应用于高效片上升压变换器的准滑模控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
升压变换器是现代电子系统中重要的基本电源转换电路,被广泛应用于固态照明、高压偏置等场合。尤其是由于现代电子系统越来越注重环保和节能理念,对于高转换效率和无污染的要求催生了用固态照明替代传统含汞灯具照明的发展趋势。提高升压变换器的转换效率和集成度对于设计节能环保的电子系统具有重要意义。
     基于线性化模型,脉冲宽度调制控制的升压变换电路需要设计复杂的补偿环路以实现系统的稳定,这也就意味着较多的补偿元件和更高的成本。此外在低负载下,脉冲宽度调制控制由于开关频率的恒定,其转换效率也较低。相对线性化控制,采用滑模控制的开关变换器无需环路补偿,且具有良好的动态特性和鲁棒性。升压变换电路由于本身拓扑的原因,其电感电流在输出非连续,无法像降压变换器一样方便地实现迟滞滑模控制。因此根据升压电路的特点,提出了自适应开通时间准滑模控制方法。该控制方法能使升压电路在低负载下自动工作于脉冲宽度调制模式,提高了整体转换效率。
     基于两维相平面分析,推导了自适应开通时间控制的稳定条件。设计的自适应开通时间能依据输入和输出电压自适应改变,使变换器在电感连续导通模式下的开关频率保持恒定以控制输出电压纹波。在改进反馈结构后,功率级表现为电压控制电压源,可用于高调光比的大功率发光二极管驱动电路设计。
     同时,针对新型低压电池(如燃料电池)低输出电压的特点,在自适应开通时间控制基础上,提出了预测关断-开通时间准滑模控制。该控制方法可以实现更高的最大占空比以提高升压比。采用这种控制方法,对带有功率管集成的通用型片上升压电压调节器进行了实现。与电流模式控制的参考电路相比,提出的电路具有更好的瞬态响应和更高的低载转换效率。
     为了进一步提高升压电压调节器的集成度,降低外围元件数,还探讨了片上电流检测、过流保护和补偿网络等的电路技术。给出了预测关断-开通时间控制片上升压电压调节器的单片化设计,并进行了仿真验证。
Boost converter is a basic power converter in modern electronic systems. It is widely adopted in solid-state lighting and high voltage biasing. The urgent demands of modern electronic systems on energy saving and environmental protection make the solid-state lighting emerge to replace conventional mercury based lamps. Thus, improving the conversion efficiency and increasing the integration of boost converter are important to save energy and drive the solid-state lighting industry.
     To stabilize traditional PWM controlled boost power converter, complex compensation networks are always required, which means extra external components as well as higher system cost. Besides, the conversion efficiency is degraded during light load condition due to fixed frequency architecture. Sliding mode controlled power converters have the merits of no loop compensation requirement and better dynamic response compared with conventional linear mode controlled ones. However, the output current of the boost converter is discontinuous, and as a result, conventional hysteretic sliding mode control is not suitable. Therefore, adaptive on-time control(AOT), a quasi sliding (QS) mode control, was proposed in this dissertation. With that, the converter runs in efficiency improved pulse frequency modulation (PFM) automatically during light load operation.
     Based on the two dimensional phase plane analysis, the criterion to stabilize the AOT-QS boost converter was derived; a simple adaptive on-time generator was proposed to make the power converter operate in quasi fixed frequency under inductor continuous conduction mode so as to control the output voltage ripple. After improving its feedback structure, AOT-QS boost converter is designed to be a voltage controlled voltage source. With that, a high dimming ratio high power LED drive controller was designed.
     Considering the emergence of low voltage batteries like fuel cells, projected off-time on-time quasi sliding mode (PFT-QS) control is proposed. With that, bigger maximum duty cycle can be realized compared with AOT-QS control. Its stability criterion and loop transfer function were derived. A general-purpose boost regulator with on-chip DMOS was implemented using the proposed PFT-QS control method. Test results show the proposed on-chip boost regulator outperforms the conventional current mode controlled one in aspects of conversion efficiency and load transient response.
