桥梁钢断裂韧性CTOD试验与仿真分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公路和铁路建设的迅猛发展,钢结构桥梁向大跨度、大节段、结构新颖美观方向发展,焊接结构呈现大型化、厚壁化的发展趋势,这就迫使工程人员采用高强度钢材和厚钢板。众所周知,母材和焊接接头的韧性不足,是焊接结构破坏的主要原因。厚钢板的大量采用会产生了一个与强度、刚度和稳定性同等重要的问题——厚钢板及其焊接接头的韧性控制。因此,准确评定厚钢板母材的韧性对于大型钢结构的防裂防断,确保其安全性,十分重要。本文采用数值模拟仿真与试验研究相结合的方法研究了桥梁用钢Q420qE和Q370qE的断裂韧性问题,主要研究内容和结论如下:
     (1)针对东莞东江大桥设计要求,对主要桥梁用钢Q420qE和Q370qE力学性质进行了试验研究。选取两种主要桥梁结构钢材Q420qE和Q370qE以及焊接接头进行了常温力学性质的测试。获得了钢材Q420qE和Q370qE的拉伸曲线,测定了各种力学指标:屈服强度、极限强度、截面收缩率等参数。
     (2)分别对各组CTOD试件进行了疲劳裂纹预制试验,在试验过程中,首先采用较大的恒幅疲劳载荷预制裂纹,然后采用较小的恒幅疲劳载荷对试件完成剩余裂纹预制工作,通过这种方法可以制得裂纹根部半径为零的疲劳裂纹,并且保证裂纹尖端不产生钝化,同时节约了大量的预制疲劳裂纹时间。在整个试验过程中,由疲劳试验机的控制微机记录了恒幅疲劳载荷的大小、加载时间、次数、频率等数据。
     (3)分别对桥梁钢试件常温和低温下断裂韧度进行了试验研究。试验研究了不同厚度两种桥梁用钢Q420qE和Q370qE厚板试件同温度下的断裂行为,获得了含裂纹试件的P-V曲线,并对断口进行了测量,根据结果计算出桥梁用钢试件在不同温度下的裂纹尖端张开位移值。并且对试验结果进行了分析,讨论了板厚和温度对桥梁用钢Q420qE和Q370qE厚板试件CTOD断裂韧性的影响规律。断裂韧度CTOD试验结果表明:Q370qE母材、焊缝以及Q420qE母材、焊缝、热影响区试件的断裂韧性测试CTOD试验值受温度影响很大,在温度降低时,焊缝的断裂韧性下降急剧;而Q370qE热影响区断裂韧度受温度影响不明显;同时,试件的CTOD值跟板厚关系密切。
     (4)基于线弹性断裂力学的基本理论,运用疲劳分析软件对CTOD试件进行裂纹扩展分析,考虑到裂纹尖端处的应力奇异性,在利用有限元方法计算穿透裂纹的应力强度因子时,裂尖区域选用了20结点三维等参奇异单元,可以保证结果的收敛性。通过数值模拟,本文建立了不同尺寸材料的试件裂纹长度与循环次数关系曲线。通过仿真值与试验值对比表明选用以线弹性断裂力学为基础的软件计算桥梁钢试件疲劳预制裂纹过程的正确性。
     (5)对金属材料断裂韧性测试中运用的数值仿真方法的基本理论进行了总结和分析,在采用有限元软件ANSYS和LS-DYNA对CTOD试件的断裂韧性计算结果与试验相比较的基础上,证明了ANSYS和LS-DYNA对桥梁用钢的断裂韧性试验的三维数值模拟问题的有效性和可行性。通过计算仿真工作发现选用显式积分法软件LS-DYNA处理准静态断裂破坏问题比隐式通用软件ANSYS具有更高的精度和可靠性,并且计算过程中,在保证计算精度的前提下,可以通过适当的提高加载速度来缩短计算时间。同时本文研究了仿真计算模拟下的网格尺寸的选取和精度、计算时间控制的问题,通过研究结果,得出了桥梁用钢断裂韧性CTOD试验三维数值模拟计算的网格划分尺度,有效的解决了利用有限元软件LS-DYNA在金属材料韧性计算研究上时间与精度上的优化。
     (6)通过参考国内外CTOD韧性测试规范和重要文献,根据桥梁安全级别、重要性和服役温度,对桥梁用钢厚板CTOD允许值进行了探讨,并对重大工程东江桥厚板焊接接头断裂韧度作出评估。同时断裂韧度CTOD推荐值可以为其他厚板结构以及焊接接头的断裂韧度评判提供参考。
With the rapid development of railway and highway in the recently 100 years, the construction of steel bridge will become large-span, large segment, novel style structural. In large span bridge design, because of their link force received increase, we have to use the thick plate if we choose traditional steel or use the high strength. At the same time, their work environment become worse and worse, the application of larger engineering project appear with using the high strength steel and thick plate in large amount engineering. The incident of common steel structure and welded connection which are made by the high strength steel and thick plate appear brittle fracture become more frequently. Therefore the problem come to us:the fracture toughness evaluation and control for steel structural need to research which is also very important to the problem of material strength stiffness, stability. As we known, the fracture toughness weakness of the heat affected zone and welded connection is the main reason of failure of welded structure, the thick of steel plate, the weak fracture toughness is. Therefore, the accurate evaluation fracture toughness of thick steel plate is extremely important to the anti-fracture of large span steel bridge. In this research, this paper use numerical simulation method and CTOD experimentation for bridge steel Q420qE and Q370qE to evaluation their fracture toughness, and the following efforts have been made and the conclusions are presented:
