用户名: 密码: 验证码:
电力系统混沌动力学行为分析与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌理论是目前非线性科学中的重要研究方面,已经渗透到诸多学科和工程领域。随着电力系统规模越来越大,其非线性特点越来越明显,在一定条件下会发生混沌运行行为,表现为无规则的机电振荡,对系统的安全稳定运行构成威胁。论文主要研究混沌理论在电力系统中的应用,具体研究目的:探索电力系统的混沌动力学行为特点、混沌诱发机理、电力系统混沌现象检测方法和消除电力系统中混沌振荡的有效措施。
     论文内容主要包括以下几个部分:
     (1)分析电力系统的非线性动力学行为和它的混沌运行特征。电力系统是典型的非线性动力系统,混沌是非线性动力系统中特有又特殊的一种运行状态。对非线性电力系统的混沌动力学行为分析,属于非线性动力系统分析范畴。论文在分析中,主要应用非线性动力系统相关理论和方法,具体采用了庞加莱相图法、庞加莱截面法、分岔理论、李亚普诺夫指数法和关联维数法等方法和理论,通过绘制相图、计算系统状态特征参数,来判断系统的运行行为(包括混沌现象)。在分析中,采用非线性电力系统模型作为研究对象,利用龙格-库塔积分法,进行数值计算,绘制出系统运行状态仿真图,并计算出一些反应系统状态特点的参量值。分析和仿真结果表明,非线性电力系统具有复杂的动力学行为特征,在一定条件下会产生混沌振荡。
     (2)检测电力系统中的混沌现象。通过对非线性电力系统模型进行数值分析,观察其相图、时序图、相邻轨迹发散或收敛情况,定量计算系统的最大李亚普诺夫指数、关联维数和测度熵等,判断和检测系统混沌现象。在实际电力系统中,精确模型往往无法获得,只能测得某一个或某些状态量的时间序列。论文在上述分析的基础上,采用非线性时间序列分析方法,进行电力系统混沌现象检测。在此过程中,主要采用了非线性时间序列分析中的相空间重构法,其中,嵌入维和时间延迟,用以Taken定理为基础的G-P法和自相关函数法求取,试验用的数据,通过MATLAB仿真获得。仿真显示,重构的相图具有混沌的特性。分析结果表明,采用非线性时间序列分析方法,利用系统某一状态变量的测量值(即时间序列),能够检测电力系统中的混沌现象。
     (3)采取控制措施消除非线性电力系统中的混沌振荡。电力系统中的混沌振荡是有害的,应该采取措施抑制和消除。控制混沌的方法有多种,优、缺点和适用条件各不相同。论文在第四章,采用微分几何方法,设计电力系统的镇定控制器和输出渐近跟踪控制器,达到消除系统混沌振荡的目的。该方法基本路线为:对系统非线性模型通过微分同胚进行坐标变换,再采用状态反馈,完成对电力系统非线性模型的精确线性化处理,之后,采用最优控制方法,设计控制器。论文在此基础上,又通过调整控制方法,设计了电力系统的输出渐近跟踪控制器。分析和仿真结果显示,基于微分几何方法设计的控制器,不仅能够消除混沌振荡,而且能够把系统控制到任意给定轨道上,控制效果明显优于传统近似线性化方法。
     论文在第五章,采用滑模变结构控制方法,设计了混沌电力系统的输出渐近跟踪控制器。滑模变结构控制的主要缺点是,在滑动模态中会出现高频抖振,论文为此进行了方法上的改进,改进一:采用动态切换函数和准滑动模态相结合的控制方法设计控制器,消除抖振;改进二:在滑模变结构控制器设计中,加入模糊控制规则,并以指数趋进率代替等速趋进率,消除抖振。理论分析和数值仿真结果证明,基于以上两种方法设计的滑模变结构控制器,能够消除电力系统中的混沌振荡,使系统输出渐近跟踪预期给定信号,并且能够有效地消除滑动模态中的高频抖振,提高跟踪速度,控制效果明显优于常规滑模变结构控制器。
Chaos theory is an important aspect of non-linear research, and has infiltrated a number of disciplines and engineering fields. With the increasing scale of power systems, the nonlinear characteristics are more and more obvious, under certain conditions there will even be chaotic behavior, appears as irregular electromechanical oscillations, constituting a threat to the system. The thesis concentrates on chaos theory in power system applications. The specific purpose of the study: To explore behavior characteristics of the chaotic dynamics in the power system, to study inception mechanism of chaos, chaotic detection in power system and effective measures to elimination of chaotic oscillation in power system. The Thesis includes following sections:
     (1) The thesis analyzes nonlinear dynamic behavior of power system and its operation characteristics of chaos. Power system is a typical nonlinear dynamic system; chaos is a unique and special operation in nonlinear dynamic system. Analysis of chaotic behavior for Power system is the scope of nonlinear dynamic analysis. Nonlinear dynamical systems theory and methods are used in the thesis, especially with the use of the phase diagram and the poincar section method, bifurcation theory, lyapunov exponent method and correlation dimension method. Through drawing phase diagram and calculating state characteristic parameters of the system, the running behavior (including the phenomenon of chaos) of the operating system is determined. With the use of non-linear power system model and numerical calculation based on the Runge-Kutta method, simulation figure is drawled and eigen value is calculated. Analysis and simulation results show that the power system under nonlinear model with different control parameters, shows complex dynamic behavior, even will produce chaotic oscillations under certain conditions.