     In order to further increase the integration level, circuit techniques like on-chip compensation, current sensing, over current limit were also discussed. Adopting these circuits, the proposed high integration PFT-QS boost regulator was designed, which integrated the components as more as possible on the chip besides the power devices and feedback network. The final boost regulator design was verified by Spice simulation.
引文
[1]. Susie, I.,Myson, R.-B.,2006 Analog ICs.2006, Databeans Incorporated.
    [2]. Susie, I.,Myson, R.-B.,2006 Analog Power ICs.2006, Databeans Incorporated.
    [3]. 赛迪顾问.中国电源管理芯片市场现状与趋势.2008 [Accessed:10/4/09];Availablefrom:http://www.ccidconsulting.com/search/content.asp?Content id=15378.
    [4]. Xiao, J., Peterchev, A.V., Zhang, J.,Sanders, S.R., A 4-μa quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications. IEEE Journal of Solid-State Circuits,2004.39(12):p.2342-2348.
    [5]. Chen, K.-H., Chang, C.-J.,Liu, T.-H., Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation. IEEE Transactions on Power Electronics,2008.23(1):p.180-188.
    [6]. 章丹艳,用于现代电源系统的若干关键控制芯片研究与设计[博士论文],杭州,浙江大学,2008
    [7]. Dyer, T., McGinty, J., Strachan, A.,Bulucea, C. Monolithic Integration of Trench Vertical DMOS(VDMOS) Power Transistors into a BCD Process. in Proceedings of the 17th international Symposium on Power Semiconductor Devices and ICs.2005. Snata Barbara, CA.
    [8]. 杨银堂,朱海刚,BCD集成电路技术的研究与进展.微电子学,2006.36(3):p.315-319.
    [9]. GEEA, Product Sheet, GEEA Criteria 2007:External Power Supplies, Portable Personal Equipment, Battery Chargers, in Denmark.2007.
    [10]. Chang, N., Choi, I.,Shim, H., DLS:Dynamic Backlight Luminance Scaling of Liquid Crystal Display. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2004.12(8):p. 837-846.
    [11].赵科,罗新宇,崔向中,夏天,鱼志坚,赵春雷,何涛,庄卫东,CCFL荧光粉的现状及其发展趋势.稀有金属,2008.32(2):p.245-251.
    [12].常军,杨东升,孙智慧,翁志成,姜会林,任涛,应用在大尺寸LCD背光照明的LED元件设计.发光学报,2008.29(1):p.195-199.
    [13]. Zhao, M., Wu, X., Han, S., Deng, L., Yan, D.,Yan, X., Research and Design of an On-Chip High Efficiency Dual-Output Charge Pump. Journal of Semiconductors,2008.29(7):p.1305-1312.
    [14]. Wang, C.-C.,Wu, J.-c., Efficiency Improvement in Charge Pump Circuits. IEEE Journal of Solid-State Circuits,1997.32(6):p.852-860.
    [15]. Wang, C.-C.,Wu, J.-c., Efficiency Improvement in Charge Pump Circuits. IEEE JOURNAL OF SOLID-STATE-CIRCUITS,1997.32(6):p.852-860.
    [16]. Siu, M., Mok, P.K.T., Leung, K.N., Lam, Y.H.,Ki, W.-H., A voltage-mode PWM buck regulator with end-point prediction. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2006. 53(4):p.294-298.
    [17]. Lee, C.F.,Mok, P.K.T., A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE Journal of Solid-State Circuits,2004.39(1):p.3-14.
    [18]. Tso, C.-H.,Wu, J.-C., A Ripple Control Buck Regulator With Fixed Output Frequency. IEEE Power Electronics Letters,2003.1(3):p.61-63.
