考虑标记点可见性的叶片运动轨迹算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:由于人类高发肿瘤大多位于胸腹部(如肺癌),会受呼吸和胃肠蠕动等生理现象的影响,因此运动靶区的放射治疗方法是当前放疗领域的一个研究热点,目前的解决方法是4D放疗和实时跟踪放疗。本研究将两种方法有机地结合起来,在计划设计阶段确定叶片运动轨迹时,考虑标记点在将来治疗时的可见性,以便实现有计划的实时跟踪。本研究的主要研究内容为:一、在静态调强治疗模式(SMLC)下考虑标记点可见性最大化的叶片运动轨迹(即分子野序列)算法。在利用实时跟踪技术进行调强放射治疗时,我们需要在患者体内(靶区或靶区附近区域)植入标记点,以利用影像系统(如EPID)对患者靶区的运动进行实施跟踪。由于调强治疗时多叶准直器(MLC)会形成大小形状不同的照射子野,因此我们需要尽可能多的提高标记点的探测概率,即使得标记点尽可能的出现在EPID上。为了量化标记点的探测概率,本研究在国际上首次提出了标记点可见性的概念,即标记点可见时间与射野照射时间的百分比比值;二、在动态调强治疗模式(DMLC)下考虑标记点可见性最大化的叶片轨迹算法。该研究内容与“在静态调强治疗模式下考虑标记点可见性最大化的分子野序列算法”相关,只是在动态调强模式下进行叶片轨迹的优化,优化目标同样是标记点可见性的最大化。
     材料与方法:我们首先建立优化算法的数学模型和该算法的程序流程图,而后采用MATLAB语言编写相应的程序以实现该优化算法。为了检验所提出的优化算法的可行性、正确性和计算效率,我们采用计算机随机生成的6个测试野(大测试野20×20、中测试野10×10、小测试野5×5各2个,含有1个或3个标记点)以及临床的15个测试野(3个前列腺癌病例,每个病例均采用5野放射治疗计划设计方案,并含有3个标记点)进行算法评估。
     结果:对于静态调强,采用随机测试野及临床测试野进行的优化算法评估的结果表明:1)相比于初始的子野序列,优化的子野序列不会增加总实施强度级数目;2)相比于初始的子野序列,优化的子野序列提高了标记点可见性;对于动态调强,采用随机测试野及临床测试野进行的优化算法评估,也有类似的结果。另外,无论是子野序列优化算法,还是叶片轨迹优化算法,各测试野的程序运行时间均小于1s,说明本研究提出的优化算法的计算效率很高。
     结论:本研究在国际上首次提出了标记点可见性的概念,很好的解决了实时跟踪放射治疗过程中,量化标记点探测效率的问题。在静态调强治疗模式下,提出了考虑标记点可见性的子野序列优化算法,使得优化后子野序列的标记点可见性可以达到最大值;在动态调强治疗模式下,提出了考虑标记点可见性的叶片轨迹优化算法,使得优化后叶片轨迹的标记点可见性也可以达到最大值。本研究提出的优化算法是可行的,正确的,并且计算效率也很高,可以作为今后开展实时跟踪放射治疗的理论基础,有很高的理论价值和应用前景。
Background and Objectives:Human tumors are mostly in the thorax and abdomen (such as lung cancer and prostate cancer), and so the tumor positions would be affected by the respiratory motion and the gastrointestinal peristalsis during radiotherapy (RT) treatment delivery. Recently, a numbe of investigations have been carried out to solve the target motion problem, and show that four-dimensional radiotherapy (4D RT) and real-time tracking radiotherapy are both promising methods to handle this problem. The purpose of this study was to combine these two methods, and to develop the algorithms for determining leaf trajectories with consideration of marker visibility. This study mainly focused on:(A) considering marker visibility during leaf sequencing for segmental intensity-modulated radiation therapy (SMLC-IMRT). For real-time tracking radiotherapy, fiducial markers need to be implanted into or nearby the patient's target, and then the markers will be monitored by using the imaging system mounted on LINAC (such as EPID). Due to the different apertures shaped by MLC during IMRT treatment delivery, the detection probability of fiducial marker needs to be as high as possible, that is, the visible time of markers on EPID needs to be as long as possible. In order to quantify the detection probability, this study proposed the concept of marker visibility, that is, the percentage ratio of the visible time of markers to the beam-on time;(B) considering marker visibility for dynamic IMRT (DMLC-IMRT). This research was related to the previous one, and the objective was also to maximize the marker visibility.