     (2) The thesis detects chaos in power system. Through numerical analysis of nonlinear power system model, and observing of the phase diagram, timing diagram, divergence and convergence of adjacent tracks, as well as the quantitative calculation of the maximum Lyapunov exponent, correlation dimension and the measure of entropy, the Thesis judges and detects chaotic in system. However, the actual power system, are often unable to obtain accurate models can only obtain one or some of the time series of state variables. The thesis in the above analysis, detects chaotic phenomena of power system based on nonlinear time series analysis method. In this process, mainly the non-linear time series phase space reconstruction method is deployed. Embedding dimension and delay time are determined by G-P method based on Taken theorem and auto-correlation function method. MATLAB simulation tools are used for validation and experimentation, to map out the phase diagram based on a specific state of the power system time-series. The simulation results show that reconstruction of the phase diagram is with the characteristics of chaos, and can to detect the phenomenon of chaos using non-linear time series analysis method, and measured value of state variables (i.e. time series) of power system.
     (3) The thesis takes effective control measures to curb or eliminate the chaotic oscillations in the non-linear power system. Chaos oscillation in the power system is harmful and should take measures to suppress and eliminate. There have been a lot of chaos control methods, and each has its own advantages and disadvantages and different application conditions. ChapterⅣin the thesis using differential geometry method, designs nonlinear power system controllers and systems asymptotic tracking output controller to eliminate the chaotic oscillations. The basic idea of the method is: take a diffeomorphism mapping and coordinate transformation to the nonlinear model, to get exact linearization model of the power system, with the state feedback. At last, optimal control method is adopted to design the chaos controller of the power system. Asymptotic tracking output controller is designed on this basis, by adjusting the control rate. The theoretical analysis and simulation results show that, based on the differential geometry of the chaotic controller not only can eliminate the chaotic oscillation, but also be able to control the system to any given orbit, the effect was better than the traditional method of linear approximation.
     ChapterⅤin the thesis designs asymptotic tracking output controller of the chaos power systems using sliding mode control method. The main drawback of sliding mode variable structure is that there will be high-frequency chattering. The thesis improved the algorithm, improvement 1: Dynamic switching function and the quasi-sliding mode control method of combining are designed to eliminate the high-frequency chattering ; improvement 2: Fuzzy control rules are introduced in the sliding mode variable structure controller design and isokinetic convergence rate is replaced by exponential convergence rate to eliminate the high-frequency chattering. The theoretical analysis and numerical simulation results show that two methods based on the above sliding mode controllers can eliminate the chaotic oscillation, make the system track with a given signal, effectively eliminate the high-frequency chattering appearing in the sliding mode, and can improve the tracking speed, control effect is better than conventional sliding mode controller.
