Hermitian介质及圆柱亚波长孔阵列中电子辐射及互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在太赫兹科学技术的研究工作中,太赫兹辐射源是一个急待解决的问题。无论是从科学研究的角度还是从应用角度看,一个便于使用又具有良好性能的太赫兹辐射源就是科学家们追求的目标。因此本论文主要研究电子束在各向异性Hermitian介质中以及新型圆柱型亚波长孔阵列结构中的辐射特性以及互作用机理,旨在为相关太赫兹源的研究、发展提供理论依据及新思路。
     本论文主要从理论到模拟研究、从基础到应用,通过对各向异性Hermitian介质Cherenkov辐射理论体系的建立引申到电子在亚波长孔阵列结构中的辐射现象,再将电子束与亚波长孔阵列结构相结合研究该结构中注波互作用过程。
     本论文主要研究内容及所得到的成果如下:
     1.本文对电子在Hermitian介质中的Cherenkov辐射进行了详尽的讨论,建立了较为完整的理论体系,得到了辐射场解析表达式、辐射功率表达式等,对其辐射条件、特征值、相速、群速、辐射功率进行了研究。结果表明带电粒子在各向异性介质中激发的Cherenkov辐射必须要考虑电荷和电流同时对辐射场的贡献;Hermitan介质中的Cherenkov辐射能向外辐射出两个模式,一个是通常可以向外辐射的“o”模,一个则是往往以局域场出现的“e”模。当满足特殊条件时,两个模式仍然可以同时向外辐射,这个结果有别于传统的在各向同性色散介质中的Cherenkov辐射。此外,Hermitan介质中Cherenkov辐射的辐射场相速大于群速。
     2.本文研究了Hermitian介质中的Cherenkov辐射精细结构出现的原因,得出该现象是带电粒子在有损Hermitian介质中Cherenkov辐射固有的一种特殊物理现象,它的出现主要因为辐射场群速比相速小。
     3.本文研究了运动Hermitian介质中的Cherenkov辐射,讨论了介质运动速度对辐射场特征值、辐射条件、辐射功率的影响,结果表明在运动Hermitian介质中的Cherenkov辐射同样存在两个不同的辐射模式。并且介质运动速度对“e”模影响十分大,随着速度的增加“e”模场强迅速减小,而“o”模影响则较小。并且在运动介质中同样存在辐射场相速大于群速的情况,当考虑损耗时也同样存在精细结构现象。
     4.基于Hermitian介质中Cherenkov辐射的研究本文对电子在圆柱型亚波长孔阵列结构中辐射现象进行了研究。发现,电子在这种结构中辐射场分布明显与传统光栅有所不同,其角向场分布由于周期孔阵列的出现也呈周期分布。鉴于此我们对电子束在这种结构中的互作用以及该结构高频特性也进行了研究。
     5.本文分析了圆柱亚波长孔阵列结构色散特性、模式分布以及耦合阻抗,并通过线性理论分析得出了电子束在该结构中互作用色散方程、计算出了互作用增长率,并通过3D粒子模拟软件仿真了该互作用过程。结果发现电子束在这种结构中的互作用能有效降低起振电流密度。
Terahertz Science and Technology is a very important and rapidly developing area of modern science. Nowadays, in order to fill the "THz gap", the exploration of THz radiation sources turns to be the highest priority. Although strong efforts have been made and some progresses have been achieved in this aspect, there are still many problems associated with the THz radiation sources. In this dissertation, the Cherenkov radiation in Hermitian medium, radiation and interaction between electron beam and cylindrical mimicking surface plasmons wave have been studied.