     (1) This research measured the mechanical behavior of bridge structural steel which was needed for the design of Dongguan east river bridge were undertook. The environmental and physical condition is determinate by the temperature region where the Dongguan east river in. This paper choosed two important bridge structural steel Q420qE and Q370qE of different thick plate and the welded seam material to do the research on their mechanical properties. This investigation can get various mechanical parameter from tests, for example:yield strength, ultimate strength, section shrinkage rate and percentage elongation and'so on.
     (2) At the same time, the CTOD specimens fatigue crack were made for each group specimens. in the test, firstly,these specimens were under larger fatigue load; at last,residual fatigue crack were made by smaller fatigue load. In this method, a lot of time was saved, the radious of crack which is equal to zero was made, and the crack tip was not in passivation. At the same time, the relationship of the load, crack extend growth, load cycle and frequency were record.
     (3) The bridge structure steel Q420qE and Q370qE of different thickness in different temperature were under fracture behavior test, the P-V curve were obtain from the specimens which contain crack, the change rule which are influence by the test temperature and the thickness of specimens were obtain from the change crack open displacement. The value of CTOD was under investigation from its accuracy and practicability, furthemore, the CTOD value of different bridge steel specimen which is affected by the change of temperature greatly is analyzed, and the crack open displacement value is close related to temperature and thick is presented. we can come to the conclusion that:except for Q370qE HAZ specimens, the fracture toughness CTOD value of bridge steel Q420qE and Q370qE specimens are greatly influenced by the test temperature, at the same time, when the base steel specimens, heated affect zone specimens and welded seam specimens are under the environment when the temperature is down quickly, the fracture toughness of welded seam specimens are the most sensitive, and all of CTOD value of the specimens is closed to the thickness of specimens.
     (4)Based on the linear-elastic fracture mechanics, considering the stress strange of the crack tip, the 3D 20 point special element was made for crack tip when use the FEM to compute the KI. using fatigue software to anlysis the crack growth of CTOD specimens, found the relationship of the load,crack extend growth, load cycle, the result were show that using fatigue to compute the bridge steel fatigue crack growth was right.
