介孔ZrO_2及Y_2O_3稳定ZrO_2球形颗粒的准气相反应法合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锆是唯一一种同时具有表面酸性与碱性中心的材料,再加上其良好的离子交换和电荷传导等性能,从而使其成为一种理想的多功能催化剂。随着介孔氧化锆的合成及表征技术的发展,介孔氧化锆材料的应用范围也越来越广,就如,光致发光材料、催化剂及载体、药物可控释放、水处理吸附材料、色谱柱填料等。本论文采用准气相反应法进行介孔氧化锆及钇稳定介孔氧化锆的合成,并通过SEM、TEM、XRD、TG/DTA、N2吸—脱附、激光粒度仪等对颗粒各方面性能进行了测试表征。
     本工作首先进行了准气相反应法装置与工艺的改进:于收集器进料管出口处增设筛孔、加粗反应器、并在反应器出口管段增设真空表、对雾化器封盖处密封并增设流量计、并对收集所得悬浮液进行陈化处理。通过以上改进后,合成反应条件及反应结果趋于稳定。
     其次,再通过正交实验(L1837)确定了合成氧化锆前驱物球形颗粒的较佳工艺条件:WZrOCi2·H2O=30%、QNH3=60L/h、P真空=0.02MPa、Qair/QNH3=1、陈化3d。在此较佳条件下合成出的氧化锆前驱物颗粒为光滑的球形颗粒,平均粒径约4μm且无明显空心球存在。再由正交实验结果分析知,对实验结果影响最大的工艺条件是氯氧化锆溶液的浓度,在正交实验条件范围内,氨气流量和真空度对实验结果的影响相对较小。
     通过对前驱物球形颗粒进行水热处理和室温干燥后煅烧,获得了氧化锆微粉。其中常温干燥后进行煅烧的结果较好——颗粒仍保持球形,且破碎颗粒也较少。
     最后,采用合成氧化锆的较佳实验条件并进行介孔钇稳定氧化锆球形颗粒的合成,掺杂量分别为1.5mol% Y2O3 (ZrYO系列)和3mol%Y2O3 (ZrOY系列),采用干燥后煅烧的方式进行前驱物的后处理。由TG/DTA、XRD、SEM、TEM及氮气吸—脱附的表征可知,两系列的ZrO_2/Y2O_3颗粒均为球形且无明显空心现象,500-1200℃煅烧后晶相组成以四方相为主,比表面积为34.3887m2/g(600℃煅烧后)。
Zirconia is the unique material with both acidic and basic centers, coupled with its good ion-exchange and charge transfer properties. Therefore, Zirconia is an ideal multi-functional catalyst. With the advance on technologies of the preparation and characterization of mesoporous Zirconia, mesoporous Zirconia materials are increasingly applied to abroad areas, for example, photoluminescence materials, catalyst and its carrier, drug delivery, absorption materials for sewage treatment, chromatographic column packing, and so on. In this thesis, using quasi-gaseous state reaction method, mesoporous Zirconia and Yttria-stabilized Zirconia were prepared and characterized by SEM, TEM, XRD, TG/DTA, N2 gas absorption-desorption, laser particle size analyzer, and etc.
     Firstly, the equipment and process for quasi-gaseous state reaction were improved, which involved making sieve-like holes on the outlet of the feed tube of collector, expanding the diameter of reactor, fixing a vacuum meter on the outlet tube of reactor, sealing the cover of atomizer and adding flow meter before the atomizer, and aging the collected suspensions in the collector. By above improvements, the synthesis reaction conditions and results are becoming stable.
     Secondly, the optimal synthesis conditions for Zirconia precursor spherical particles were determined by the orthogonal experiment (L1837):WZrOCl2·H2O=30%, QNH3=60L/h, Pvacuum=0.02MPa, Qair/QNH3=1, aging for 72h. The Zirconia precursor particles synthesized using this optimal process are spherical shape with smooth surface, its average size is about 4μm, and there are scarcely hollow spheres present. Moreover, according to orthogonal experimental results, the concentration of Zirconium oxychloride solution is the main factor affecting the results, and effect of the ammonia gas flow and the system vacuum were little relatively.