     Materials and Methods:We firstly developed the optimization models and the algorithms'flowcharts of these studeis, and then programmed in MATLAB language. The proposed optimization algorithm was evaluated by6randomly generated test fields containing1or3markers (large size field:20×20; middle size field:10×10;small size field:5×5) and15clinical test fields containing3markers (3clinical cases of prostate cancer with5-fields treatment planning).
     Results:The evaluation results of the optimal algorithm for SMLC showed that:a) the total delivered intensities were kept constant (i.e., beam-on time was not increased);b) the marker visibility was maximized after the leaf sequence optimization. The results for DMLC also showed that the marker visibility was maximized after the leaf trajectory optimization without increasing the total delivered intensities. Moreover, the computation efficiency was very high for both optimization algorithms (less than1s for every test field).
     Conclusions:This work proposed the concept of marker visibility which to quantify the detection probability of fiducial markers during the real-time tracking radiotherapy treatment delivery. The marker visibility could be maximized by using the optimization algorithms for both SMLC and DMLC mode. Moreover, these algorithms were feasible and high efficient, and could be the theoretical basis of developing real-time tracking radiotherapy.
引文
Baroni et al (2007). Integration of Enhanced Optical Tracking Techniques and Imaging in IGRT. J. Radiat. Res.48:A61-A74.
    Beckham et al (2002). A fluence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error. Phys. Med. Biol.47:3465-3473.
    Beddar et al (2007). Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT. Int. J. Radiation Oncology Biol. Phys.67:630-638.
    Berbeco et al (2004). Integrated radiotherapy imaging system (IRIS):design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys. Med. Biol.49:243-255.
    Berbeco et al (2005). A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode. Phys. Med. Biol.50:3669-3679.
    Berbeco et al (2005). Residual motion of lung tumors in gated radiotherapy with external respiratory surrogates. Phys. Med. Biol.50:3655-3667.
    Berbeco et al (2005). Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys. Med. Biol.50:4481-4490.
    Berbeco et al (2006). Measurement of the interplay effect in lung IMRT treatment using EDR2 films. Journal of Applied Clinical Medical Physics.7:1-10.
    Berbeco et al (2006). Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates. Med. Phys.33(11):4149-4156.
    Bortfeld et al (1994). X-ray field compensation with multileaf collimators. Int. J. Radiat. Oncol., Biol., Phys.28:723-730.
    Bortfeld et al (2004). Effects of motion on the total dose distribution. Seminars in Radiation Oncology 14:41-51."
    Brahme et al (1982). Solution of an integral equation encountered in rotation therapy. Phys. Med. Biol.27:1221-1229.
    Brahme et al (1988). Optimisation of stationary and moving beam radiation therapy techniques. Radiother. Oncol.12:129-140.
    Brock et al (2003). Automated generation of a four-dimensional model of the liver using warping and mutual information. Med. Phys.30(6):1128-1133.
    Buzurovic et al (2011). A robotic approach to 4D real-time tumor tracking for radiotherapy. Phys. Med. Biol.56:1299-1318.
    Cho et al (2008). A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring. Phys. Med. Biol.53: 2837-2855.
    Churchill et al (2009). Algorithm and simulation for real-time positron emission based tumor tracking using a linear fiducial marker. Med. Phys.36(5):1576-1586.
    Dai et al (2001). Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator. Med. Phys.28: 2113-2120.
    Dai et al (2004). Simultaneous minimization of leaf travel distance and tongue-and-groove effect for segmental intensity-modulated radiation therapy. Phys. Med. Biol.49:5319-5331.
    Dieterich et al (2011). The CyberKnife in Clinical Use:Current Roles, Future Expectations. Front Radiat Ther Oncol.43:181-194.
    Engelsman et al (2001). The effect of breathing and set-up errors on the cumulative dose to a lung tumor. Radiother. Oncol.60:95-105.
    Fledelius et al (2011). Robust automatic segmentation of multiple implanted cylindrical gold fiducial markers in cone-beam CT projections. Med. Phys.38(12):6351-6361.
    Fledelius et al (2011). Tracking latency in image-based dynamic MLC tracking with direct image access. Acta Oncologica.50:952-959.
    George et al (2008). On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med. Phys.35(6):2356-2365.
    Gierga et al (2005). The correlation between internal and external markers for abdominal tumors:implications for respiratory gating. Int. J. Radiation Oncology Biol. Phys.61: 1551-1558.
    Gui et al (2010). Four-dimensional intensity-modulated radiation therapy planning for dynamic tracking using a direct aperture deformation (DAD) method. Med. Phys.37(5): 1966-1975.
