广义光子晶体器件设计及其导光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体自提出之日起就备受关注,其周期性的介电质结构使在其中传播的电磁波模态具有频带效应,并可以导致光子带隙的产生。当电磁波的频率恰巧落在禁带中时,电磁波将无法穿透该种介质,这种特性为有效操控电磁波行为提供了新的方法。随着对光子晶体研究的不断深入,人们发现光子晶体的导带也有众多妙用。由于光子晶体导带某些特殊的色散关系的存在,在一定频率范围内的电磁波会表现出不寻常的传播行为,如超棱镜效应、负折射效应、自准直效应等。这些效应在光集成、高密度光存储以及高灵敏度生物传感器等领域有着巨大的潜在应用价值。近年来,光子晶体色散特性与应用潜力的研究受到了高度重视,例如《科学》杂志选择负折射研究为2003年的十大科技成果之一。光子晶体的发展和应用将对未来的光电技术发展会产生难以估量的影响。
     虽然人们对于光子晶体及其光学特性已经进行了大量的研究,但是这些研究大多数是针对标准类型光子晶体的,而对于其它广义光子晶体的研究依然不够完善。广义光子晶体以其丰富的空间变化提供了更多的研究内容。广义光子晶体包括周期性的光子晶体、渐变光子晶体、准周期光子晶体、非晶光子晶体等。本文主要提出了几种新型的渐变光子晶体,研究了这些光子晶体的特性,并用已知的和新提出的渐变光子晶体设计了多种光子晶体器件,利用平面波展开法和时域有限差分法进行了仿真模拟。之后利用双光束两次曝光法制备常规正方光子晶体,并利用制备的光子晶体提高了LED的发光效率。
     本文的研究重点主要体现在以下两个方面:
     1.渐变光子晶体的研究
     常规光子晶体的性质研究已经比较成熟,然而广义光子晶体,尤其是渐变光子晶体的研究和器件设计方面依然有很大的研究空间。从第三章到第五章,主要提出了几种新型渐变光子晶体并研究了其光学特性,设计了多种光子晶体器件。
     在第三章中,利用辐射型渐变光子晶体设计了一种新型的光子晶体分束器。这种分束器是由关于横轴对称的两个完全相同的1/4圆弧的辐射型光子晶体构成。为了提高分束器的透射率,加入了正方自准直光子晶体结构。通过增大自准直光子晶体的缺陷,光子晶体分束器总的透过率得到了很大的提升。而且这种光子晶体分束器系统可以很方便地调节分束比。辐射型渐变光子晶体分束器在光集成方面有很大的应用潜力。
     第四章提出了一种新型的圆形渐变光子晶体,这种新型渐变光子晶体是二维常规光子晶体的一种变形结构,并且主要考虑了这种圆形渐变光子晶体的导通性质。这种新型的圆形渐变光子晶体可以实现光的不对称传输以及具有频率选择的光耦合器。由于圆形渐变光子晶体的方向禁带,从一个方向传播的光能够透过光子晶体,而从另一个方向传播的光则无法通过光子晶体。我们将两个方向透射过光子晶体的光强之差与光强之和的比定义为对比度,利用对比度来衡量光子晶体不对称传输的能力。利用这种结构,在数值模拟上实现了光的不对称传输,并得到了更高的对比度。由于这种圆形渐变光子晶体在特定频率范围内的光聚焦现象,透过圆形渐变光子晶体的光被汇聚到光子晶体波导中,并得到了一个很高的耦合效率。当改变圆形渐变光子晶体的参数时,透射率的峰值对应的频率会改变,从而使光耦合器具有频率选择效应。
     第五章提出了一种新的渐变光子晶体结构,这种光子晶体结构不包含非线性及各向异性材料,是通过改变常规光子晶体横向和纵向两个方向的介质柱半径得到的。由于正方渐变光子晶体的方向禁带和自准直作用,从一个方向传播的光能够透过光子晶体,而从另一个方向传播的光则无法通过光子晶体。利用这种结构,在数值模拟上实现了光的不对称传输,并得到了更高的对比度。2.利用双光束两次曝光法制备光子晶体提高LED的发光效率LED以其低功耗、长寿命、体积小的特点,成为绿色节能的新型照明器件,然而由于LED的光提取效率低,使LED的寿命缩短,并造成了大量的能量损耗。光子晶体作为一种提高LED发光效率的有效手段,成为了目前研究的热门之一。全息干涉技术制备光子晶体以其制备迅速、一次成型、成本低等特点使得低成本实现高出光率光子晶体LED制作成为可能。在第六章,提出了利用双光束两次曝光制备光子晶体的方法,这种方法光路简单,易于调节,并且一次成型,以532nm可见光为光源,这种光源更易获得,并且在平台搭建和光路调节方面更具优势,配制了感光波长在532nm的光刻胶,成功制备占空比为1:1的二维正交光子晶体,并将光子晶体制作于GaN蓝光LED的ITO层中,使LED的发光效率提高了20%-27%。对于光子晶体提高LED发光效率的研究仍然需要改进和完善,但这种制作光子晶体的系统的设计,工艺简单,造价低廉,适合进行产业化生产。
     综上所述,本文不仅提出了多种渐变光子晶体结构,研究了渐变光子晶体的光学特性,而且利用渐变光子晶体设计了多种光学器件。在论文的最后,提出了双光束两次曝光法制备正方光子晶体,并利用制备的光子晶体提高了LED的发光效率。本文所得结果对于光学集成及能源利用具有重要的参考价值。
Photonic crystals from the date of proposed is in focus for its periodic dielectric structure, which gives the electromagnetic wave propagating in photonic crystals a band structure mode, and can lead to the generation of photonic band gap. When the frequency of electromagnetic waves happens to fall in forbidden band, the electromagnetic waves will not be able to penetrate this kind of medium. This feature makes photonic crystals become a new means to effectively control the behavior of electromagnetic waves. With the development of the research, it was found that the conduction band of photonic crystals have many use as well. As some certain areas of the conduction band of photonic crystal has special dispersion relations, the propagation of electromagnetic waves in certain frequency range will show unusual behavior, Such as the super prism effect, negative refraction effect, since the collimation effect, etc. These effects have huge potential application value in optical integration, high-density optical storage and high sensitive biological sensors and other fields. In recent years, the research on dispersion characteristics and potential applications of photonic crystal has been highly valued by the international scientific circle. Science magazine choose negative refraction research as one of the top ten scientific and technological achievements in2003. The development and application of the research will have an incalculable impact on the future of photovoltaic technology.