     Zirconia powders were obtained via hydrothermal method and calcining precursor spherical particles after dried at room temperature. And Zirconia powders obtained by calcining were better than those obtaining via hydrothermal method, in which the particles were still spherical shape and broken little.
     Finally, zirconia powder were obtained via calcining spherical particles of the precursor dried at room temperature or hydrothermal method. The results, obtained via calcining spherical particles of the precursor dried at room temperature, were better than obtaining via hydrothermal method, in which the particles were still spherical, and only a few were broken.
     Finally, through the above optimal preparation conditions for Zirconia, mesoporous Yttria-stabilized Zirconia spherical particles were prepared as well, marked as ZrYO series (1.5mol% Y2O3 doped) and ZrOY series (3mol% Y2O3 doped), respectively. The post-processing method for the ZrO2/Y2O3 precursor utilizes calcining the precursor spherical particles after dried at room temperature. By the characterizations of TG/DTA, XRD, SEM, TEM and nitrogen gas absorption-desorption, it can be concluded that the two series of ZrO2/Y2O3 particles are all spherical shape and hardly any hollow, whose phase compositions are major tetragonal ZrO2 after calcined at 500-1200℃, and BET surface area is around 34.3887 m2/g.
引文
[1]Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359(22), PP 710-712.
    [2]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.,1992,114(27), pp 10834-10843.
    [3]Huo, Q.; Margolese, D. I.; Feng, P.; et al. Generalized Syntheses of Periodic Surfactant/Inorganic Composite Materials. Nature,1994,368(6469), PP 317-321.
    [4]Zhao, W.; Gu, J. L.; Zhang, L. X.; et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J. Am. Chem. Soc.,2005,127(25), PP 8916-8917.
    [5]Guan, M.; Liu, W.; Shao, Y. L.; et al. Preparation, characterization and adsorption properties studies of 3-(methacryloyloxy)propyltrimethoxysilane modified and polymerized sol-gel mesoporous SBA-15 silica molecular sieves. Microporous Mesoporous Mater.2009,123, PP 193-201
    [6]任瑜,钱林平,岳斌,贺鹤勇.对环氧化反应具有高催化活性的钛硅介孔分子筛的合成.催化学报,2003,24(12),PP 947-950.
    [7]张辉,刘莲云,安振涛,张登君,唐清.ZrO2球的准气相反应合成.化学学报,2005,63(12),PP 1131-1135.
    [8]Liu, X. M.; Lu, G. Q.; Yan, Z. F. Synthesis and Stabilization of Nanocrystalline Zirconia with MSU Mesostructure. J. Phys. Chem. B,2004,108(40), PP 15523-15528.
    [9]Mamak, M.; Coombs, N.; Ozin, G. Self-Assembling Solid Oxide Fuel Cell Materials: Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions. J. Am. Chem. Soc.,2000,122(37), PP 8932-8939.
    [10]Verweij, H. Nanocrystalline and Nanoporous Ceramics. Adv. Mater.1998,10(17), PP 1483-1486.
    [11]Chen, H. R.; Shi, J. L.; Hua, L. Z.; Ruan, M. L.; Yan, D. S. Mater. Parameter control in the synthesis of ordered porous zirconium oxide. Lett.,2001,51, PP 187-193.
    [12]Za'rate, J.; Jua'rez, H.; Contreras, M. E.; Pe'rez, R. Experimental design and results from the preparation of precursory powders of ZrO2(3%Y2O3)/(10-95)%Al2O3 composite. Powder Technol.,2005,159, PP 135-141.
    [13]陈航榕,施剑林,杨勇,李蕾,阮美玲,严东生.钇掺杂介孔氧化锆材料的合成与表征.化学学报,2003,61(9),PP 1441-1443.
    [14]Liu, X. L.; Cui, D. L.; Wang, Q.; Li, Y.; Guo, Y. Preparation of ZrO2 porous nanosolid and its composite fluorescent materials. Mater. Chem. Phys.2007,105, PP 208-212.