    [19]. Su, F., Ki, W.-H.,Tsui, C.-Y., Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications. IEEE Journal of Solid-State Circuits,2008.43(4):p.815-812.
    [20]. Ling, L.H.-S.,2007.Appratus and method for flywheel current injection for a regulator,US patent 7221134.
    [21]. Li, Y., Lai, X., Yuan, B., Jia, X., Zhang, W.,Ye, Q., Design and implementation of a buck DC-DC controller with adaptive on-time control Chinese Journal of Semiconductors,2008.29(7):p. 1396-1402.
    [22]. Middlebrook, R.D.,Cuk, S. A General Unified Approach to Modelling Switching-Converter Power Stages. in IEEE Power Electronics Specialists Conference.1976. Cleveland, OH.
    [23]. Sable, D.M., Cho, B.H.,Ridley, R.B. Elimination of the positive zero in fixed freqeuncy boost and flyback converters. in Applied Power Electronics Conference and Exposition,1990.1990. LA, CA, USA.
    [24]. Ridley, R.B., A new, continuous-time model for current-mode control [power convertors]. IEEE Transactions on Power Electronics,1991.6(2):p.271-280.
    [25]. Ridley, R.B.,2000. Current mode or Voltage mode? Availble from:apeclab.hanyang.ac.kr/upload/download.asp?filename=Current%20Mode%5B1%5D.pdf
    [26]. Keskar, N.A.,Rincon-Mora, G.A., A Fast, Sigma-Delta(ΣΔ) Boost DC-DC Converter Tolerant to Wide LC Filter Variations. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2008. 55(2):p.198-202.
    [27]. Cardoso, B.J., Moreira, A.F., Menezes, B.R.,Cortizo, P.C. Analysis of switching frequency reduction methods applied to sliding mode controlled DC-DC converters. in IEEE Applied Power Electronics Conference and Exposition.1992. Boston, MA, USA.
    [28]. Song, T.-T.,Chung, H.S.-h., Boundary Control of Boost Converters Using State-Energy Plane. IEEE Transactions on Power Electronics,2008.23(2):p.551-563.
    [29]. Nabeshima, T., Sato, T., Nishijima, K.,Yoshida, S. A novel control method of boost and buck-boost converters with a hysteretic PWM controller, in 2005 European Conference on Power Electronics and Applications 2005.
    [30]. Pullen, S.,Groom, T.J.,2006.Constant On-Time Controller for A Buck Converter,US Patent 7019504B2.
    [31]. Wong, H.-T.,Vinn, C.L.,1998.Constant On-Time Architecture for Switching Regulators,US Patent 5747976.
    [32]. Burns, W.W.,Wilson, T.G., State Trajectories Used to Observe and Control DC-to-DC Converters. IEEE Transactions on Aerospace and Electronic Systems,1976. AES-12(6):p.706-717.
    [33]. Erickson, R.W.,Maksimovic, D., Fundamentals of power electronics.2nd ed.2001, Norwell, Massachusetts:Kluwer Academic Publishers.
    [34]. Zaitsu, R., Voltage Mode Boost Converter Small Signal Control Loop Analysis Using the TPS61030.2009, Texas Instruments.
    [35].赵梦恋,吴晓波,汤俊斐,张毅,严晓浪,阀控密封铅酸蓄电池充电控制集成电路设计.浙江大学学报(工学版),2008.42(9):p.1606-1610.
    [36]. Maksimovic, D., Jang, Y.,Erickson, R.W., Nonlinear-carrier control for high-power-factor boost rectifiers. IEEE Transactions on Power Electronics,1996.11(4):p.578-584.
    [37]. Zane, R.,Maksimovic, D., Nonlinear-carrier control for high power factor rectifiers based on up-down switching converters IEEE Transactions on Power Electronics,1998.13(2):p. 213-221.
    [38].张占松,蔡宣三,开关电源的原理与设计.1998,北京:电子工业出版社.