     Although there are a lot of research on photonic crystals and their optical properties, most is for standard type photonic crystal as the gradient photonic crystals with its long-range disorder short-range order provides more research content. In this paper, several new gradient photonic crystals are proposed, the characteristics of the photonic crystal is studied, using the known and the new proposed gradient photonic crystals, photonic crystal device is designed, and the simulation is done by using the plane wave expansion method and finite difference time domain method. Then we prepare regular square photonic crystal which improves LED luminous efficiency by using double-beam exposure method.
     The focus of this article is mainly manifested in the following two aspects:
     1、Research on the gradient photonic crystals
     Research on properties of conventional photonic crystal is comparatively mature, while there is still a lot of space in research on gradient photonic crystal as well as the device design. From the third chapter to the fifth chapter, we proposed several new gradient photonic crystals and their optical properties are studied, also we design several photonic crystal devices.
     In the third chapter, we design a new kind of photonic crystal splitter by using radiant gradient photonic crystal. The beam splitter is consist of two identical symmetrical about the horizontal axis of radiant photonic crystal1/4circular arc. To increase the beam splitter transmittance, we add the tetragonal self-collimation photonic crystal structure. By magnifying the defect of self-collimation photonic crystal, the total transmittance of photonic crystal splitter got a lot of ascension. And we can easily adjust the ratio of beam splitter. Radiant gradient photonic crystal splitter has great potential for application in optical integration. The fourth chapter puts forward a new type of circular gradient photonic crystal, a kind of deformation structure of the conventional two-dimensional photonic crystals, of which the conduction band property is mainly considered here. Using this new type of circular gradient photonic crystal, we implemented asymmetry transmission of light and frequency selective optical coupler. Due to the directional band gap of circular gradient photonic crystal, light from one direction can transmit through the photonic crystals, but can't do it from the other direction. Using this structure, we realize the asymmetry transmission of light on numerical simulation, and a higher contrast ratio is obtained. Thanks to the light focusing phenomenon in specific frequency range of the circular gradient photonic crystal, the light through this photonic crystal is gathered in the photonic crystal waveguide, and very high coupling efficiency is gotten. When the parameters of the circular gradient photonic crystal are changed, the corresponding frequency of the peak transmissivity will change to get the optical coupler with frequency selective effect.
     The fifth chapter puts forward a new gradient photonic crystal structure, which does not contain nonlinear and anisotropic materials. It is obtained by changing the rods'radii along both horizontal and vertical directions. Due to the directional band gap and self-collimation effect of the square gradient photonic crystal, light from one direction can transmit through the photonic crystals, but can't do it from the other direction. Using this structure, we realize the asymmetry transmission of light on numerical simulation, and a higher contrast ratio is obtained.
     2. Holographic fabrication of photonic crystals by double-beam exposure method for improving the extraction efficiency of LED
     LED, for its characteristics of low power consumption, long life, small volume, become a new type of green energy-saving lighting devices. But the low Light extraction efficiency shortens the service life of LED, and causes a large number of energy losses. As an effective way to enhance the efficiency of the LED, photonic crystal became one of the hottest researches at present. With the characteristics of rapid preparation, one-step molding and low cost, holographic interference technique makes it possible to achieve higher rate of photonic crystal LED at a low cost.