    [15]Li, P.; Luo, F.; Wang, X. Y.; Zhou, W. C.; Zhu, D. M. Effect of Y2O3 Content on Microwave Dielectric Properties of Zirconia Ceramics. Rare Metal Mater. Eng.2007, 36(suppl.3), PP 623-626.
    [16]0chando, I. M.; Caceres, D.; Garcia-Lopez, J.; et al. Influence of the yttria content on the mechanical properties of Y2O3-ZrO2 thin films prepared by EB-PVD. Vaccum.2007,81, PP 1457-1461.
    [17]Zhang, H.; An, Z. T.; Li, F.; et al. Synthesis and characterizeation of mesoporous C-ZrO2 microspheres consisting of peanut-like nano-grains. J. Alloys Compd.2008, 464, PP 569-574.
    [18]俞建长,胡胜伟,徐卫军.阴离子表面活性剂辅助模板途径合成介孔结构氧化锆纳米晶.化学学报,2005,63(15),PP 1429-1432.
    [19]朱海涛,刘世权,尹衍升.用两性与非离子混合表面活性剂合成ZrO2介孔材料.无机化学学报,2004,20(11),PP 1284-1288.
    [20]Liu, S. G.; Zhang, X. L.; Li, J. P.; et al. Preparation and application of stabilized mesoporous MgO-ZrO2 solid base. Catal. Commun.2008,9(7), PP 1527-1532.
    [21]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc.,1992,114 (27), PP 10834-10843.
    [22]Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science,1993,261(3), PP 1299-1303.
    [23]Huo, Q. S.; Margolese, D. I.; Ciesla, U.; et al. Generalized Synthesis of Periodic Surfactant Inorganic Composite Materials. Nature,1994,368, PP 317-321.
    [24]张东育. PICA法合成介孔二氧化锆微球的初探.锦州师范学院学报(自然科学版).2002,23(1),PP 25-26.
    [25]Huai, Q. Y.; Zuo, Y. M.. Synthesis of porous titaniaspheres for HPLC by polymerization-induced colloid aggregation (PICA) using tert-n-butyl titanate. J. Anal. Chem.2009,64(2), PP 170-186.
    [26]Liu, X. M.; Yan, Z. F.; Lu, G. Q.. Microstructure and application of mesoporous nanosize zirconia. Chin. Sci. Bull.2004,49(9), PP 975-980.
    [27]Li, M.; Sun, H. Y.; Liu, X. L.; Xu, H. Y.; et al. Preparation of porous boehmite nanosolid and its composite fluorescent materials by a novel hydrothermal hot-press method. Mater. Lett.2006,60, PP 2738-2742.
    [28]Liu, X. L. Preparation of γ-Al2O3 porous nanosolid/fluorescein fluorescent nanocomposites by a simple method. Mater. Sci. Eng. B.2010,175, PP 86-89.
    [29]汤皎宁,靳喜海,高濂.以NH4HCO3为沉淀剂通过共沉淀法合成2Y-TZP纳米粉体.无机材料学报,2003,18(6),PP 1367-1371.
    [30]徐明霞,田玉明,鄂磊,杨强,季惠明,牟诗城.过氧化氢络合沉淀法合成Y-ZrO2纳米粉体.过程工程学报,2004,4(增刊),PP 403-407.
    [31]赵青,常爱民,简家文,巴维真.改性溶胶-凝胶法合成ZrO2纳米粉体及其团聚控制.纳米材料与纳米科技,2003,(5),PP 14-17.
    [32]Song, S. H.; Gu, H. Z.; Tang, X. H.; et al. Production of nano-sized yttria-stabilised zirconia powder by means of sol-gel supercritical fluid drying. J. Mater. Sci.,2005,40(6), PP 1547-1548.
    [33]Ma, T.; Huang, Y.; Yang, J. L.; et al. Preparation of spherical zirconia powder in microemulsion system and its densification behavior. Mater. Des.,2004,25, PP 515-519.
    [34]尧巍华,唐子龙,罗绍华,张中太.相转移分离法合成氧化钇稳定的氧化锆超细粉体.稀有金属材料与工程,2003,32(8),PP 666-669.