    [39].郜小茹,APFC预调节器芯片的研究与设计[硕士论文],杭州,浙江大学,2005
    [40]. Lloyd, D.,1990. High power factor switching preregulator design optimization. [Cited:2005-2-21]; Availble from:http://focus.ti.com/lit/ml/slup093/slup093.pdf.
    [41]. Brokaw, A.P., A simple three-terminal IC bandgap reference. IEEE Journal of Solid-State Circuits,1974.9(6):p.388-393.
    [42]. Widlar, R.J., New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits, 1971.6(1):p.2-7.
    [43]. Gray, P.R., Hurst, P.J., Lewis, S.H.,Meyer, R.G.,模拟集成电路的分析与设计.2005,北京:高等教育出版社.
    [44]. Deisch, C. Simple Switch Control Method Changes Power Converter into a Current Source. in IEEE Power Electronics Specialists Conference,1978 Record.1978.
    [45]. Lu, J.,Wu, X., A Novel Piecewise Linear Slope Compensation Circuit in Peak Current Mode Control, in IEEE Conference on Electron Devices and Solid-State Circuits,2007.2007.
    [46]. Ye, Q., Lai, X., Li, Y., Yuan, B.,Chen, F., A Piecewise Linear Slope Compensation Circuit for DC-DC Converters. Chinese Journal of Semiconductors,2008.29(2):p.281-287.
    [47].张黎,丘水生,比例积分滑模控制Buck变换器分析与实现.电力电子技术,2005.39(2):p.26-28.
    [48]. Spiazzi, G., Matavelli, P.,Rossetto, L.,1997. SLIDING MODE CONTROL OF DC-DC CONVERTERS. [Cited:12/04/09]; Availble from:http://www.dei.unipd.it/~pel/Articoli/1997/Cobep/Cobep97.pdf.
    [49]. Sira-Ramires, H.,Rios-Bolivar, M., Sliding mode control of DC-to-DC power converters via extended linearization. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1994.
    [50]. Mattavelli, P., Rossetto, L.,Spiazzi, G. Small-signal analysis of DC-DC converters with sliding mode control. in 1995 Applied Power Electronics Conference.1995. Dallas, TX, USA.
    [51]. Tan, S.-C., Lai, Y.M.Tse, C.K., Implementation of Pulse-width-Modulation Based Sliding Mode Controller for Boost Converters. IEEE Transactions on Power Electronics,2006.3(4):p. 130-135.
    [52]. Tan, S.-C., Lai, Y.M., Cheung, M.K.H.,Tse, C.K., On the practical design of a sliding mode voltage controlled buck converter. IEEE Transactions on Power Electronics,2005.20(2):p. 425-437.
    [53]. Tan, S.-C., Lai, Y.M., Tse, C.K.,Cheung, M.K.H., A fixed-frequency pulse width modulation based quasi-sliding mode controller for buck converters. IEEE Transactions on Power Electronics,2005.20(6):p.1379-1392.
    [54]. Szepesi, T., Stabilizing the Frequency of Hysteretic Current-Mode DC/DC Converter. IEEE Transactions on Power Electronics,1987.2(4):p.302-312.
    [55]. Skelton, D.J.,Miftakhutdinov, R.K.,2000.Hysteretic regulator and control method having switching frequency independent from output filter,US Patent 6147478.
    [56]. Nabeshima, T., Sato, T., Nishijima, K.,Onda, K., Hysteretic PWM control method for all types of DC-to-DC converters, in Telecommunications Energy Conference,2007.2007.
    [57]. LM3100,2007. LM3100 Datasheet. [Cited:http://www.national.com/pf/LM/LM3100.html]; Availble
    [58]. Tan, S.-C., Lai, Y.M.,Tse, C.K., General Design Issues of Sliding-Mode Controllers in DC-DC Converters. IEEE Transactions on Industrial Electronics, Mar.2008.55(3):p.1160-1174.