     In the sixth chapter, we use the double-beam double exposure method to create PhCs, the optical path is simple and easy to adjust, and PhCs are one-step forming. In the experiment,532nm laser is used as the light source, which is more accessible and has more advantages in platform building and light path adjustment. The photopolymer SU8polymerized at532nm and created2D PhCs with duty cycle1:1. The PhCs structures are transferred to ITO layer of GaN blue LED and the light extraction efficiency was increased by20%-27%. The research of improving the efficiency of light extraction by PhCs still needs further improvement and perfection, but this design of PhCs creation system is simple, low cost and suitable for industrial production, so it has bright prospects.
     To sum up, this paper not only proposed a variety of gradient photonic crystal structure and studied the optical properties of gradient photonic crystals, but also designed a variety of optical devices using the gradient photonic crystals. At the end of the paper, we proposed the double beam twice exposure method to prepare photonic crystals and improve LED luminous efficiency by the photonic crystals prepared. The results obtained in this paper have important reference value for optical integration and energy utilization.
引文
[1]马锡英,光子晶体原理及应用,科学出版社,2010.
    [2]V.P. Bykov. Spontaneous Emission in a Periodic Structure. Soviet Journal of Experimental and Theoretical Physics.1972,35:269.
    [3]E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters.1987,58 (20):2059-2062.
    [4]S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters.1987,58 (23):2486-2489.
    [5]J.B. Pendry. Negative Refraction Makes a Perfect Lens. Physical Review Letters.2000,85 (18):3966-3969.
    [6]C. Luo, S. Johnson, J. Joannopoulos, J. Pendry. All-Angle Negative Refraction without Negative Effective Index. Physical Review B.2002,65 (20):201104.
    [7]S. Foteinopoulou, E. Economou, C. Soukoulis. Refraction in Media with a Negative Refractive Index. Physical Review Letters.2003,90 (10):107402.
    [8]C. Luo, S. Johnson, J. Joannopoulos, J. Pendry. Subwavelength Imaging in Photonic Crystals. Physical Review B.2003,68 (4):045115.
    [9]X. Wang, Z.F. Ren, K. Kempa. Unrestricted Superlensing in a Triangular Two Dimensional Photonic Crystal. Optics Express.2004,12 (13):2919-2924.
    [10]S. Xiao, M. Qiu, Z. Ruan, S. He. Influence of the Surface Termination to the Point Imaging by a Photonic Crystal Slab with Negative Refraction. Applied Physics Letters.2004,85 (19):4269-4271.
    [11]X. Zhang. Absolute Negative Refraction and Imaging of Unpolarized Electromagnetic Waves by Two-Dimensional Photonic Crystals. Physical Review B.2004,70 (20):205102.
    [12]S. Foteinopoulou, C. Soukoulis. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals:A Study of Anomalous Refractive Effects. Physical Review B.2005,72 (16):165112.
    [13]S. Haxha, W. Belhadj, F. AbdelMalek, H. Bouchriha. Analysis of Wavelength Demultiplexer Based on Photonic Crystals. IEE Proceedings-Optoelectronics. 2005,152(4):193-198.
    [14]R. Gajic, R. Meisels, F. Kuchar, K. Hingerl. All-Angle Left-Handed Negative Refraction in Kagome and Honeycomb Lattice Photonic Crystals. Physical Review B.2006,73:165310.
    [15]M. Notomi. Theory of Light Propagation in Strongly Modulated Photonic Crystals Refractionlike Behavior in the Vicinity of the Photonic Band Gap. Physical Review B.2000,62 (16):10696-10705.
    [16]C. Luo, M. Ibanescu, E. Reed, S. Johnson, J. Joannopoulos. Doppler Radiation Emitted by an Oscillating Dipole Moving inside a Photonic Band-Gap Crystal. Physical Review Letters.2006,96 (4):043903.
    [17]G. Sun, A.G. Kirk. On the Relationship between Bloch Modes and Phase-Related Refractive Index of Photonic Crystals. Optics Express.2006,15 (20):13149-13154.
    [18]G. Sun, A.G. Kirk. Pseudo-Interference and Its Application in Determining Averaged Phase Refractive Index of Photonic Crystals. Presented at the Lasers and Electro-Optics Society,2006:841-842.
    [19]H. Zhang, H. Zhu, L. Qian, D. Fan. Collimations and Negative Refractions by Slabs of 2d Photonic Crystals with Periodically-Aligned Tube-Type Air Holes. Optics Express.2007,15 (6):3519-3530.
    [20]B.D.F. Casse, W.T. Lu, R.K. Banyal, Y.J. Huang, S. Selvarasah, M.R. Dokmeci, C.H. Perry, S. Sridhar. Imaging with Subwavelength Resolution by a Generalized Superlens at Infrared Wavelengths. Optics Letters.2009,34 (13): 1994-1996.
    [21]G.Y. Dong, X.L. Yang, L.Z. Cai. Anomalous Refractive Effects in Honeycomb Lattice Photonic Crystals Formed by Holographic Lithography. Optics Express.2010,18 (16):16302-16308.