引文
1.晁红敏,胡跃明.2001.动态滑模控制及其在移动机器人输出跟踪中的应用.控制与决策,16(5):565-568
    2.曹建福,韩崇昭,方洋旺.2006.非线性理论与应用.西安:西安交通大学出版社
    3.曹杰.2001.非线性动力系统数学方法.北京:气象出版社
    4.陈冲.2000.感应电动机系统的能控性与能观性分析.控制理论与应用,17(4):486-488
    5.陈铿,韩伯棠.2005.混沌时间序列分析中的相空间重构技术.计算机科学,32(4):67-70
    6.陈奉苏.2006.混沌控制及其应用.北京:中国电力出版社
    7.陈省身 陈维桓.2003.微分几何讲义(第二版).北京:北京大学出版社
    8.程代展.1992.非线性系统的几何理论.北京:科学出版社
    9.邓兰松,沈菲.2004.非线性时序的混沌特性分析与预测,37(11):1022-1025
    10.付冲,马希敏,李晖等.2006.复杂系统混沌行为判别与混沌时间序列的分形建模.南京航空航天大学学报,38(Suppl.):34-37
    11.高为炳.1996.变结构控制的理论及设计方法.北京:科学出版社
    12.郭雷.2005控制理论导论。北京:科学出版社
    13.韩敏.2007.混沌时间序列预测理论与方法.北京:中国水利水电出版社
    14.韩祯祥.2006.电力系统分析.浙江:浙江大学出版社
    15.郝柏林.1983.分岔、混沌、奇怪吸引子、湍流及其他-关于确定论系统的内在随机性.物理学进展,3(3):329-416
    16.贺昱曜,闫茂德.2007.非线性理论及应用.西安:西安电子科技大学出版社
    17.洪奕光,程代展.2005.非线性系统的分析与控制.北京:科学出版社
    18.胡跃明.2005.非线性控制系统理论与应用.北京:国防工业出版社
    19.黄洁.2005.混沌及其应用.武汉:武汉大学出版社
    20.黄润生.2000.混沌及其应用.武汉:武汉大学出版社
    21.黄忠霖,黄京.2004.MATLAB符号运算及其应用.北京:国防工业出版社
    22.贾宏杰,余贻鑫,李鹏等.2003.电力系统混沌现象与不同失稳模式之间的关系.中国电机工程学报,23(2):1-4
    23.李天云,刘自发.2000.电力系统负荷的混沌特性及预测.继电器,(11):11-13
    24.李文磊.2007.不确定混沌电力系统的鲁棒自适应跟踪控制.电机与控制学报,11(2):170-173
    25.李卫东,王秀岩.2009.控制技术综述.自动化技术与应用,28(1):1-5
    26.李尧亭,蔡诗东.1996.混沌和李亚普诺夫特征指数.物理,25(5):282-286
    27.李乙杰,李锐华,孙耀杰等.2005.基于边界层法的电磁轴承滑模变结构控制研究.系统仿真学报,17(8):1962-1966
    28.刘豹.2006.现代控制理论(第三版):北京:机械工业出版社
    29.刘秉正,彭建华.2004.非线性动力系统.北京:高等教育出版社
    30.刘金琨.2005.滑模变结构控制matlab仿真.北京:清华大学出版社
    31.刘金琨,孙富春.2007.变结构控制理论及其算法研究与进展.控制理论与应用,24(3):407-718
    32.刘韶峰.高金峰.李鹏.2004.基于Walve负荷模型的励磁系统多参数分岔分析.中国电机工程学报,(12):15-19
    33.刘宗华.2006.混沌动力学基础及其应用.北京:高等教育出版社
    34.柳明,吴捷.2002.微扰电力系统中的次谐及混沌轨道.电力系统自动化,25(15):9-14
    35.卢强,孙元章.1993电力系统非线性控制.北京:科学出版社
    36.吕金虎,陆君安,陈士华.2002.混沌时间序列分析及其应用.武汉:武汉大学出版社
    37.罗定军,滕利邦.1990.微分动力系统导引.北京:高等教育出版.