    [59]. Li, P., Bhatia, D., Xue, L.,Bashirullah, R., A 90-240MHz Hysteretic Controlled DC-DC Buck Converter with Digital PLL Frequency Locking, in IEEE 2008 Custom Integrated Circtuis Conference (CICC).2008.
    [60]. Flymn, M.P.,Lidholm, S.U., A 1.2um CMOS Current-Controlled Oscillator. IEEE Journal of Solid-State Circuits,1992.27(7):p.982-987.
    [61]. Zheludev, N., The Life and Times of the LED-a 100-Year History. Nature Photonics,2007.1(4): p.189-192.
    [62]. LEMELSON-MIT-PROGRAM. Inventor of Long-Lasting, Low-Heat Light Source Awarded $500,000 LEMELSON-MIT Prize for Invention.2004 [Accessed:11/04/09];Available from:http://web.mit.edu/invent/n-nressreleases/n-press-04LMP.html#ton
    [63]. Wu, H., Zhang, X., Guo, C., Xu, J., Wu, M.,Su, Q., Three-Band White Light From InGaN-Based Blue LED Chip Precoated With Green/Red Phosphors. IEEE Photonics Technology Letters, 2005.17(6):p.1160-1162.
    [64]. Krames, M.R., Shchekin, O.B., Mueller-Mach, R., Mueller, G.O., Zhou, L., Harbers, G,Craford, M.G., Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. Journal of Display Technology,2007.3(2):p.160-175.
    [65].沈培宏,白光LED照明技术进展及产业和市场现状.光电技术,2005.46(4):p.1-10.
    [66]. Ookubo, S. Nichia Unveils White LED with 150 lm/W Luminous Efficiency.2006 [Accessed:11/04/09]; Available from:httn://techon.nikkeihp.co.in/english/NEWS FN/20061221/125713/.
    [67]. Murray, M. Cree Achieves 161 Lumens per Watt from a High-Power LED.2008 [Accessed:11/04/09]; Available from:http://www.cree.com/press/press_detail.asp?i=1227101620851.
    [68]. Cheung, E., High voltage boost LED controller provides 3000:1 PWM dimming ratio, in Linear Technology application note.2006.
    [69].刘帘曦,杨银堂,朱樟明,恒流LDO型白光LED驱动芯片的设计研究.西安电子科技大学学报(自然科学版),2007.34(2):p.264-269.
    [70]. Narendran, N.,Gu, Y., Life of LED-Based White Light Sources. Journal of Display Technology, 2005.1(1):p.167-172.
    [71]. Muthu, S.,Gaines, J. Red, green and blue LED-based white light source:implementation challenges and control design, in 2003 38th Annual Meeting Conference of Industry Applications.2003.
    [72]. Dyble, M., Narendran, N., Bierman, A.,Klein, T. Impact of Dimming White LEDs Chromaticity Shifts Due to Different Dimming Methods. in Proceeding of SPIE.2005.
    [73]. Marosek, M.W.,2008.LED dimming control technique for increasing the maximum PWM dimming ratio and avoiding LED flicker,US Patent 7321203.
    [74]. Miribel-Catala, P.L., Puig-Vidal, M., Goyhenetche, P.,Nguyen, X.-Q., An integrated digital PFM DC-DC boost converter for a power management application:a RGB backlight LED system driver, in IEEE 2002 Annual Conference of Insustrial Electronics Society.2002. p.37-42.
    [75]. Ge, D.,Chen, Z. On-chip boost DC-DC converter in color OLED driver&controller ICs for mobile application, in 2005 6th International Conference on ASICON.2005.
    [76]. LUMILEDS,2006. Power Light Source LUXEON Star Technical Datasheet DS23. [Cited:09/04/091:Availble from:http://www.philipslumileds.com/pdfs/DS23.Ddf.