    [22]C. He, M.-H. Lu, R.-C. Yin, T. Fan, Y.-F. Chen. Chiral Properties in a Two-Dimensional Chiral Polaritonic Photonic Crystal. Journal Of Applied Physics.2010,108 (7):073103.
    [23]童元伟,毛宇,庄松林.光频段多频率域负折射率材料的数值研究.物理学报.2010,58(8):5553-5558.
    [24]E.L. Fertman, A.B. Beznosov. Natural Media with Negative Index of Refraction:Perspectives of Complex Transition Metal Oxides (Review Article). Low Temperature Physics.2011,37 (7):572-582.
    [25]H. Chen, S. Liu. Manipulating Electromagnetic Wave with the Magnetic Surface Plasmon Based Metamaterials. Applied Physics A.2012,107 (2): 363-370.
    [26]A. Christofi, N. Stefanou. Photonic Structures of Metal-Coated Chiral Spheres. Journal of the Optical Society of America B.2012,29 (6):1165-1171.
    [27]G. Dong, J. Zhou, X. Yang, X. Meng. Multi-Refraction with Same Polarization State in Two Dimensional Triangular Photonic Crystals. Progress In Electromagnetics Research.2012,128:91-103.
    [28]S. Feng, Y. Li, B. Lei, J. Hu, Y. Wang, W. Wang. Imaging Properties and Negative Refraction of the Metallic Photonic Crystal at near-Infrared Frequency. Solid State Communications.2012,152 (11):929-932.
    [29]N. Gibbons, J. Baumberg. Optical Minibands in Metallodielectric Superlattices. Physical Review B.2012,85 (16):165422.
    [30]L. Jiang, H. Wu, X. Li. Alternative Approach to Realize All-Angle Negative Refraction and Far-Field Imaging Effects Via Two-Dimensional All-Solid Photonic Crystals. Optics Communications.2012,285 (9):2462-2465.
    [31]L. Jiang, H. Wu, X. Li. Dual-Negative-Refraction and Imaging Effects in Normal Two-Dimensional Photonic Crystals with Hexagonal Lattices. Optics Letters.2012,37(11):1829-1831.
    [32]L. Jiang, H. Wu, G. Zheng, X. Li. All-Angle Negative Refraction and Imaging Effects for Both Polarizations in Pure Dielectric Composite Two-Dimensional Photonic Crystals. Applied Physics Express.2012,5 (1):012202.
    [33]J. Oden, M. Hofman, X. Melique, D. Lippens, O. Vanbesien. Enhanced Backscattering for Infrared Detection Using Photonic Crystal Based Flat Lens. Applied Optics.2012,51 (23):5601-5608.
    [34]S. Roshan Entezar, A. Madani, A. Namdar, H. Tajalli. Effect of Anisotropy on the Photonic Band Gap and Surface Polaritons of a One-Dimensional Single-Negative Photonic Crystal. Journal Of Magnetism And Magnetic Materials.2012,324 (9):1739-1744.
    [35]S. Safavi, R. Ghayour, J. Ekman. Physical Specifications of Photonic Crystal Slab Lenses and Their Effects on Image Quality. Journal of the Optical Society of America B.2012,29 (7):1829-1834.
    [36]Y.-W. Tong, S. Tian, S.-L. Zhuang. Imaging Properties of Triangular Lattice Photonic Crystal at Multi-Bands. Optik-International Journal for Light and Electron Optics.2012,123 (7):590-593.
    [37]F. Wang, J. Sun, T. Shen, Y. Xu, W. Meng, Z. Li, B. Yuan. Research on Light-Wave Target Detection and Imaging by Using Nr-Pc Flat Lens with Active Impurities. IET Optoelectronics.2012,6 (3):121-126.
    [38]Y. You, C.-y. Chen. Lateral Shifting in One Dimensional Chiral Photonic Crystal. Physica B:Condensed Matter.2012,407 (13):2504-2507.
    [39]L.H. Wang, X.L. Yang, X.F. Meng, Y.R. Wang, S.X. Chen, Z. Huang, G.Y. Dong. Asymmetric Light Propagation Based on Semi-Circular Photonic Crystals. Chinese Physics B.2014,23 (3):34215.
    [40]P.T. Rakich, M.S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G.S. Petrich, J.D. Joannopoulos, L.A. Kolodziejski, E.P. Ippen. Achieving Centimetre-Scale Supercollimation in a Large-Area Two-Dimensional Photonic Crystal. Nature Materials.2006,5 (2):93-96.
    [41]D.W. Prather, S. Shi, J. Murakowski, G.J. Schneider, A. Sharkawy, C. Chen, B. Miao, R. Martin. Self-Collimation in Photonic Crystal Structures:A New Paradigm for Applications and Device Development. Journal of Physics D: Applied Physics.2007,40 (9):2635-2651.
    [42]S.-G. Lee, J.-s. Choi, J.-E. Kim, H.Y. Park, C.-S. Kee. Reflection Minimization at 2d Pc Interfaces. Optics Express.2008,16 (6):4270-4277.