     The following results have been achieved in this dissertation:
     1. Detailed theoretical investigation and computer calculations on Cherenkov Radiation by an electron bunch that moves in a Hermitian medium (CRH) with and without absorption are presented in the paper. The theory shows that in CRH, not only the current density but also the charge density of the particle contributes to the Cherenkov Radiation (CR). It has been found that there are two modes in the CRH; in general, only one of them is radiative mode, another one is local field, and the area where both of these two modes are radiative modes simultaneously is studied, the comparison of the two modes is given in the paper and the relation of the existence of these two modes has been improved. The comparison of the calculations shows that the radiation power of mode "o" is larger than that of mode "e". And it indicates that the group velocity in the CRH is slower than the phase velocity. Detailed computer calculations are given in the paper, and some interesting physical phenomena of CR have been revealed.
     2. The theory gives a simple physical interpretation of the inner fine structure of the CRH; it concludes that the mechanism of the appearance of the inner fine structure of CR is that in the absorptive Hermitian medium the group velocity is less than the phase velocity.
     3. Detailed theoretical investigation and computer calculations on the Cherenkov Radiation (CR) in moving Hermitian medium (CRMH) are presented in this paper. It has been found that, similar to that in stationary Hermitian medium (CRH) case, there are two modes in the CRMH; in general, only one of them is radiative mode, another one is local field, and the comparison of the two modes is given in the paper. The small absorption of CRMH mainly results in the Gaussian-like field intensity pattern. And the group velocity in the CRMH is always slower than the phase velocity in the moving HM, so the fine inner structure occurs. Comparing the behaviors of CRMH and CRH, we have found that the movement of the Hermitian medium (HM) brings significant influences on the CR, so there are some interesting characteristics of CRMH, such as in the CRMH, the radiation power of the "o" mode is much higher than that of "e" mode. And because of the relativistic Doppler Effect, the frequency region where both modes are radiative becomes quite different from that for CRH.
     4. Based on the study of Cherenkov radiation in Hermitian Medium, the study on the radiation in the cylindrical sub-wavelength holes array is presented. It is found that the contour of this radiation is different from traditional grating-radiation. So the works on the dispersion characteristics and interaction have been carried out.
     5. The coupling impedance and modes distribution of this cylindrical structure is presented and studied theoretically and by computer simulation. More importantly, the mimicking surface plasmons modes are proposed to interact with electron beam to generate terahertz radiation. The results given in the paper show that the cylindrical MSP has distinct characteristics and the efficiency of this cylindrical MSP-electron beam interaction can reach an attractive value with reasonable current density of electron beam at THz regime.
引文
[1]刘盛纲.太赫兹科学技术的新发展.第270次香山科学会议.北京,2005,6-30
    [2]刘盛纲.太赫兹科学技术的新发展.中国基础科学,2006,1(1):7-12
    [3]Nichols E J, Tera J D. Joining the infrared and electronic wave spectra. Astro. Phys.,1925,61 (1):17-37
    [4]Liu S. G. The possible contributions of vacuum electronics to terahertz radiation sources.4th IEEE Int. Conf. Vacuum Electronics,2003,1 (1):357
    [5]Zhang X C, Hu B B, Darrow J T, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. J. Appl. Phys.,1990,56(11):1011-1013
    [6]Siegel P H. Terahertz Technology. IEEE Trans. MTT,2002,50(3):910-928