     (5) The investigation show that using finite element software ANSYS and LS-DYNA to solve the calculation of the fracture toughness of metal bridge material is correct and feasible which is basing on contrast of CTOD value and the fracture toughness test CTOD value. And the value computed by LS-DYNA is better than by ANSYS. The basic theory and numerical simulation method which is used in the fracture toughness test of metal material have been in research and summary, the mesh size, time control and precision control has been studied. From the investigation, it can come to the conclusion that the selection of mesh size are determine which are used in the three dimensional numerical simulation about the fracture toughness test of metal bridge material, from this investigation, the optimization problem between the mesh size, loading speed, using time,and precision control in the fracture toughness calculation of metal material by using universal large commercial finite element software LS-DYNA is under solution.
     (6) Based on the CTOD various criterion and thesis in the world, considering the security level and work temperature, the permit value of CTOD of bridge steel thick plate was under discussion. The major engineering project steel and welded seam of east river fracture toughness property was evaluation. At the same time, the permit value of CTOD is also can use in other project fracture toughness evaluation.
引文
[l]杨卫,宏微观断裂力学.北京:国防工业出版社,1995,1-21
    [2]李庆芬,断裂力学及其工程应用,哈尔滨工程大学出版社,1998,1-3
    [3]苗张木,厚钢板焊接接头韧度CTOD评定研究:(博士论文).武汉理工大学,2005.
    [4]苗张木,焊接接头韧性CTOD评定的适用性与允许值研究。机械强度2006.1
    [5]陈冰泉,船舶及海洋工程结构焊接,人民交通出版社,2001,2-38
    [6]黄克智,徐秉业.固体力学发展趋势.北京:北京理工大学出版社,1995.70-99
    [7]王元清,钢结构脆性破坏事故分析.工业建筑,1998,28(5):55-58
    [8]苗张木,大型CTOD试验的施工组织设计。中国水运,2006.4
    [9]苗张木,厚钢板焊接接头CTOD断裂韧度的温度影响。重庆大学学报,2006.6
    [10]Zhangmu Miao, Rongying Yang.High K-Ratio Method on Fatigue Precracking in Thick As_Welded Fracture Specimens. Proceedings of Asian Pacific Conference on Fracture and Strength(2006)
    [11]武延民,钢结构脆性断裂的力学机理及其工程设计方法研究(博士论文).清华大学,2004.
    [12]Suresh S材料的疲劳[M].王中光,等译.北京:国防工业出版社,1993.
    [13]张玉玲,戴福忠,陶晓燕,等.14MnNbq,16Mnq钢及其焊接冲击韧性CVN试验研究[J],中国铁道科学,
    [14]张玉玲,陶晓燕,王冒明,等.渝怀线桥梁关键技术试验研究-A铁路桥梁用14MnNbq、16Mnq钢及其焊接韧性标准试验研究(报告之二)[R].北京:铁道科学研究院,2003.
    [15]钱志屏.材料的变形与断裂[M].上海:同济大学出版社,1989.
    [16]林吉忠,刘淑华编著.金属材料的断裂与疲劳.北京:中国铁道出版社,1989.
    [17]李少甫,王元清.钢结构的断裂与疲劳分析.北京:清华大学土木工程系,1999
    [18]钱维平,刘家驹,蒋和岁,等.14MnNbq钢用于焊接桥梁的防断选用规则研究总结报告[R].北京:中国船舶工业总公司第七研究院第七二五研究所,1999.
    [19]S.T.罗尔夫.结构中的断裂与疲劳控制——断裂力学的应用[M].刘文廷,译.北京:机械工业出版社,1985.
    [20]钱维平.焊接桥梁结构的断裂驱动力分析.材料开发与应用,2001,16(5):11-19
    [21]苗张木,裂纹尖端张开位移(CTOD)试验在导管架建造中的应用。武汉理工大学学报(交通科学版),2006.2
    [22]李芊,吴矫,张明明.船用锚链钢30Mn2V的脆性断裂.特殊钢,2000,21(5):14-16.