    [43]T.-M. Shih, A. Kurs, M. Dahlem, G. Petrich, M. Soljacic, E. Ippen, L. Kolodziejski, K. Hall, M. Kesler. Supercollimation in Photonic Crystals Composed of Silicon Rods. Applied Physics Letters.2008,93 (13):131111.
    [44]T.-T. Kim, S.-G. Lee, M.-W. Kim, H.Y. Park, J.-E. Kim. Experimental Demonstration of Reflection Minimization at Two-Dimensional Photonic Crystal Interfaces Via Antireflection Structures. Applied Physics Letters.2009, 95 (1):011119.
    [45]T.-T. Kim, S.-G. Lee, H.Y. Park, J.-E. Kim, C.-S. Kee. Asymmetric Mach-Zehnder Filter Based on Selfcollimation Phenomenon in Two-Dimensional Photonic Crystals. Optics Express.2010,18 (6):5384-5389.
    [46]方博,姜淳.二维光子晶体中的自准直研究.光器件.2010.4:30-32.
    [47]Y.C. Chuang, T.J. Suleski. Photonic Crystals for Broadband, Omnidirectional Self-Collimation. Journal of Optics.2011,13 (035103):035103.
    [48]L. Zhang, Q. Zhan, J. Zhang, Y. Cui. Diffraction Inhibition in Two-Dimensional Photonic Crystals. Optics Letters.2011,36 (5):651-653.
    [49]P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar. Imaging by Flat Lens Using Negative Refraction. Nature.2003,426:404.
    [50]R. Srivastava, S. Srivastava. Negative Refraction by Photonic Crystal. Progress In Electromagnetics Research B.2008,2:15-26.
    [51]T.F. Krauss, R.M.D.L. Rue. Photonic Crystals in the Optical Regime-Past, Present and Future. Progress In Quantum Electronics.1999,23:51-96.
    [52]Y. Suematsu, K. Iga. Semiconductor Lasers in Photonics. Journal Of Lightwave Technology.2008,26 (9):1132-1144.
    [53]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang. Three-Dimensional Optical Metamaterial with a Negative Refractive Index. Nature.2008,455 (7211):376-379.
    [54]K. Ho, C. Chan, C. Soukoulis. Existence of a Photonic Gap in Periodic Dielectric Structures. Physical Review Letters.1990,65 (25):3152-3155.
    [55]M. Plihal, A. Maradudin. Photonic Band Structure of Two-Dimensional Systems:The Triangular Lattice. Physical Review B.1991,44 (16): 8565-8571.
    [56]J. Pendry, A. MacKinnon. Calculation of Photon Dispersion Relations. Physical Review Letters.1992,69 (19):2772-2775.
    [57]O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method,2000.
    [58]H.Y.D. Yang. Finite Difference Analysis of 2-D Photonic Crystals. Ieee Transactions On Microwave Theory And Techniques.1996,44 (12): 2688-2695.
    [59]E. Yablonovitch, T. Gmitter, K. Leung. Photonic Band Structure:The Face-Centered-Cubic Case Employing Nonspherical Atoms. Physical Review Letters.1991,67 (17):2295-2298.
    [60]E. Ozbay, G. Tuttle, M. Sigalas, C. Soukoulis, K. Ho. Defect Structures in a Layer-by-Layer Photonic Band-Gap Crystal. Physical Review B.1995,51 (20):13961-13965.
    [61]Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, H. Misawa. Fabrication and Direct Transmission Measurement of High-Aspect-Ratio Two-Dimensional Silicon-Based Photonic Crystal Chips. Journal of the Optical Society of America B.2001,18 (8):1084-1091.
    [62]A. Boisen, K. Birkelund, O. Hansen, F. Grey. Fabrication of Submicron Suspended Structures by Laser and Atomic Force Microscopy Lithography on Aluminum Combined with Reactive Ion Etching. Journal Of Vacuum Science & Technology B.1998,16 (6):2977-2981.
    [63]K. Takagi, K. Seno, A. Kawasaki. Fabrication of a Three-Dimensional Terahertz Photonic Crystal Using Monosized Spherical Particles. Applied Physics Letters.2004,85 (17):3681-3683.
    [64]M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield. Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography. Nature.2000,404:53.
    [65]A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters.1996,77 (18):3787-3790.
    [66]F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, J. Marti. All-Optical Switching Structure Based on a Photonic Crystal Directional Coupler. Optics Express.2003,12 (1):161-167.
    [67]G. Ma, J. Shen, Z. Zhang, Z. Hua, S.H. Tang. Ultrafast All-Optical Switching in One-Dimensional Photonic Crystal with Two Defects. Optics Express.2005, 14 (2):858-865.
    [68]R. Stoffer, H.J.W.M. Hoekstra, R.M. Deridder, E. Vangroesen, F.P.H. Vanbeckum. Numerical Studies of 2d Photonic Crystals-Waveguides, Coupling between Waveguides and Filters. Optical And Quantum Electronics. 2000,32:947-961.