    [7]Siegel P H. Terahertz Technology in Biology and Medicine. IEEE Trans. MTT,2004, 52(10):2438-2447
    [8]Dekorsy T, Auer H, Waschke C, et al. Emission of Submillimeter Electromagnetic Waves by Coherent Phonons. Phys.Rev. Lett.,1995,74 (5):738-741
    [9]Nagatsuma T. Exploring sub-terahertz waves for future wireless communication. Joint Int. Conf.31st Infrared Millimeter Waves and 14th Teraherz Electronics, 2006:4
    [10]曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,9(2):111-117
    [11]Faist J, Capasso F, Sivco D C, et al. Quantum Cascade Laser. Science,1994, 264(5157):553-556
    [12]Citrin D S. High-field electron-hole wavepacket dynamics and THz emission in semiconductor quantum wells. Opt. Commun.,1998,148 (3):187-196
    [13]Tredicucci A, Khler R, Beltral F, et al. Low-Dimensional Systems and Nanostructures Terahertz quantum cascade lasers, Phys. E,2004,21 (3):846-851
    [14]Khanna S P, Chakraborty S, Lachab M, et al. Terahertz frequency quantum cascade lasers:growth and measurement. Int. J. Terahertz Science and Technology, 1(1):22-27
    [15]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature,2002,417(6885):156-159
    [16]Liu H C, Wachter M, Ban D, et al. Quantum-well infrared photodetector with voltage-switchable quadratic and linear response.Appl. Phys. Lett., 2006,88(1):1-3
    [17]Cao J C, Liu H C, Lei X L, et al. Simulation of negative-effective-mass terahertz oscillators. J. Appl. Phys.,2000,87 (6):2867-2873
    [18]Auston D H, Smith P R. Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett.,1983,43(7):631
    [19]NEIL G R. High power subpicosecond THz and IR production. Joint Int. Conf.29th Infrared and Millimeter Waves and 12th Terahertz Electronics, 2004:593-594
    [20]Roser H P. Heterodyne Spectroscopy for Submillimeter and far Infrared Wavelengths. Infrared Phys.,1991,32(5):385-407
    [21]Auston D H, Cheung K P, Valdmanis J A, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett.,1984,53 (16):1555-1558
    [22]Wu L, Zhang X C, Auston D H. Terahertz Beam Generation by Femtosecond Optical Pulses in Electro-optic Materials. Appl. Phys. Lett.,1992,61(15):1784
    [23]Brown E R, Smith F W, McIntosh K A. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. Appl. Phys.,1993,73 (3):1480-1484
    [24]Khurgin J. Comparison of different optical methods of THz generation. Proc. SPIE, 1999,3624(1):128-139
    [25]Matsuura S, Tani M, and K. Sakai. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett.1997,70 (5):559-561
    [26]Weiss C, Torosyan G, Avetisyan Y, et al. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate. Opt. Lett.,2001,26 (8):563-565
    [27]Weiss C, Torosyan G, Meyn J P, et al. Tuning characteristic of narrow band THz radiation generated via optical rectification periodically poled lithium niobate. Opt. Exp.,2001,8 (9):497-502
    [28]Zhang X C, Jin Y, Ma X F. Coherent Measurement of THz Optical Rectification from Electro-optic Crystals. Appl. Phys. Lett.,1992,61(23):2764
    [29]Li Y M, Wu Y R, Zhang K S, et al. Influence of the randomly varying domain length of quasi-phase-matched crystals on quadrature squeezing performance. Chin. Phys.,2002,11 (8):790-794
    [30]Lin X C, Li R N, Yao A Y, et al. Period and temperature tuning of cascaded optical parametric oscillator based on periodically poled LiNbO3. Chin. Phys.,2003,12 (5):514-517
    [31]薛挺,于建,杨天新,等.周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析.物理学报,2002,51(11):2528-2535
    [32]姚建铨.准相位匹配PPLN、PPKTP、PPRTA光学参量振荡器及其应用.中国计量学院学报2001,12(2):42-46
    [33]张百钢,姚建铨,王鹏,等.周期极化晶体倍频的允许极化周期的研究.光电子激光,2002,13(4):405-408
    [34]Agusu L, Idehara T, Mori H, et al. Design of a CW ITHz Gyrotron using a 20T superconducting magnet. Int. J. Infrared and Millimeter Waves,2007, 28(3):315-328