    Henry et al (2005). An assessment of clinically optimal gold marker length and diameter for pelvic radiotherapy verification using an amorphous silicon flat panel electronic portal imaging device. The British Journal of Radiology.78:737-741.
    Ionascu et al (2007). Internal-external correlation investigations of respiratory induced motion of lung tumors. Med. Phys.34(10):3893-3903.
    Jaffray et al (2007). Image-guided radiation therapy:from concept to practice. Seminars in Radiation Oncology.17:243-244.
    Jafrray et al (2007). Review of image-guided radiation therapy. Expert Rev. Anticancers Ther.7(1):89-103.
    Kamath et al (2003). Leaf sequencing algorithms for segmented multileaf collimation. Phys. Med. Biol.48:307-324.
    Kamath et al (2004). Algorithms for optimal sequencing of dynamic multileaf collimators. Phys. Med. Biol.49:33-54.
    Kamath et al (2004). Optimal leaf sequencing with elimination of tongue-and-groove underdosage. Phys. Med. Biol.49:N7-N19.
    Kamino et al (2006). Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int. J. Radiation Oncology Biol. Phys.66:271-278.
    Kanoulas et al (2007). Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Phys. Med. Biol. 52:5443-5456.
    Keall et al (2001). Motion adaptive x-ray therapy:a feasibility study. Phys. Med. Biol.46: 1-10.
    Keall et al (2003). Time-the fourth dimension in radiotherapy (ASTRO panel discussion). Int. J. Radiat. Oncol. Biol. Phys.57:S8-9.
    "Keall et al (2004).4-Dimensional Computed Tomography Imaging and Treatment Planning. Seminars in Radiation Oncology.14:81-90."
    Keall et al (2004). Acquiring 4D thoracic CT scans using a multislice helical method. Phys. Med. Biol.49:2053-2067.
    Keall et al (2004). On the use of EPID-based implanted marker tracking for 4D radiotherapy. Med. Phys.31(12):3492-3499.
    Keall et al (2005). Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med. Phys.32(4):942-951.
    Keall et al (2006). The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys.33(10):3874-3900.
    Kirkpatrick et al (1983). Optimization by Simulated Annealing. Science.220:671-680.
    Kubo et al (1996). Respiration gated radiotherapy treatment:A technical study. Phys. Med. Biol.41:83-91.
    Kupelian et al (2007). Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int. J. Radiation Oncology Biol. Phys.67:1088-1098.
    Langer et al (2001). Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimators. Med. Phys.28(12):2450-2458.
    Lee et al (2009). Conceptual formulation on four-dimensional inverse planning for intensity modulated radiation therapy. Phys. Med. Biol.54:N255-N266.
    Li et al (2000). Inverse planning incorporating organ motion. Med. Phys.27(7): 1573-1578.
    Li et al (2004). Simultaneous minimizing monitor units and number of segments without leaf end abutment for segmental intensity modulated radiation therapy delivery. Med. Phys.31:507-512.
    Li et al (2006). Four-dimensional cone-beam computed tomography using an on-board imager. Med. Phys.33(10):3825-3833.
    Liu et al (2007). Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int. J. Radiation Oncology Biol. Phys.68:531-540.
    Liu et al (2008). Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging. Phys. Med. Biol.53:7197-7213.
    Liu et al (2009). Delivery of four-dimensional radiotherapy with TrackBeam for moving target using a dual-layer MLC:dynamic phantoms study. Journal of Applied Clinical Medical Physics.10:21-33.
    Low et al (2003). A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med. Phys.30(6):1254-1263.
    Low et al (2005). Novel breathing motion model for radiotherapy. Int. J. Radiation Oncology Biol. Phys.63:921-929.
    Lu et al (2004). Fast free-form deformable registration via calculus of variations. Phys. Med. Biol.49:3067-3087.
    Lujan et al (1999). A method for incorporating organ motion due to breathing into 3D dose calculations. Med. Phys.26(5):715-720.
    Lujan et al (2003). A method for incorporating organ motion due to breathing into 3D dose calculations in the liver:sensitivity to variations in motion. Med. Phys.30: 2643-2649.
    Ma et al (1998). An optimized leaf-setting algorithm for beam intensity modulation using dynamic multileaf collimators. Phys. Med. Biol.43:1629-1643.
    Ma et al (1999). Synchronizing dynamic multileaf collimators for producing two-dimensional intensity-modulated fields with minimum beam delivery time. Int. J. Radiation Oncology Biol. Phys.44:1147-1154.
    Ma et al (2009). Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields. Med. Phys.36(6):2215-2221.
    Ma et al (2010). Inverse planning for four-dimensional (4D) volumetric modulated arc therapy. Med. Phys.37(11):5627-5633.