    [69]B.-K. Min, J.-E. Kim, H.Y. Park. High-Efficiency Surface-Emitting Channel Drop Filters in Two-Dimensional Photonic Crystal Slabs. Applied Physics Letters.2005,86(1):011106.
    [70]L. Wang, X. Yang, X. Meng, Y. Wang, S. Chen, Z. Huang, G. Dong. Asymmetric Light Propagation Based on Graded Photonic Crystals. Japanese Journal Of Applied Physics.2013,52 (12R):122601.
    [71]M.I. Kotlyar, Y.R. Triandaphilov, A.A. Kovalev, V.A. Soifer, M.V. Kotlyar, L. O'Faolain. Photonic Crystal Lens for Coupling Two Waveguides. Applied Optics.2009,48 (19):3722-3730.
    [72]F. AbdelMalek, W. Belhadj, S. Haxha, a.H. Bouchriha. Realization of High Coupling Efficiency by Employing a Concave Lens Based on 2-D Photonic Crystals with Negative Refractive Index. Journal Of Lightwave Technology. 2007,25 (10):3168-3174.
    [73]P. Pottier, S. Mastroiacovo, R.M.D.L. Rue. Power and Polarization Beam-Splitters, Mirrors, and Integrated Interferometers Based on Air-Hole Photonic Crystals and Lateral Large Index-Contrast Waveguides. Optics Express.2006,14 (12):5617-5633.
    [74]A. Ghaffari, M. Djavid, M.S. Abrishamian. Power Splitters with Different Output Power Levels Based on Directional Coupling. Applied Optics.2009, 48 (8):1606-1609.
    [75]W. Jia, L. Jiang, K. Chen, X. Li. Design of Photonic Crystal Power Beam Splitters Via Corrugated and Gratinglike Surfaces. Optics Communications. 2010,283 (20):4078-4084.
    [76]H.M. Nguyen, M.A. Dundar, R.W.v.d. Heijden, E.W.J.M.v.d. Drift, H.W.M. Salemink, S. Rogge, J. Caro. Compact Mach-Zehnder Interferometer Based on Self-Collimation of Light in a Silicon Photonic Crystal. Optics Express.2010, 18 (7):6437-6446.
    [77]M. Zhang, R. Malureanu, A.C. Kruger, M. Kristensen.1x3 Beam Splitter for Te Polarization Based on Self-Imaging Phenomena in Photonic Crystal Waveguides. Optics Express.2010,18 (14):14944-14949.
    [78]Y. Zhang, H. Lei, B. Li. Polarization Beam Splitter with Wide Bandwidth in Air-Hole-Based Periodic Dielectric Waveguides. Optics Communications. 2010,283 (10):2140-2145.
    [79]X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, W. Zhou. Polarization Beam Splitter Based on Photonic Crystal Self-Collimation Mach-Zehnder Interferometer. Optics Communications.2011,284 (1):490-493.
    [80]Y. Wan, M. Yun, L. Xia, X. Zhao.1×3 Beam Splitter Based on Self-Collimation Effect in Two-Dimensional Photonic Crystals. Optik International Journal for Light and Electron Optics.2011,122 (4):337-339.
    [81]L. Zhang, Q. Li, Q. Wang.1-to-N Beam Splitter Based on Photonic Crystal Branched Waveguide Structure. Optics & Laser Technology.2011,43 (7): 1325-1330.
    [82]L. Zhang, Q. Zhan, B. Yun, J. Zhang, Y. Cui. Multichannel Routing of Diffraction-Inhibited Beams in Two-Dimensional Photonic Crystals. Optics Express.2011,19 (10):9890-9895.
    [83]R.C. Gauthier, S. Newman, K.E. Medri.2d Fdtd Simulation of Low Loss Small Angle Bend and Y Branch Configurations in a Photonic Crystal Waveguide Layout with a Mach-Zehnder Device Design Configuration. Optics Communications.2012,285 (7):1976-1987.
    [84]P. Li, J. Zhao. Polarization-Dependent Coupling in Gold-Filled Dual-Core Photonic Crystal Fibers. Optics Express.2013,21 (5):5232-5238.
    [85]K. Ren, X. Ren. Y-Shaped Beam Splitter by Graded Structure Design in a Photonic Crystal. Chinese Science Bulletin.2012,157 (11):1241-1245.
    [86]J. Chen, X. Chen. Generation of Conical and Spherical Second Harmonics in Three-Dimensional Nonlinear Photonic Crystals with Radial Symmetry. Journal of the Optical Society of America B.2011,28:241-246.
    [87]J. Carbonell, A. Diaz-Rubio, D. Torrent, F. Cervera, M.A. Kirleis, A. Pique, J. Sanchez-Dehesa. Radial Photonic Crystal for Detection of Frequency and Position of Radiation Sources. Scientific Reports.2012,2:1-8.
    [88]N. Voloch, T. Ellenbogen, A. Arie. Radially Symmetric Nonlinear Photonic Crystals. Journal of the Optical Society of America B.2009,26 (1):42-49.
