何阿弟.不同制备方法镧改性对7-A1203的高温热稳定作用研究.复旦学报(自然科学版),2000,39(4):450-454
    [29]龚茂初,林之恩,高士杰等.高温高表面氧化铝新材料的制备化学研究.燃料化学学报,2001,13(2):180-216
    [30]林之恩,龚茂初,谢春英.高温高表面氧化铝新材料的制备化学研究.镧和表面活性剂对氧化铝性质的影响化学研究与应用,2001,13(2):180-216
    [31]宋希文,安胜利,赵文广.氧化铝超细粉末的烧结特性.兵器材料科学与工程,2001,24(2):1-20
    [32]侯春楼.氧化铝微球的制备.轻金属,1997,5:10-23
    [33]许珂敬,杨新春,田贵山.采用引入晶种的水热合成法制备α-Al2O3纳米粉.硅酸盐学报,2001,29(6):576-579
    [34]曾文明,陈念怡,归林华.无机盐制备氧化铝纳米粉及其物理化学的研究.无机材料学报.1998,13(6):887-890
    [35]方佑龄,金春华.透明超微粒子氧化铝的制备.武汉大学学报(自然科学版),1996,42(2):136-140
    [36]王宏志,高濂,李炜群等.高分子网络凝胶法制备纳米α-Al2O3粉体.无机材料学报,2000,15(2):356-360
    [37]龚茂初,文梅,章洁.耐高温高表面氧化铝的制备及性质.无机化学学报,2001,17(1):50-54
    [38]曹光伟,罗锡辉,刘振华.加氢处理催化剂的制备利表征.催化学报,2001,22(2):143-148
    [39]吴俊辉,邹建平,朱青.硅衬底阳极氧化铝膜的荧光发射研究.发光学报,2000,21(1):53-56
    [40]沈志刚,陈建峰,刘润静.无机纳米粉体制造技术的现状及展望.无机盐工业,2002,34(3):18-21
    [41]盖国盛.超细粉体分级技术.北京:中国轻工业出版社,2000,12-56
    [42]李继光,孙旭东,茹红等.湿化学法合成α-Al2O3纳米粉.材料研究学报,1998,12(1):105-107
    [43]Li J G, Sun X D. Synthesis and sintering Behavior of a Nanocrystalline a-Alumina Powder. Acta Materialia,2000,48(12):3013-3112
    [44]英宏,李继光,赵志江等.沉淀法制备单分散纳米A1(OH)3先驱沉淀物.东北大学学报,1999,20(5):515-518
    [45]林元华,张中太,黄传勇等.前驱体热解法制备高纯超细α-Al2O3粉体.硅酸盐学报,2000,28(3):268-271
    [46]裴小苗,司文元,刘欣,贾虎生,刘旭光,许并社.超声场中溶胶凝胶法制备纳米氧化铝粉体的研究.金刚石与磨料磨具工程.2005,150(6):71-74
    [47]冯青琴,贾晓林.溶胶-凝胶法合成纳米?-Al2O3工艺研究.安阳师范学院学报.2007,2:68-73
    [48]吴淑艳,吴明忠,王军,刘洪丽.液相法合成粉体中冷冻干燥对团聚的影响.佳木斯大学学报(自然科学版).2007,25(1):59-60
    [49]温嘉琪,肖志国,王细凤,刘丽芳,曲智博.引入晶种对水热合成α-Al2O3微粉的影响. 2006,13(1):19-22
    [50]李芳,许珂敬,白咏梅.山东理工大学学报(自然科学版),2007,21(3)23
    [5l]张辉,刘莲云,安振涛,张登军,唐清.ZrO2球的准气相反应合成.化学学报,2005,12(63):1131-1135
    [52]刘铃声,邢全生,谢丽英,熊晓柏,刘滟杰,曹鸿璋.干燥技术在制备纳米氧化物中的应用.稀土,2009,30(2):91-94
    [53]王宝和,张伟.纳米材料干燥技术进展(二).干燥技术与设备,2003,2:18-23
    [54]曹爱红.微波干燥制备A1203纳米粉体的研究.天津工业大学学报,2002,21(4):25-27
    [55]曹瑞军,林晨光,孙兰,赵诣林,刘总,贾成厂.超细粉末的团聚及其消除方法.粉末冶金技术,2006,24(6):460-466
    [56]胡建人.微波快速烘干硅胶的生产工艺的研究.包装工程,1999,1:14-18
    [57]范红图,刘雅琴.影响微波干燥各因素的分析及试验研究.能源研究与利用,1994,2:24-28
    [58]Kaliszewski M S, Heuer A H, J Am Ceram Soc,1990,(73):1504
    [59]Uok Maskra, J Am Ceram Soc,1997,(80):1715
    [60]章跃,丁红艳等.匀相沉淀法制备纳米Al2O3粉末.新技术新工艺·材料与表面处理.2001,(6):43-44
    [61]唐浩林,潘牧等.溶胶凝胶法制备α-Al2O3纳米材料团聚控制研究新进展.材料导报,2002,16(9):44-45
    [62]杨咏来,宁桂玲等.液相法制备纳米粉体时防团聚方法概述.材料导报,1998,12(2):11-13
    [63]刘剑,曹瑞军,郗英欣.表面活性剂在纳米粉体制备中的应用.化工新型材料,2003,31(7):37-39
    [64]许珂敬,杨新春,刘风春,高龄.高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用.中国陶瓷,1999,35(5):15-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700