    Mao et al (2008). A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging. Med. Phys.35(8):3554-3564.
    Mao et al (2008). Fast internal marker tracking algorithm for onboard MV and kV imaging systems. Med. Phys.35(5):1942-1949.
    Mao et al (2009). Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging. Int. J. Radiation Oncology Biol. Phys. 75:603-610.
    Marchant et al (2012). Automatic tracking of implanted fiducial markers in cone beam CT projection images. Med. Phys.39(3):1322-1334.
    "McMahon et al (2007). Dynamic-MLC leaf control utilizing on-flight intensity calculations:A robust method for real-time IMRT delivery over moving rigid targets. Med. Phys.34:3211-3223."
    McMahon et al (2008). A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view. Med. Phys.35(9): 3875-3888.
    McQuaid et al (2006). IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view. Phys. Med. Biol. 51:4819-4839.
    McQuaid et al (2009). Target-tracking deliveries on an Elekta linac:a feasibility study. Phys. Med. Biol.54:3563-3578.
    Menten et al (2012). Comparison of a multileaf collimator tracking system and a robotic treatment couch tracking system for organ motion compensation during radiotherapy. Med. Phys.39 (11):7032-7041.
    Neicu et al (2003). Synchronized moving aperture radiation therapy (SMART):average tumour trajectory for lung patients. Phys. Med. Biol.48:587-598.
    Oh et al (2010). Verification of MLC based real-time tumor tracking using an electronic portal imaging device. Med. Phys.37(6):2435-2440.
    Olsen et al (2008). Effect of novel amplitude/phase binning algorithm on commercial four-dimensional computed tomography quality. Int. J. Radiation Oncology Biol. Phys. 70:243-252.
    Osmond et al (2011). Imaging of moving fiducial markers during radiotherapy using a fast, efficient active pixel sensor based EPID. Med. Phys.38(11):6152-6159.
    Papiez et al (2004). DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target. Med. Phys.31(10):2742-2754.
    Papiez et al (2005). DMLC leaf-pair optimal control for mobile, deforming target. Med. Phys.32(1):275-285.
    Papiez et al (2005). Real-time DMLC IMRT delivery for mobile and deforming targets. Med. Phys.32(9):3037-3048.
    Papiez et al (2007).4D DMLC leaf sequencing to minimize organ at risk dose in moving anatomy. Med. Phys.34(12):4952-4956.
    Park et al (2009). Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Med. Phys.36(10):4536-4546.
    Pemler et al (2001). Influence of respiration-induced organ motion on dose distributions in treatments using enhanced dynamic wedges. Med. Phys.28:2234-2240.
    Poulsen et al (2010). Dynamic MLC tracking of moving targets with a single kV imager for 3D conformal and IMRT treatments. Acta Oncologica.49:1092-1100.
    Pugachev et al (2001). Role of beam orientation optimization in intensity-modulated radiation therapy. Int. J. Radiation Oncology Biol. Phys.50:551-560.
    Pugachev et al (2002). Incorporating prior knowledge into beam orientation optimization in IMRT. Int. J. Radiation Oncology Biol. Phys.54:1565-1574.
    Rangaraj et al (2005). Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Med. Phys.32(6):1802-1817.
    Rangaraj et al (2008). DMLC IMRT delivery to targets moving in 2D in Beam's Eye View. Med. Phys.35(8):3765-3778.
    Ravkilde et al (2011). Geometric accuracy of dynamic MLC tracking with an implantable wired electromagnetic transponder. Acta Oncologica.50:944-951.
    Ren et al (2007). Adaptive prediction of respiratory motion for motion compensation radiotherapy. Phys. Med. Biol.52:6651-6661.
    Rietzel et al (2005). Four-dimensional computed tomography:Image formation and clinical protocol. Med. Phys.32(4):874-889.
    Ross et al (1990). Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int. J. Radiat. Oncol. Biol. Phys.18:671-677.
    Sawant et al (2008). Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med. Phys.35(5):2050-2061.
    Schreibmann et al (2006). Image interpolation in 4D CT using a BSpline deformable registration model. Int. J. Radiation Oncology Biol. Phys.64:1537-1550.
    Seppenwolde et al (2007). Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system:a simulation study. Med. Phys.34:2774-2784.
    Seppenwoolde et al (2002). Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiation Oncology Biol. Phys.53:822-834.
    Shah et al (2011). Expanding the use of real-time electromagnetic tracking in radiation oncology. Journal of Applied Clinical Medical Physics.12:34-49.
    Shirato et al (2012). Real-time 4-D radiotherapy for lung cancer. Cancer Sci.103:1-6.