    [35]Siegel P H, Fung A, Manohara H, et al. Nanoklystron:A monolithic tube approach to THz power genertation.12th International Conference on THz Technology. 2001,12 (1):81-90
    [36]Gruner G. Millimeter and Submillimeter Wave Spectroscopy of Solids. Appl. Phys., 1998,74(1):51-109
    [37]Bllattaeharjee S, Kory CL, Lee W J. Comprehensive Simulation of Compact THz Radiation Sources Using Microfabricated Folded waveguide TWTs. IEEE Int. Conf. Vacuum Electronics,2002:26-27
    [38]Bllattaeharjee S, Booske J H, Kory C L, et al. Investigation of Folded waveguide TWT Oscillators for THz Radiation. IEEE Int. Conf. Vacuum Electronics, 2003:317-318
    [39]Bhattacharjee S, Booske J H, Kory C L, et al. Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans. Plasma Science,2004, 32(3):1002-1014
    [40]McMillan R W, Trussell C W, Bohlander R A, et al. An experimental 225GHz Pulsed coherent radar. IEEE Trans.MTT,1991,39(3):555-562
    [41]Dave B, Peter H, Mark H, et al. Extended interaction klystron for submillimeter applications. Conf.30th Infrared and Millimeter Waves and 13th Terahertz Electronics,2005:84
    [42]Albert R, Peter H, Mark H, et al. Extended interaction klystron for submillimeter applications. IEEE Int. Conf. Vacuum Electronics,2006:191
    [43]Albert R, Dave B, Mark H, et al. Sub-Millimeter Waves from a compact, low voltage Extended Interaction Klystron. Conf.32th Infrared and Millimeter Waves and 15th Terahertz Electronics,2007:892-894
    [44]Bratman V L, Dumesh B S, Fedotov A F. Broadband Orotron operation at millimeter and submillimeter waves. Int. J. Infrared and Millimeter Waves,2002, 23(11):1595-1601
    [45]P. A. Cerenkov. Visible glow of pure liquids under g-irradiation. Dokl. Akad. Nauk SSSR.,1934,2(2):451-454
    [46]P. A. Cerenkov. Visible radiation induced by Y rays in pure fluids. Dokl. Akad. Nauk SSSR.,1934,2(2):455-457
    [47]P. A. Cerenkov. Radiation of electrons moving with the velocity exceeding that of light. Trudy FIAN.,1944,2(2):61-65
    [48]Frank I.M, Tamm I.E. Coherent radiation of fast electron in medium. Dokl. Akad. Nauk SSSR.,1937(14):107-113
    [49]Ginzburg V. L. Quantum theory of the light radiation from the electron moving uniformly in medium. Zh. Eksp. Theor. Fiz.,1940,10(3):589-600
    [50]Sokolow. A. Quantum theory of the elementary particles. Dokl. Akad. Nauk SSSR., 1940,28(8):415-417
    [51]Vavilov S. I. On the possible reasons for the blue γ luminescence of fluids. Dokl. Akad. Nauk SSSR.,1934,2(2):457-461
    [52]Vodopjanov A. S, Zrelov V. P, Tyapkin A. A Analysis of the anomalous Cherenkov radiation obtained in the relativistic lead ion beam at CERN SPS. Particles Nuclei Lett.,2000,99(2):35-41
    [53]Wahlstrand J. K, Merlin R. Cherenkov radiation emitted by ultra-fast laser pulses and the generation of coherent polaritons. Phys. Rev. B,2003,68(1):1-11
    [54]B. Van Compernolle. Cherenkov radiation of Shear Alfven waves. Phys. Plasm.,2008, 15(08):082101
    [55]Y. Avetisyan, Y. Sasaki. Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithuium niobate waveguide. Appl. Phys. B,2001,73(5):511-514
    [56]M. Theuer, G. Torosyn, C. Rau, et al. Effcient generation of Cherenkov-type THz radiation from a LiNbO3 crystal with a silicon prism output coupler. Appl. Phys. Lett.,2000,88(7):071122
    [57]Yoshii, J., Lai, C. H., Katsouleas, T., et al. Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett.,1997,79(21):4194-4197
    [58]N. Yugami, T. Higashiguchi, H. Gao, et al. Experimental Observation of Radiation from CherenkovWakes in a Magnetized Plasma. Phys. Rev. Lett.,2002,89(6): 4194-4197
    [59]Davoud Dorranian, Mikhail Starodubtsev, Hiromichi Kawakami, et.al. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E,2003,68(2):026409
    [60]N. Spence, T. Katsouleas, and P. Muggli. Simulations of Cerenkov wake radiation sources. Phys. Plasm.,2001,8(11):4995-5005.