    [89]A. Adibi, R.C. Gauthier, S.-Y. Lin, A. Scherer. Perfect Periodic Photonic Quasi-Crystals. Proceedings of SPIE.2008,6901: 69011F-69011-69011F-69019.
    [90]B.B. Oner, M. Turduev, H. Kurt. High-Efficiency Beam Bending Using Graded Photonic Crystals. Optics Letters.2013,38 (10):1688-1690.
    [91]M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer. The Photonic Band Edge Optical Diode. Journal Of Applied Physics.1994,76 (2023-2026):2023.
    [92]M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden. Thin-Film Nonlinear Optical Diode. Applied Physics Letters.1995,66 (18): 2324-2326.
    [93]M. Lockyear, A. Hibbins, K. White, J. Sambles. One-Way Diffraction Grating. Physical Review E.2006,74 (5):056611.
    [94]Biancalana, Fabio. All-Optical Diode Action with Quasiperiodic Photonic Crystals. Journal Of Applied Physics.2008,104 (9):093113.
    [95]H. Takeda, S. John. Compact Optical One-Way Waveguide Isolators for Photonic-Band-Gap Microchips. Physical Review A.2008,78 (2):023804.
    [96]Z. Yu, G. Veronis, Z. Wang, S. Fan. One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal. Physical Review Letters.2008,100 (2):023902.
    [97]A.E. Serebryannikov, E. Ozbay. Unidirectional Transmission in Non-Symmetric Gratings Containing Metallic Layers. Optics Express.2009, 17(16):13335-13345.
    [98]A. Serebryannikov. One-Way Diffraction Effects in Photonic Crystal Gratings Made of Isotropic Materials. Physical Review B.2009,80 (15):155117.
    [99]Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljacic. Observation of Unidirectional Backscattering-Immune Topological Electromagnetic States. Nature.2009,461 (7265):772-775.
    [100]Z. Yu, S. Fan. Complete Optical Isolation Created by Indirect Interband Photonic Transitions. Nature Photonics.2009,3 (2):91-94.
    [101]A.O. Cakmak, E. Colak, A.E. Serebryannikov, E. Ozbay. Unidirectional Transmission in Photonic-Crystal Gratings at Beam-Type Illumination. Optics Express.2010,18 (21):22283-22298.
    [102]W.-M. Ye, X.-D. Yuan, C.-C. Guo, C. Zen. Unidirectional Transmission in Non-Symmetric Gratings Made of Isotropic Material. Optics Express.2010, 18 (8):7590-7595.
    [103]C. Wang, C.-Z. Zhou, Z.-Y. Li. On-Chip Optical Diode Based on Silicon Photonic Crystal Heteroj unctions. Optics Express.2011,19 (27): 26948-26955.
    [104]Z. He, S. Peng, Y. Ye, Z. Dai, C. Qiu, M. Ke, Z. Liu. Asymmetric Acoustic Gratings. Applied Physics Letters.2011,98 (8):083505.
    [105]H. Kurt, D. Yilmaz, A.E. Akosman, E. Ozbay. Asymmetric Light Propagation in Chirped Photonic Crystal Waveguides. Optics Express.2012,20: 20635-20646.
    [106]C. Wang, X.-L. Zhong, Z.-Y. Li. Linear and Passive Silicon Optical Isolator. Scientific Reports.2012,2 (674):1-6.
    [107]L. Feng, M. Ayache, J. Huang, Y.L. Xu, M.H. Lu, Y.F. Chen, Y. Fainman, A. Scherer. Nonreciprocal Light Propagation in a Silicon Photonic Circuit. Science.2011,333 (6043):729-733.
    [108]S. Fan, R. Baets, A. Petrov, Z. Yu, J.D. Joannopoulos, W. Freude, A. Melloni, M. Popovic, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, C.R. Doerr. Comment on "Nonreciprocal Light Propagation in a Silicon Photonic Circuit". Science.2012,335 (6064):38.
    [109]B. Vasic, R. Gajic. Self-Focusing Media Using Graded Photonic Crystals: Focusing, Fourier Transforming and Imaging, Directive Emission, and Directional Cloaking. Journal Of Applied Physics.2011,110 (5):053103.
    [110]N. Yogesh, V. Subramanian. Spatial Beam Compression and Effective Beam Injection Using Triangular Gradient Index Profile Photonic Crystals. Progress In Electromagnetics Research.2012,129:51-67.
    [111]F. Roux, I. De Leon. Planar Photonic Crystal Gradient Index Lens, Simulated with a Finite Difference Time Domain Method. Physical Review B.2006,74 (11):113103.
    [112]H. Kurt, D.S. Citrin. Graded Index Photonic Crystals. Optics Express.2007, 15:1240-1253.
    [113]E. Centeno, D. Cassagne. Graded Photonic Crystals. Optics Letters.2005,30: 2278-2280.
    [114]R.D. Meade, A. Devenyi, J.D. Joannopoulos, O.L. Alerhand, D.A. Smith, K. Kash. Novel Applications of Photonic Band Gap Materials:Low-Loss Bends and High Q Cavities. Journal Of Applied Physics.1994,75 (9):4753-4755.