    38.马海军,陈邓恕.2000.混沌时序相空间重构的分析和应用研究.应用数学和力学,21(11):1117-1124
    39.彭志伟,胡国根,韩祯祥.2005.基于分义理论的电力系统电压稳定性分析.北京:中国电力出版社
    40.盛昭瀚,马海军.2001.非线性动力系统分析引论.北京:科学出版社
    41.史忠科.2008.线性系统理论.北京:科学出版社
    42.宋运忠,赵光宙,齐冬莲.2006.电力系统混沌振荡的自适应补偿控制.电力系统及其自动化学报,18(4):5-8
    43.孙元章,焦晓红,申铁龙.2007.电力系统非线性鲁棒控制.北京:清华大学出版社
    44.盛昭瀚,马海军.2001.非线性动力系统分析引论.科学出版社
    45.谭文.2008.混沌系统的模糊神经网络控制理论与方法.北京:科学出版社
    46.谭文,王耀南,刘祖润等.2002.非线性系统混沌运动的神经网络控制.物理学报,(11):54-57
    47.谭文,王耀南.2004.不确定混沌系统的直接自适应模糊神经网络控制.物理学报,(12):67-71
    48.田玉楚.1997.混沌时间序列的时滞判定.物理学报,(203):88-94
    49.王奔,庄圣贤译.2005.非线性控制系统.北京:电子工业出版社
    50.王丰尧.1998.滑膜变结构控制.北京:机械工业出版社
    51.王改云.2002.Lorenz混沌系统的控制研究.电子测量与仪器学报,(3):61-65
    52.王庆红,周双喜.2003.多时标电力系统模型分岔现象的理论基础及其关系分析.中国电机工程学报,1:23-27
    53.王庆红,周双喜.2003.电力系统微分代数模型奇异诱导分岔分析.中国电机工程学报,(7):30-34
    54.王庆红,周双喜.胡国根.2004.电力系统静态分岔及其控制.电网技术,(13):27-31
    55.王瑞光,于熙龄,陈式刚.2001.混沌的控制、同步与利用.北京:国防工业出版社
    56.王兴元.2003.复杂非线性系统中的混沌.北京:电子工业出版社
    57.向小东,郭耀煌.2001.混沌时间序列最大Lvapunov指数的计算.预测,20(5):76-78
    58.薛禹胜,周海强,顾晓荣.2002.电力系统分岔与混沌研究述评,电子系统自动化,26(16):9-15
    59.杨黎明.2001.MATLAB控制系统设计.北京:国防工业出版社
    60.杨永发,徐勇.2006.向量分析与场论.天津:南开大学出版社,18(4):5-8
    61.姚琼荟,黄继起,吴汉松.1997.变结构控制系统.重庆:重庆大学出版社
    62.姚郁,贺风华译.2006.非线性系统设计.北京:电子工业出版社
    63.于双和,张文义,傅佩琛.2001.无抖振离散准滑模控制.控制与决策,16(3):380-382
    64.翟长连,吴智铭.2000.一种离散时间系统的变结构控制方法.上海交通大学学报,34(5):719-722
    65.张锦炎,钱敏.2000.微分动力系统导引.北京:北京大学出版社
    66.张强,王宝华.2002.基于变量反馈的电力系统混沌振荡控制.电力自动化设备,22(10):15-18
    67.张强.2002.电力系统非线性振荡研究.电力自动化设备,22(5):11-13
    68.张强,王宝华,杨成梧.2004.电力系统倍周期分岔分析.电力自动化设备,24(11):6-9
    69.张强,王宝华,杨成梧等.2004.电力系统混沌振荡的自适应Backstepping控制.电力自动化设备,23(11):9-12
    70.张琪昌.2005.分岔与混沌理论及应用.天津:天津大学出版社
    71.张胜,刘红星,高敦堂.2002.NN非线性时间序列预测模型输入延迟τ的确定.东南大学学报(自然科学版),32(6):905-908
    72.周双喜.2004.电力系统电压稳定性及其控制.北京:中国电力出版社
    73.朱志宇,蔡立勇,刘维亭.2008.基于Meln ikov方法的电力系统混沌振荡参数计算.电力系统及其自动化学报,20(3):41-45
    74.张敏,周少武,罗安.2001.多机电力系统的能控性与能观性.湘潭矿业学院学报,16(4)-84-86
    75.杨儒珊,康惠骏,冯勇.2006.永磁同步电动机系统的能控性与能观性分析.上海大学学报(自然科学版),11(3):234-237
    76.张化光,王智良,黄伟.2003.混沌系统的控制理论.沈阳:东北大学出版社
    77.赵光宙,齐冬莲.2001.混沌控制理论与应用.电工技术学报,16(5):77-81
    78.BOLIVAR M.R.,ZINOBER A.S.I.,SIRA R.H.1997.Dynamic Adaptive sliding mode output tracking control of a class of nonlinera systems.Int J of Robust and Nonlinear Control,7(4):387-405