    [35]Combemale, L.; Caboche, G.; et al. Microwave synthesis of yttria stabilized zirconia. Mater. Res. Bull.2005,40, PP 529-536.
    [36]Huang, C. Y.; Guo, R. Y.; Tang, Z. L.; Zhang, Z. T. Preparation of zirconia base solid solution nanopowder by exothermal solid-state synthesis. J. Am. Ceram. Soc., 2005,88, PP 1651-1654.
    [37]Farhikhteh, S.; Maghsoudipour, A.; Raissi, B. Synthesis of nanocrystalline YSZ (ZrO2-8Y2O3) powder by polymerized complex method. J. Alloys Compd.2010,491, PP402-405.
    [38]冯柳,魏春城,陈志伟.喷雾干燥法合成ZrO2(3Y)微球.中国陶瓷,2010,46(7),PP31-32.
    [39]Hayashi, H.; Ueda, A.; et al. Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system. J. Solid State Chem.,2009,182, PP 2985-2990.
    [40]Zheng, S.; Gao, L.; Li, W. Preparation and Characterization of nano-scale Y2O3-ZrO2 powder by Heterogeneous precipitation. Key Eng. Mater.,2002,224-226, PP 555-558.
    [41]吴奇,林晓栋,闫俊萍,张智敏.介孔SO42-/ZrO2的合成、表征及性能.精细化工.2009,26(9),PP 878-881.
    [42]刘水刚,黄世勇,魏伟,孙予罕.新型固体碱介孔MgO-ZrO2的合成及催化性能研究.现代化工.2007,27(9),PP 35-37.
    [43]刘岳峰,储伟,瞿芬芬,江成发.甲烷催化燃烧用介孔ZrO2担载CuO催化剂.化学反应工程与工艺.2009,25(3),PP 223-226.
    [44]Aguila G, Gracia F, Cortes J, et al. Effect of Copper Species and the Presence of Reaction Products on the Activity of Methane Oxidation on Supported CuO Catalysts. Applied Catalysis B:Environmental,2008,77(3-4), PP 325-338.
    [45]宋秘钊,张慧君,王征,黎先春,王小如.用作色谱固定相的二氧化锆微球的合成.生命科学仪器.2005,3(4),PP 28-30.
    [46]Zhang, C. M.; Li, C. X.; Yang, J.; Cheng, Z. Y., et al. Tunable Luminescence in Monodisperse Zirconia Spheres. LANGMUIR.2009,25(12), PP 7078-7083.
    [47]杨秀健,施朝淑,陈永虎,陈航榕.纳米介孔ZrO2及其表面修饰的发光性质.发光学报.2003,24(4),PP 407-410.
    [48]肖停,杨超,田熙科.介孔CeO2-ZrO2的合成及吸附水中Cr6+的研究.纳米科技.2009,6(6), PP 11-15.
    [49]姚玉英,化工原理(上册),天津大学出版社,2001,PP 57-58.
    [50]姚玉英,化工原理(上册),天津大学出版社,2001,PP 19-20.
    [51]徐黎明,高玉兰,曹凤兰,李崇慧,陈光.共沉淀法合成Zr/Si-Al复合氧化物载体的研究.工业催化,2007,15(7),PP 66-69.
    [52]汤枫秋,黄校先,张玉峰,郭景坤.纳米氧化锆粉体流变性能的研究.材料科学与工程, 1999,17(1),PP 8-11.
    [53]朱炳辰,化学反应工程(第四版),化学工业出版社,2007,PP 191-192.
    [54]王培铭,许乾慰.材料研究方法.科学出版社,2006,PP 122-123.
    [55]仲维卓,华素坤.晶体生长学.科学出版社,1999,PP 64-172.
    [56]尹衍升,陈守刚,刘英才.氧化锆陶瓷的掺杂稳定及生长动力学.化学工业出版社,2004,PP 8-10.
    [57]徐如人,庞文琴,于吉红,等,分子筛与多空材料化学,科学出版社,2004,PP 130-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700