    [61]M. I. Bakunov, S. B. Bodrov, A. V. Maslov, et. al. Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma. Phys. Rev. E,2004,70(1):016401.
    [62]T Shen, Peter B Catrysse, Shanhui Fan. Mechanism for designing metallic matamaterials with a high index of refraction. Phys. Rev. Lett.,2005,94(19): 197401
    [63]Hou-Tong Chen, John F Hara, Abul K Azad, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics,2008,2(5):295-298
    [64]S. Antipov, L. Spentzouris, W. Gai. Observation of wakefield generation in left-handed band of metamaterial-loaded waveguide. J. Appl. Phys.,2008, 104(01):014901
    [65]Bae-Ian Wu, Jie Lu, and Jin Au Kong. Left-handed metamaterial design for Cerenkov radiation. J. Appl. Phys.,2007,102(11):114907
    [66]Yu.0. Averkov and V. M. Yakovenko. Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material. Phys. Rev. B,2005,72 (2): 205110
    [67]ean-Baptiste Masson, Guilhem Gallot. Coupling between surface plasmons in subwavelength hole arrays. Phys. Rev. B,2006,73(12):121401
    [68]F J Garcia de Abajo, J J Saenz, I Campillo, et al. Site and lattice resonances in metallic hole arrays. Optics Express,2006,14(1):9769
    [69]F J Garcia de Abajo, R Gomez-Medina, J J Saenz. Full transmission through perfect-conductor subwavelength hole arrays. Phys. Rev. E,2005,72(1):016608
    [70]Haitao Liu, Philippe Lalanne. Microscopic theory of the extraordinary optical transmission. Nature,2008,452(6762):728-731
    [71]L Martin-Moreno, F J Garica-Vidal, H J Lezec, et al. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett.,2001, 86(6):1114-1117
    [72]Capser W Barnes, K G Dedrick. Radiation by an Electron Beam Interacting with a Diffraction Grating Two-Dimensional Theory. Journal of Applied Physics,1966, 37(1):411-418
    [73]J B Pendry, L Martin-Moreno, F J Garcia-Vidal. Mimicking Surface Plasmons with Structured Surfaces. Science,2004,305(5685):847-848
    [74]Young-Min Shin, Jin-Kyo So, Kyo-Ha Jang, et al. Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons. Phys. Rev. Lett. 2007,99(14):147402
    [75]Smith S J, Purcell E M. Visible Light from Localized Surface Charges Moving across a Grating. Phys. Rev.,1953,92(2):1069-1070
    [76]Yong-Min, Jin-Kyu So, Kyu-Ha Jang, et al. Superradiant terahertz Smiht-Purcell radiation from surface plasmon excited by counterstreaming electron beams. Appl. Phys. Lett.,2007,90(3):031502
    [77]G. N. Afanasiev, V. G. Kartavenko, and V. P. Zrelov. Fine structure of the Vavilov-Cherenkov radiation. Phys. Rev. E,2003,68(6):066501
    [78]M. Artoni, I. Carusotto, G. C. La Rocca. Vavilov-Cherenkov effect in a driven resonant medium. Phys. Rev. E,2003,67(4):046609
    [79]Carusotto I, Artoni M, La Rocca GC, Bassani F. Slow group velocity and Cherenkov radiation. Phys. Rev. Lett.,2001,87(6):064801
    [80]J. V. Jelley. Cerenkov Radiation and its Applications. Press, London,1958
    [81]刘盛纲.相对论电子学.北京:科学出版社,1987,387-394
    [82]Li Wei, Gong Ma Li, et al. The dispersive properties of a dielectric-rod loaded waveguide immersed in a magnetized annular plasma. Chinese Physics B,2004, 13(1):54-59