    79.Cao L.Y.1997.Practival method for determing the minimum embedding dimension of a scalar time series.Physica D,(110):43-50
    80.Cao L.Y.,Mees A.,Judd K.1998.Dynamics from multivariate time series.Physical D-Nonliear Phenomena,(121):75-88
    81.CHANG Y.F.,CHEN B.S.1995.A robust performance variable structure PI/P control design for high precise positioning control systems.Int J of Machine Tool sand Manufacture,35(12):1649-1667
    82.Chiang H.D.,Liu C.C.1993.Chaos in a simple power system.IEEE-PWRS,8(3):1407-1417.
    83.ERTUGRULM.,KAYNAKO.Neuro.2000.Sliding Mode Control of Robotic Manipulators.Mechatronics,10(1-2):239-263
    84.Feigenbaum M.J.1978.Quantitative universality for a class of nonliear transformations J.Stat Phys,19(1):25-52
    85.Grond F.,Dibner H.H.,Sahle S.2003.A robust locally interpretable algorithm for Lyapunov exponents.Chaos Solitons and Fractals,16(5):841-852.
    86.Grassberger P..Procacia I.1983 Measuring the strangeness of strange attractors.Physica D,(9):189-208
    87.Gonzales J.A.,Reyes L.I.,Guerrero L.E.2001.Exact solutions to chaotic and stochastic system.Chaos,(11):1-15
    88.HA Q.P.,NGUYEN Q.H.,RYE D.C.2001.Fuzzy sliding-mode controllers with applications.IEEE Transon Industrial Electronics,48(1):38-41
    89.Hao B.L.Chaos.1984.Singapore:Word Scientific
    90.Hermann R.,Krener A.2003.Nonlinear controllability and observability.Automatic Control,IEEE Control Systems Socienty,22(5):728-740
    91.H.P.Ren,D.Liu,J.Li.2003.Delay feedback control of chaos in permanent magnet synchronous motor system.Proceeding of the CSEE,23 (6) :175-178
    92.HUANG S.J.,HUANG K.S.,CHIOU K.C.2003.Development and application of a novel radial basis function sliding mode controller.Mechatronics,13(4):313-C329
    93.JIANG K.,ZHANG J.G.,CHEN Z.M.2002.A new approach for the sliding mode control based on fuzzy reaching law.Proc of the 4th World Congress on Intelligent Control and Automation.Shanghai,China: Press of University of Science and Technology of China,(6):656-660
    94.KACHROO P.,TOMIZUKA M.1996.Chattering reduction and errorcon-vergence in the sliding-mode control of a class of nonlinear systems.IEEE Transon Automatic Control,41(7):1063-1068.