    Speidel et al (2012). Feasibility of low-dose single-view 3D fiducial tracking concurrent with external beam delivery. Med. Phys.39:2163-2169.
    Spirou et al (1994). Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med. Phys.21(7):1031-1041.
    Stein et al (1994). Dynamic x-ray compensation for conformal radiotherapy by means of multileaf collimation. Radiother. Oncol.32:163-173.
    Sterzing et al (2011). Options of image-guided radiotherapy-a new dimension in radiation oncology. Dtsch Arztebl Int.108(16):274-280.
    Suh et al (2008). A deliverable four-dimensional intensity-modulated radiation therapy-planning method for dynamic multileaf collimator tumor tracking delivery. Int. J. Radiation Oncology Biol. Phys.71:1526-1536.
    Suh et al (2009). Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm. Phys. Med. Biol.54:3821-3835.
    Sun et al (2010). Target tracking using DMLC for volumetric modulated arc therapy:A simulation study. Med. Phys.37(12):6116-6124.
    Svensson et al (1994). An analytical solution for the dynamic control of multileaf collimators. Phys. Med. Bid 39:37-51.
    Tacke et al (2007). Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer. Phys. Med. Biol.52:505-512.
    Tacke et al (2010). Real-time tumor tracking:Automatic compensation of target motion using the Siemens 160 MLC. Med. Phys.37(2):753-761.
    Trofimov et al (2005). Temporo-spatial IMRT-optimization concepts,implementation and initial results. Phys. Med. Biol.50:2779-2798.
    Trofimov et al (2008). Tumor trailing strategy for intensity-modulated radiation therapy of moving targets. Med. Phys.35(5):1718-1733.
    Unkelbach et al (2004). Inclusion of organ movements in IMRT treatment planning via inverse planning based on probability distributions. Phys. Med. Biol.49:4005-4029.
    van Elmpt et al (2008). A literature review of electronic portal imaging for radiotherapy dosimetry. Radiotherapy and Oncology.88:289-309.
    van Santvoort et al (1996). Dynamic multileaf collimation without'tongue-and-groove' underdosage effects. Phys. Med. Biol.41:2091-2105.
    Vedam et al (2003). Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys. Med. Biol.48:45-62.
    Verellen et al (2010). Gating and tracking,4D in thoracic tumours. Cancer/Radiotherapie. 14:446-454.
    Wang et al (2005). Validation of an accelerated'demons'algorithm for deformable image registration in radiation therapy. Phys. Med. Biol.50:2887-2905.
    Webb et al (2003). The physical basis of IMRT and inverse planning.
    Webb et al (2006). Motion effects in (intensity modulated) radiation therapy:a review. Phys. Med. Biol.51:R403-R425.
    Webb et al (2007). Intrafraction motion compensation by highly constrained iterative deconvolution of organ motion. Phys. Med. Biol.52:N309-N320.
    Webb et al (2008). A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion. Phys. Med. Biol.53:5177-5191.
    Wiersma et al (2008). Combined kV and MV imaging for real-time tracking of implanted fiducial markers. Med. Phys.35(4):1191-1198.
    Wiersma et al (2009). Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions. Phys. Med. Biol.54: 89-103.
    Wink et al (2008). Individualized gating windows based on four-dimensional CT information for respiration gated radiotherapy. Phys. Med. Biol.53:165-174.
    Xia et al (1998). Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med. Phys.25:1424-1434.
    Xing et al (2006). Overview of image-guided radiation therapy. Med. Dosim.31:91-112.
    Yi et al (2008). Real-time tumor tracking with preprogrammed dynamic multileaf-collimator motion and adaptive dose-rate regulation. Med. Phys.35(9): 3955-3962.
    Yu et al (1995). Intensity modulated arc therapy with dynamic multileaf collimation:an alternative to tomotherapy. Phys. Med. Biol.40:1435-1449.
    Yue et al (2008). Optimization of couch translational corrections to compensate for rotational and deformable target deviations in image guided radiotherapy. Med. Phys. 35(10):4375-4385.
    Yue et al (2011).3-D fiducial motion tracking using limited MV projections in arc therapy. Med. Phys.38(6):3222-3231.
    Zhang et al (2004). Treatment plan optimization incorporating respiratory motion. Med. Phys.31(6):1576-1586.
    Zhao et al (2009). Considering marker visibility during leaf sequencing for segmental intensity-modulated radiation therapy. Med. Phys.36(9):3906-3916.
    Zimmerman et al (2009). DMLC motion tracking of moving targets for intensity modulated arc therapy treatment-a feasibility study. Acta Oncologica.48:245-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700