    [83]Gao Hong, Liu shenggang. Dispersion relation of a magnetized plasma-filled backward wave oscillator. Chinese Physics B,2000,9(4):274-278
    [84]Liu S G, Wei Y Y, Yuan X S, et. al. Linear theory of the electron beam-wave-plasma interactions in a magnetized plasma waveguide, J. Appl. Phys.,2007,101(5): 053309
    [85]Kiyotoshi Yasumoto. Radiation from a moving point charge in a drifting anisotropic plasma. Rdiao Science,1983,18(2):207-215
    [86]Kong J A and Cheng D K. On Guided Waves in Moving Anisotropic Media. IEEE Trans. MTT,1968,16(1):99-106
    [87]Allen H. Boozer. Force on a moving plasma by a finite conductivity wall. Phys. Fluids,1981,24 (13):1387-1398
    [88]Kimio Nakagawa. Interaction between a sheet source and a moving compressible plasma. J. Appl. Phys.1990,67(6):6125
    [89]Liu S. G. Yan Y, Mao J and Manos D M. Theory of wave propagation along a waveguide filled with moving magnetized plasma. Phys. Rev. E,2002,65(03):036411
    [90]C Genet, T W Ebbesen. Light in tiny holes. Nature,2007,445(5350):39-46
    [91]Alastair P. Hibbins, Benjamin R. Evans and J. Roy Sambles. Experimental Verification of Designer Surface Plasmons. Science,2005,308(5722):670-672
    [92]William L. Barnes, Alain Bereux and Thomas W. Ebbersen. Surface plasmon subwavelength optics. Nature,2003,424(14):824
    [93]S. I. Bozhevolnyi, J. erland, K. Leossen, P. M. Skovgaard and J. M. Hvam. Waveguiding in Surface Plasmon Polariton Band Gap Structures. Phys. Rev. Lett., 2001,86(14):3008
    [94]Eamon Lalor. Three-Dimensional Theory of the Smith-Purcell Effect. Phys. Rev. A,1973,7(2):435-446
    [95]G F Mkrtchian. Small signal gain of a Smith-Purcell free electron laser. Phys. Rev. ST-AB,2007,10(8):080701
    [96]P M VandenBerg. Smith-Purcell radiation from a line charge moving parallel to a reflection grating. Journal of the optical society of America,1973,63(12): 689-697
    [97]王峨锋,李宏福,螺旋波纹波导研究.物理学报,2005,54(1):5339-5342
    [98]Gregory. G. Denisov, V. L. Bratman, Gyro-TWT with a Helical Operating Waveguide. IEEE. Trans. Plasma Sci.,1998,26:508-518.
    [99]Gregory. G. Denisov, V. L. Bratman. Linear Theory of a Wide-band Gyro-TWT. IEEE. Trans. Plasma Sci.,1998,26:519-530
    [100]Xi Gao, Ziqiang Yang, Yong Xu, etal. Dispersion characteristics of a slow wave structure with metal photonic band gap cells. Nuclear Instruments and Methods in Physics Research A,2008,592(2):292-296.
    [101]Chodorow M, Wessed-Berg T. A High-Efficiency Klystron with Distributed Interaction. IRE Trans. ED,1961,8 (1):44-55
    [102]Schachter L. Beam-wave interaction in periodic and quasi-periodic structures. Berlim:Springer,1996,111-115
    [103]Wenxin Liu, Ziqiang Yang, Zheng Liang, et al. Terahertz Radiation from dual-grating driven by two electron beams, Jpn. J. Appl. Phys.2007, 46(4A):1745-1750
    [104]Y. Y. Lau and L. R. Barnett. Theory of a low magnetic field gyrotron. Int. J. of Infrared and MM waves,1982,3(5):619-643
    [105]鄢扬,李宏福,刘盛纲Cusptron自洽非线性分析.电子科技大学学报,1994,23(2):138-144
    [106]Wes Lawson, Anna Fernandez, Tara Hutchings, et al. A novel hybrid slow-wave/fast-wave traveling-wave amplifier. IEEE Trans. Plasma Sci.,1997, 25(5):1150-1154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700