    [23]苗张木,钢箱梁焊接接头CTOD断裂韧性评定。焊接学报,2006.4
    [24]苗张木,厚钢板焊缝强度匹配对CTOD韧度影响的试验方法。中国机械工程,2006.5
    [25]苗张木,金属焊接CTOD疲劳裂纹前沿平直度研究。武汉理工大学学报2002.12
    [26]Kirk M T, Dodds R HJr. Jand CTOD estimation equations for shallow cracks in single edge notch bend specimens[J].Testing Eval,1993,21:228 238
    [27]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981.
    [28]]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000
    [29]陈传尧,高大兴.疲劳断裂基础.武昌:华中理工大学出版社,1991.
    [30]Chao YJ, Sutton MA. In:Epstein JS, editor. Accurate measurement of two-and three-dimensional surface deformations for fracture specimens by computer vision:experimental techniques in fracture. VCH Publisher; 1993.59-94.
    [31]Lloyd WR. Microtopography for ductile fracture process haracterization:Part 1:theory and methodology.Fracture 2003;70:387-401.
    [32]王维东,陈国明,许发彦,等.A131钢焊接接头裂纹张开位移COD的研究.石油矿场机械,1995,24(6):21-24.
    [33]崔维成等,船舶结构强度/评估方法的现状和未来发展趋势,2005年中国船舶工业发展论坛论文集,2005.
    [34]Shih CF, de Lorenzi HG, Andrews WR. Studies on crack initiation and stable crack growth. ASTM STP 1979; 668:65-120.
    [35]Kanninen MF, Rybicki EF, Stonesifer RB, Broek D, Rosenfield AR, Nalin GT. Elastic-plastic fracture mechanics for two dimensional stable crack growth and instability problems. ASTM STP 1979; 668:121-50.
    [36]冯国庆等,实用船舶结构疲劳评估方法概要,舰船科学技术,2009,1,23-28.
    [37]Newman Jr JC, Shivakumar KN, McCabe DE. Finite element fracture simulation of A533B steel sheet specimens. Defect assessment in components fundamentals and applications, vol.9. ESIS Publication; 1991. p.117-26.
    [38]James MA, Newman Jr JC. Three-dimensional analyses of rack-tip-opening angles and d5-resistance curves for 2024-T351 aluminum alloy. ASTM STP 2002; 1406:279-97.
    [39]Newman Jr JC, Booth BC, Shivakumar KN. An plastic finite element analysis of the J-resistance curve using a CTOD criterion. ASTM STP 1988;945:665-85.
    [40]段文江.316L材料的力学性能及临界裂纹张开位移测试.大氮肥,1995,(6):477-478.
    [41]徐永春等,基于断裂力学的机械结构件焊接节点疲劳性能研究,中国机械工程,2004,12,2252-2255.
    [42]Dawicke DS, Piascik RS, Newman Jr JC. Analysis of stable tearing in a 7.6 mm thick aluminum plate alloy. Fatigue and fracture mechanics. ASTM STP 1321, vol.28. American Society for Testing and Materials; 1997. p.309-24.
    [43]Dawicke DS, Sutton MA, Newman Jr JC, Bigelow CA. Measurement and analysis of critical CTOA for an aluminum alloy sheet. ASTM STP 1999;1220:358-79.
    [44]Gullerud AS, Dodds Jr RH, Hampton RW, Dawicke DS. Three-dimensional modeling of ductile crack growth in thin sheet metals:computational aspects and validation. Fract Mech 1999;63:347-74.
    [45]张玉玲,低温环境下铁路钢桥疲劳断裂性能研究,中国铁道科学,2008,29,22-25.
    [46]Mahmoud S, Lease K. Two-dimensional and three-dimensional finite element analysis of critical crack-tip-opening angle in 2024-T351 aluminum alloy at four thicknesses. Fract Mech 2004; 71:1379-91.
    [47]T. Ghidini et al, Fatigue Life Predictions using Fracture Mechanics Methods, Engineering Fracture Mechanics,2009,76,134-148.
    [48]S. Walbridge, Fatigue Analysis of Post-weld Fatigue Improvement Treatments Using A Strain-based Fracture Mechanics Model, Engineering Fracture Mechanics,2008,75, 5057-5071.