    95.KANG B.P.,JU J.L.1997.Sliding mode controller with filtered signal for robot manipulators using virtual plant/controller.Mechatronics,7(3):277-286
    96.Kennel M.B.,Brown R.,Abarbanel H.D.J.1992.Determing embedding dimension for phase-space reconstruction using a geometrical construction.Phys Rev A,45(3):3403-3411
    97.Kim H.S? Eykholt R.,Salas J.D.1999.Nonlinear dynamics delay times ans embedding windows.Physica D,(127):48-60
    98.Kugiumtzis D.,Lingarde O.C.,Christophersen N.1998.Regularized local prediction of chaotic time series.Physica D.,112(3):344-360
    99.Li T.Y.,Yorke J.A.1975 Period three implies chaos.America Mathematics Monthly,(82) :985-992 100.Lorenz E.N.1963.Deterministic nonperiodic flow.Journal of Atmos.Sci,(20) :130-141
    101.Mandelbort B.B.1982.The fractal geometry of nature.San Fransisco:Freeman W.H 102.May R.M.1976.Simple mathematical models with very complicated dynamics.Natuer,(261) :459-461
    103.O'Neill-Carrillo E.,Heydt G.T,Kostelich E.J.1999.Nonlinear deterministic modeling of highly varying loads, IEEE Trans on Power Delivery,14(2):537-542
    104.O'Neill-Carrillo E,Heydt G T,Kostelich E J.1999.Chaotic Phenomenain Power Systems Detection and Applications Electric Machines and Power Systems,(27) :79-91
    105.Ott.2005.动力系统中的混沌(英文版).北京:世界图书出版公司
    106.Ott E., Grebogi C, Yorke J.1990 .A.Controlling Chaos.Phys.Rev.Lett.,64(11):1196-1199
    107.Pecora L.M.,Carroll T.L.1990.Synchronization in chaotic systems.Phys.Rev.Lett.,(64) :821-827
    108.Pyragas K.1992.Continuouse control of chaos by self-controlling feedback.Physics Letters A,(44D):407-421
    109.RYU S.H.,PARK J.H.2001.Auto-tuning of sliding mode control parameters using fuzzy logic .Proc of American Control Conf.Arlington,USA:IEEE Press,(6):618-623
    110.Sivakumar B.2000.Chaos theory in hydrology important issues and interpretation.Journal of Hydrology,227(l~4):l-20
    111.SIRA R.H.,LLANES S.O.1993.Adaptive dynamical sliding mode control via backstepping.Procof the 32nd IEEE Confon Decisionand Control.SanAntonio,USA: IEEE Press,(12): 1422-1427
    112.SLOTINE J.J.,SASTRY S.S.1983.Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator J..Int J Control,38(2):465-C492
    113.SU W.C.,DAKUNOV S.V.,OZGUNER U.1993.Sliding mode With chattering reduction in sampled data systems.Procof the 32nd IEEE Conf on Decision and Control.San Antonio,USA:IEEE Press,(12):2452-2457
    114.Tan C.W.,Varghese M.,Varaiya P.1995.Bifurcation,chaos,and voltage collapse in power system.Proceedings of the IEEE,33(11): 1484-1495.
    115.UTKIN V.I.1992.Sliding Modes in Control Optimization.Berlin:Spring-Verlag
    116.Welch P.D.1967.The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short,modified periodograms.IEEE Trans Audio and Electroacoust,15(2):70-73
    117.Wolf A.,Swift J.B.,Swinney H.L.1985.Determining lyapunov exponents from time seres.Physica D,6(2):285-371
    118.Xian Liu,Jinzhi Wang ,Lin Huang.2006 .Chaos Control of Four Order Chua's Circuit.Proceedings of the 25~(th) Chinese Control Conference 7-11 August,Harbin,Heilongjiang: 227-232
    119.Yu Y.X.,Jia H.J.,Li P.2002.Power system instability and choas.14~(th) PSCC,Sevilla,24-24 June,(2):1-7
    120.Zhuang K.Y,Su H.Y,Chu J.2000.Globally stable robust tracking of uncertain systems via fuzzy integral sliding mode control .WCICA2000.Hefei,China:Press of University of Science and Technology of China,(6):1827-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700