    [115]B. Temelkuran, E. Ozbay. Experimental Demonstration of Photonic Crystal Based Waveguides. Applied Physics Letters.1999,74 (4):486-488.
    [116]Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, E.L. Thomas. Guiding Optical Light in Air Using an All-Dielectric Structure. Journal Of Lightwave Technology.1999,17:2039-2041.
    [117]T. Baba, N. Fukaya, J. Yonekura. Observation of Light Propagation in Photonic Crystal Optical Waveguides with Bends. Electronics Letters.1999, 35 (8):654-655.
    [118]R.F. Cregan. Single-Mode Photonic Band Gap Guidance of Light in Air. Science.1999,285(5433):1537-1539.
    [119]A. Mekis, J.D. Joannopoulos. Tapered Couplers for Efficient Interfacing between Dielectric and Photonic Crystal Waveguides. Journal Of Lightwave Technology.2001,19 (6):861-865.
    [120]M. Palamaru, P. Lalanne. Photonic Crystal Waveguides:Out-of-Plane Losses and Adiabatic Modal Conversion. Applied Physics Letters.2001,78 (11): 1466-1468.
    [121]S.J. McNab, N. Moll, Y.A. Vlasov. Ultra-Low Loss Photonic Integrated Circuit with Membrane-Type Photonic Crystal Waveguides. Optics Express. 2003,11:2928-2939.
    [122]Y.S. Chan, C.T. Chan, Z.Y. Liu. Photonic Band Gaps in Two Dimensional Photonic Quasi crystals. Physical Review Letters.1998,50 (5):956-959.
    [123]J. Liu, Z. Fan, M. Kuang, G. He, C. Guan, L. Yuan. Relative Permittivity Dependence of Photonic Band Gaps for Unit Cells of the Basic Structural Unit of Two-Dimensional Decagonal Photonic Quasicrystals. Optics Communications.2013,288:52-55.
    [124]M.E. Zoorob, M.D.B. Charlton, G.J. Parker, J.J. Baumberg, M.C. Netti. Complete Photonic Bandgaps in 12-Fold Symmetric Quasicrystals. Nature. 2000,404:740-743.
    [125]K. Wang. Structural Effects on Light Wave Behavior in Quasiperiodic Regular and Decagonal Penrose-Tiling Dielectric Media:A Comparative Study. Physical Review B.2007,76 (8):085107.
    [126]S. Xiao, M. Qiu. Study of Transmission Properties for Waveguide Bends by Use of a Circular Photonic Crystal. Physics Letters A.2005,340 (5-6): 474-479.
    [127]N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo. Improved Characteristics of Ingan Multiple-Quantum-Well Light-Emitting Diode by Gan/Algan Distributed Bragg Reflector Grown on Sapphire. Applied Physics Letters.2000,76 (14):1804-1806.
    [128]G.E. Hofler, D.A. Vanderwater, D.C. DeFevere, F.A. Kish, M.D. Camras, F.M. Steranka, I.H. Tan. Wafer Bonding of 50-Mm Diameter Gap to Algainp-Gap Light-Emitting Diode Wafers. Applied Physics Letters.1996,69 (6):803-805.
    [129]M.R. Krames, M. Ochiai-Holcomb, G.E. Hofler, C. Carter-Coman, E.I. Chen, I.H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins. High-Power Truncated-Inverted-Pyramid (Al X Ga Ix) 0.5 in 0.5 P/Gap Light-Emitting Diodes Exhibiting>50% External Quantum Efficiency. Applied Physics Letters.1999,75 (16):2365-2367.
    [130]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G.H. Dohler, B. Dutta, M. Kuijk, G. Borghs, P. Heremans. Impact of Texture-Enhanced Transmission on High-Efficiency Surface-Textured Light-Emitting Diodes. Applied Physics Letters.2001,79 (15):2315-2317.
    [131]A.I. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.P. DenBaars, E.L. Hu, C. Weisbuch, H. Benisty. Photonic-Crystal Gan Light-Emitting Diodes with Tailored Guided Modes Distribution. Applied Physics Letters. 2006,88 (6):061124.
    [132]葛德彪,闫玉波,电磁波时域有限差分法,西安电子科技大学出版社,2005.
    [133]G.Y. Dong, X.L. Yang, L.Z. Cai. Left-Handed Behaviors in Honeycomb and Triangular Lattice Photonic Crystals Formed by Holographic Lithography. Optics Express.2010,18 (16):16302-16308.
    [134]T.N. Oder, K.H. Kim, J.Y. Lin, H.X. Jiang. Iii-Nitride Blue and Ultraviolet Photonic Crystal Light Emitting Diodes. Applied Physics Letters.2004,84 (4): 466-468.
    [135]L. Zhang, D. Chen, F. Yang, Y. Li. Research on Su-8 Resist Photolithography Process. Optics and Precision Engineering.2002,10 (3):266-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700