    [49]D.V. Ramsamooj, Analytical Prediction of Short to Long Fatigue Crack Growth Rate Using Small and Large Scale Yielding Fracture Mechanics, International Journal of Fatigue,2003,25, 923-933.
    [50]E. Ayala-Uraga et al, Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations, International Journal of Fatigue,2007,29,444-456.
    [51]F. R. Mashiri et al, Size Effect of Weld Thin-walled Tubular Joint, International Journal of Structure Stability and Dynamics,2007,1,101-127.
    [52]Rice JR, Drugan WJ, Sham TL. Elastic-plastic of growing cracks. ASTM STP 1980;700:189-221.
    [53]中国国家技术监督局.GB/t 358-1994:金属材料裂纹尖端张开位移试验方法
    [54]中国国家机械工业局.BJ 4291-1999.焊接接头裂纹张开位移(COD)试验方法
    [55]徐济民,涂卫东,唐国翌,等.铁路旧钢桥中疲劳裂纹扩展寿命的研究.铁道学报,1994,16(3):106-111
    [56]ASTME1290--1993.StnadardTestMethodofrCacrk-TIP Opening Displacement (CTOD)FraetuerToughnessMeasuermentIS]
    [57]王志坚等,海洋平台用钢D36超大厚度焊接接头CTOD试验,焊接学报,2007,28,103-107.
    [58]刘维等,D36-Z35钢两种焊接方法接头CTOD断裂韧度试验与分析,中国造船,2008,2,310-315.
    [59]M. A. Sutton et al, Development and application of a crack tip opening displacement-based mixed mode fracture criterion, International Journal of Solids and Structures,2000,37(26), 3591-3618.
    [60]J. C. Newman Jr. et al, A review of the CTOA/CTOD fracture criterion, Engineering Fracture Mechanics,2003,70(3-4),371-385.
    [61]J. Yue et al, Estimation of surface crack depth based on measurement of crack opening deformation, Proceedings of the International Offshore and Polar Engineering Conference,2005, 360-367,
    [62]Belytschko T,Lu YY,Gu L.Crack propagation by element-free Galerkin methods.Engng Fract Mech 1995;51:295-315.
    [63]Moes N,Belytschko T.Extended finite element method for cohesive crack growth.Engng Fract Mech 2002;69:813-33.
    [65]姜凤华等,疲劳裂纹扩展的数值模拟,内蒙古工业大学学报,2004,23(3),161-166.
    [66]郑红霞等,三维疲劳裂纹扩展仿真技术研究,鲁东大学学报,2009,25(3),280-284.
    [67]Wu CH.Fracture under combined loads by maximum energy release rate criterion.J App Mech 1978;45:553-8.
    [68]W. T. Riddell, Experimental observations and numerical Predictions of three-dimensional fatigue Crack propagation, Engineering Fracture Mechanics,1997,58(4),293-310.
    [69]T. Okawa et al, Simulation-based fatigue crack management of ship structural details applied to longitudinal and transverse connections, Marine Structures,2006,19,217-240.
    [70]L. Xue et al, Numerical simulation of fracture mode transition in ductile plates, International Journal of Solids and Structures,2009,46,1423-1435.
    [71]K. N. Shivakumar et al, Numerical fracture simulation of bend specimens using a CTOD criterion, Engineering Fracture Mechanics,1989,32(2),203-210.
    [72]Sutton MA,Boone ML,Ma F,Helm JD.A combined modeling-experimental study of the crack opening displacement criterion for characterization of stable crack growth under mixed mode I/II loading in thin sheet materials.Engng Fract Mech 2000;66:171-85.
    [73]Chao YJ,Liu S.On the failure of cracks under mixed-mode loads.Int J Fract 1997;87:201-23.
    [74]Li J,Zhang XB,Recho N.J-Mp based criteria for bifurcation assessment of a crack in elastic-plastic materials under mixed mode Ⅰ-Ⅱ loading.Engng Fract Mech 2004;71:329-43.