    [77]. Tsividis, Y.P., Accurate Analysis of Temperature Effects in Ic-Vbe Characteristics with Application to Bandgap Reference Sources. IEEE Journal of Solid-State Circuits,1980. SC-15(6):p.1076-1084.
    [78]. Verilog-A, Cadence Verilog-AMS Language Reference Rev.5.1.2004:San Jose, CA, USA.
    [79].魏其萃,2007.高精度平均输出电流控制的恒定关断时间控制方案,中国发明专利申请号200710068436.4.
    [80]. LTC3783,2006. LTC3783 Datasheet. [Cited:15/04/09]; Availble from:http://www.linear.com.cn/nc/downloadDocument.do?navld=H0.C1.C1003.C1094.C1766.P 15692.D10837.
    [81].王俊波,多层陶瓷电容器的技术现状及未来发展趋势.绝缘材料,2008.41(3):p.30-33.
    [82]. Kimball, J.W., Flowers, T.L.,Chapman, P.L., Low-Input-Voltage, Low-Power Boost Converter Design Issues. IEEE Power Electronics Letters,2004.2(3):p.96-100.
    [83]. Boni, A., Carboni, A.,Facen, A., DC-DC converter for fuel cells and portable devices in digital CMOS technology. Analog Integrated Circuit and Signal Processing,2008.55(1):p.93-102.
    [84]. Deng, H., Duan, X., Sun, N., Ma, Y., Huang, A.Q.,Chen, D., Monolithically integrated boost Converter Based on 0.5-μm CMOS Process. IEEE Transactions on Power Electronics 2005. 20(3):p.628-638.
    [85]. Chen, H.-M., Chang, R.C.,Huang, C.-L. Low-voltage zero quiescent current PFM boost converter for portable devices. in 2007 IEEE International SOC Conference.2007.
    [86]. Ridley, R.B. A New Continuous-Time Model for Current-Mode Control with Constant Frequency, Constant On-Time, and Constant Off-Time, in CCM and DCM. in 1990 21st Annual Power Electronics Specilists Conference.1990. San Antonio, TX, USA.
    [87]. Aloisi, W.,Palumbo, G., Efficiency model of boost dc-dc PWM converters. Inteational Journal of Circuit Theory and Applications,2005.33:p.419-432.
    [88]. Eichhorn, T.,2008. Boost Converter Efficiency Through Accurate Calculations. [Cited:12/04/09]; Availble from:httn://powerelectronics.com/nower_management/809PET-boost-converter-efficiencv-calcu lations.ndf.
    [89]. LM3488,2005. LM3488 Datasheet. [Cited:09/04/09]; Availble from:http://www.national com/nf/LM/LM3488.html.
    [90]. Forghani-zadeh, H.P.,Rincon-Mora, G.A. Current-Sensing Techniques for DC-DC Converters. in 2002 45th Midwest Symposium on Circuits and Systems.2002.
    [91]. Ki, W.H.,1998.Current Sensing Technique using MOS Transistor Scaling with Matched Bipolar Current Sources,US Patent 5757174.
    [92]. Rincon-Mora, G.A., Active Capacitor Multiplier in Miller-Compensated Circuits. IEEE Journal of Solid-State Circuits,2000.35(1):p.26-32.
    [93]. Tang, Y., Ismail, M.,Bibyk, S., Adaptive Miller Capacitor Multiplier for Compact on-Chip PLL Filter. Electronics Letters,2003.39(1):p.43-45.
    [94]. Pace, W.D.,1987.Capacitance Multiplier Circuit,US Patent 4709159.
    [95]. Larsson, P.,2002.Apparatus and Method for Capacitance Multiplication,US Patent 6344772.
    [96]. Yamatake, M.,1995.Capacitance Multiplier for The Internal Frequency Compensation of Switching Regulator Switching Integrated Circuits,US Patent 5382918.
    [97]. Berg, S.K.,1996.Phase Lead Compensation Circuit for an Integrated Switching Regulator,US Patent 5514947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700