空间交会对接激光雷达中准直系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神州六号飞船的成功发射和返回,标志着我国的航天事业进入了大规模开发和利用太空的新阶段。为了开展空间科学试验和应用技术研究,就必须建设永久性空间站。空间交会对接技术是建立空间站的核心技术,而空间交会激光雷达技术又是空间交会中的关键技术。激光雷达要达到高的测量精度和分辨率,提高光能量的利用率,必须要有高效、高波束质量的辐射源。本论文重点对如何产生这种高质量的辐射源进行研究,论文主要内容有:
     1) 论证适合于空间交会激光雷达的光源和体制;
     根据半导体激光光源(0.85μm)和半导体泵浦固体激光光源(1.06μm)各自的特点和优劣(即前者体积小、重量轻、功耗低,但光束质量差、相干性差;后者在相干性和光束质量上有一定优势,但功耗、体积较大。),选取系统需求的最佳光源。
     2) 高波束质量激光的产生;
     由于激光雷达对光束质量的要求较高,因此研究激光准直和整形技术,特别是对半导体激光光源的出射的椭圆光束进行处理。满足高质量光束要求设计光路,并考虑空间应用的特殊性,设计小型化、实用化的三组准直系统,通过在ZEMAX里的优化设计,使半导体激光器出射的椭圆光斑准直整形为圆型光斑。
     3) 确定测试方案对加工好的准直系统进行测试;
     采用CCD测量光束束宽,用光束质量检测仪对准直后的光束进行测试。最后选择两点法计算准直后发散角为1.2-1.3mrad,达到了项目所规定的指标。
     4) 分析测试结果,对可能存在的误差分析。
     通过对影响准直后光束质量的误差进行分析,确定系统调整的允许范围。
That, the successful launch and return of Shenzhou-VI spacecraft, marks our aerospace technology has entered the large-scale exploitation and utilization of outer space. In the near future, the technology is directly expected to serve for national economy. In order to develop the outer space experiments and its application researches, it is crucial to build a permanent space station, where rendezvous and docking technique plays an important role among it. Meanwhile, the rendezvous Lidar is the key element of rendezvous and docking. There must be a high-efficient and good-quality beam if Lidar works precisely and distinguishably. How to produce such a good beam is the aim of this paper. The main contents include:
    1) Choosing the proper laser for rendezvous Lidar;
    According to the characteristics of semiconductor laser with 0.85μm and solid state laser pumped by semiconductor with 1.06 μm, we choose SDL2300 laser diode as our design and experiment laser.
    2) Producing good quality beam;
    As Lidar needs good quality beam, it is necessary to study beam collimation and shaping technique especially for the elliptical facula of semiconductor lasers. At the same time, the elements of collimation should be miniature and practical for the outer space application. We design ray path for collimators with geometric theory, and optimize in optical software ZEMAX.
    3) Selecting right test method and using Photon 2350BeamProfiler to detect the collimation beam. After calculation the angle of divergence is a desired goal about 1.2-1.3mrad.
    4) Analyzing the experiment results and the imaginable error.
引文
[1] 吴国兴.航天器的交会与对接及其人控和自控.中国航天,1998,Vol.1,No.1:29-34
    [2] 张崇峰.空间对接机构综述.世界科学,2003,Vol.1:26-27
    [3] 宋丰华.现代空间光电系统及应用.北京:国防工业出版社,2004.185-186
    [4] 陈湘君.固体激光雷达发展的现状.红外与激光工程,1998,Vol.27,No.6:24-28
    [5] 何兴仁.空间光通信用半导体激光器.半导体光电,2000,Vol.21,No.1:11-12
    [6] 戴永江.激光雷达原理.北京:国防工业出版社,2002.6-7
    [7] 夏秀兰,龚正烈.半导体激光器光束的准直.光电子·激光,1996,Vol.7,No.5:283-287
    [8] 张克潜.微波与光电子学中的电磁理论.北京:电子工业出版社,2001.570-573
    [9] A. E. Siegman. New developments in laser resonators. SPIE, 1999, Vol. 1224: 2-14
    [10] 陈海清,曹向英.光盘光学头整形棱镜光学系统的设计.光电工程,1997,Vol.24,No.1:21-25
    [11] David L. Shealy. Historical perspective of laser beam shaping. Proceeding of SPIE, 2002, Vol. 4770: 37-47
    [12] David L. Shealy, Shao-hua Chao. Geometric optics-based design of laser beam shapers. Optical Engineering, 2003, Vol. 47, No. 11: 3123-313
    [13] David L. Shealy. Theory of geometrical methods for design of laser beam shaping systems. Proceeding of SPIE, 2000, Vol. 4095: 1-15
    [14] 刘肖民.半导体激光器光学系统准直特性的研究.应用光学,2000,Vol.21,No.6:13-16
    [15] 房启勇,施浣芳,高洪尧.半导体激光器光束质量改善新技术综述.光学技术,2003,Vol.29,No.1:107-109
    [16] Sinzinger S, Brenner K. H. Asitigmatic gradient-index elements for laser-diode collimation and beam shaping. Applied Optics, 1995, 34: 6626-6632
    [17] 周崇喜,丘传凯.半导体激光器阵列二元光学准直起的设计和制作.光电工程,1996,Vol.25:38-41
    [18] Ai-Saidi I.A. Using a simple method: conversion of a Gaussian laser beam into a uniform beam. Optics&Laser Technology, 2001, Vol. 33: 75-79
    [19] 周崇喜,杜春雷.半导体激光器震裂光束准直和聚焦系统设计.光学仪器,2000.Vol.22,No.6:25-29
    [20] 马科斯·玻恩,埃米尔·沃耳夫.光学原理(上册).北京:电子工业出版社,2005, 98-117
    [21] 萧泽新.工程光学设计.北京:电子工业出版社,2003.223-228
    [22] 熊德平,何志平.非球面光学系统的光路计算与分析.光学仪器,2004,Vol.26,No.4:45-47
    [23] 王永仲.两类特殊光学系统的光路计算.红外技术,1993,Vol.15,No.5:32-36
    [24] 王红军,田爱玲,杜玉军.非球面最适球面的确定方法——三点法.应用光学,2004,Vol.25,No.4:63-65
    [25] 杜玉军,任海霞,刘中本.光学非球面元件非球面度计算方法.应用光学,2002,Vol.23,No.5:42-45
    [26] 张新平,徐品方.用于高斯光束均匀化的非球面透镜系统分析与设计.应用光学,1994,Vol.15,No.3:12-15
    [27] 余大英,胡玉禧,张亮.’半导体激光束整形器的设计与分析.量子电子学报,1997,Vol.14,No.2:187-191
    [28] 王涌天.复杂面型的实际光路追迹.光学技术,1990,Vol.16,No.5:2-8
    [29] 沙定国,全书学,朱秋东等.光学非球面面型拟合方法研究.光子学报,1995,Vol.24,No.2:152-157
    [30] 吕百达.激光光学.北京:高等教育出版社,2003,75-90
    [31] 王云萍,黄建余,乔广林.高能激光光束质量的评价方法.光电子·激光,2001,Vol.12,No.10:1029-1033
    [32] 陈海清.现代实用光学系统.武汉:‘华中科技大学出版社,2003,185-187
    [33] 李林,安连生.计算机辅助光学设计的理论与应用.北京:国防工业出版社,2002,178-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700