    [75]Wells,A.A.,Unstable crack propagation in metals:cleavage and fast fracture.In:Proceedings of the field crack propagation symposium,vol.1; 1961.p.210-30.
    [76]Wells AA.Application of fracture mechanics at and beyond general yielding.Br Weld J 1963; 11:563-70.
    [77]Dawicke DS,Sutton MA,Newman Jr JC,Bigelow CA.Measurement and analysis of critical CTOA for aluminum alloy sheet.Fracture Mechanics,ASTM STP 1220;1995.p.358-79.
    [78]Newman Jr JC.Finite element analysis of crack growth under monotonic and cyclic loading.ASTM STP 1977;637:56-80.
    [79]Newman Jr JC,Booth BC, Shivakumar KN.An elastic-plastic finite element analysis of the J-resistance curve using a CTOD criterion. In:Eighteenth symposium on fracture mechanics, ASTM STP 945;1988.p.665-85.
    [80]Deng X,Sutton MA,Newman Jr JC.Simulation and analysis of mixed-mode stable crack growth in elastic-plastic thin sheets.In:Proceedings of the 1997 Joint ASME/ASCE/SES summer meeting,June 29-July 2,1997,Northwestern University,Evanston,IL.
    [81]Deng X. An elastic-plastic,large-rotation finite element stress analysis and crack-growth simulation program.NASA Technical Memorandum 110332,NASA Langley Research Center,Hampton,Virginia;April 1997.7
    [82]中国机械工业部.BJ/T291-1986.焊接接头裂纹张开位移(cod)试验方法[5].
    [83]苗张木,蒋军,王志坚等.一种评价导管架焊接接头韧性的方法.中国海洋平台,2003.18(5):34-37。
    [84]Nakamura T,Parks DM.Three-dimensional stress field near the crack front of a thin elastic plate.J App Mech 1988;55:805-13.
    [85]Narasimhan R,Rosakis AJ.Three-dimensional effects near a crack tip in a ductile three-point bend specimen:PartI-a numerical investigation. J App Mech 1990;57:607-17. [86]Andersson H.A finite-element representation of stable crack-growth.J Mech Phys Solids 1973;21:337-56.
    [87]鲁丽君,桅杆结构纤绳连接拉耳风致疲劳裂纹萌生与扩展寿命预测,博士论文,武汉理工大学,2008
    [88]Gross TS,Mendelsohn DA.On the effect of crack face contact and friction due to fracture surface roughness in edge cracks subjected to external shear.Engng Fract Mech 1988;31:405-20.
    [89]Cotterell B,Rice JR.Slightly curved or kinked cracks. Int J Fract 1980; 16:155-69.
    [90]F.W. Wu et al, Fracture toughness for CNT specimens from numerically obtained critical CTOD values, Theoretical and Applied Fracture Mechanics,2009,52(1),50-54
    [91]M.F.Kanninen, e.H.popelar著,洪其麟等译,高等断裂力学,北京航空学院版社,北京,1987
    [92]v.Kumar, M.D.German, W.W.wilkening著,清华大学工程力学所译,EPRINP-3607弹塑性断裂分析进展,清华大学,北京,1984
    [93]孙亮,二维裂纹弹塑性J积分计算技术研究及工程应用,大连理工大学硕士学位论文,1997
    [94]李庆芬,断裂力学及其工程应用,哈尔滨工程大学出版社,哈尔滨,1998
    [95]崔振源,断裂韧性测试原理和方法,上海科学技术出版社,上海,1981
    [96]陆寅初,宁杰,考虑材料加工硬化的表面裂纹非线性线弹簧模型,国防科技大学学报,1984;(3):1-15
    [96]苗张木,一种测定裂纹约束因子的试验方法及应用。武汉理工大学学报2006.28(7)
    [97]林钧富,周道样,李泽震著,压力容器缺陷评定,中国石化出版社,1991
    [98]郝传勇,李正林,毛先锋.Ti-55M高温钛合金焊缝塑性的改善[J].金属学报,2001,37(7):709-712.
    [99]Mitchell D R,Tucker T J.The properties and transformation character-istics of welds in Ti-6Al-2Sn-4Zr-2Mo titanium alloy[J]. Weld-ing Journal,1969,48(1):23s-33s.
    [100]Wu K C.Correlation of properties and microstructure in welded Ti-6Al-6V-2Sn[J]. Welding Journal,1981,60(11):219s-226s.
    [101]Baeslack W A,Banas C M.A comparative evaluation of laser and gas tungsten arc weldments in high-temperature titanium alloy[J].Welding Journal,1981,60(7):121s-130s.
    [102]Mullins F d,Becker D W.Weldability study of advanced high tempera-ture titanium alloy[J].Welding Journal,1980,59(6):177s-182s.
    [103]师小红,徐章遂,康健.基于断裂力学的疲劳裂纹扩展速率公式研究.机械设计与制造,2007(10):11-12.
    [104]Liaw P K,Logsdon W A.Fatigue crack growth threshold at cryogenic temperatures:a review.Engineering Fracture Mechanics.1985,22(4):585-594
    [105]LuB T,Zheng X L.Predicting fatigue crack growth rates and thresholds at lowtemperatures.Materials Science and Engineering,1991,A148:179-188
    [106]ANSYS10.0\LS-DYNA基础理论与工程实践,中国水利水电出版社
    [107]ANSYS/LS-DYNA动力分析方法与工程实例,中国水利水电出版社
    [108]宋玉殿..ANSYS软件在结构焊接裂纹分析中的应用[J].焊接技术,2004,33(4):P58-59
    [109]Stephens R I, Chung J H,Glinka GLow temperature fatigue behavior of steels-a review.In:SAE Trans.eds.Paper 790517.Warsaw/Poland:Society ofAutomotive Engineers,Inc.1980.88,1892-1904
    [110]李强,王波.T型焊接接头疲劳裂纹应力强度因子的3D的边界元计算.重庆建筑大学学报,2000.22(6):29-33.
    [111]周宁.ANSYS机械工程应用实例.北京:中国水利水电出版社.
    [112]Bittencourt TN,Wawrzynek PA,Ingraea AR.Quasi-automatic simulation of crack propagation for 2D LEFM problems.Engng Fract Mech 1996;55:321-34.
    [113]Deng X,Newman JC.A study of some issues in stable crack growth simulations.Engng Fract Mech 1999;64:291-304.
    [114]李芊,吴矫,张明明.船用锚链钢30Mn2V的脆性断裂.特殊钢,2000,21(5):14-16.
    [115]王任甫,吉嘉龙.连铸10CrNi3MoV钢裂纹尖端张开位移(CTOD)试验研究.材料开发与应用,2003,18(4):23-26.
    [116]Newman Jr JC, Dawicke DS, Bigelow CA. Finite-element analyses and fracture simulation in thin-sheet aluminum alloy. Durability of metal aircraft structures. Georgia:W.H. Wolfe Associates; 1992. p.167-86.
    [117]陈国明,王维东,许发彦,方华灿.海洋平台用钢焊接接头断裂韧度概率特性的试验研究.石油大学学报(自然科学版),1996,20(2):54-58.
    [118]刘东学,谢志刚,李惠荣.表面裂纹受拉伸板三维弹塑性有限元分析模型及其J积分.大连理工大学学报,1998,38(2):146-151.
    [119]原洪海,彭天国.基于Irwin假设的裂纹尖端张开位移的修正计算.东北重型机械学院学报,1994,18(4):352-355.
    [120]鲁志康.裂纹尖端张开位移COD临界值δ的研究.上海金属,1999,21(4):30-33.
    [121]蔡业斌.基于双判据法的压力容器缺陷评定技术.抚顺石油学院学报,1999,19(1):35-40.
    [122]钱维平,李刚,马建坡.用四点弯曲试验确定焊接接头的薄弱区.材料开发与应用,2000,15(2):23-25
    [123]吕宝桐,李涛,郑修麟.16Mn钢低温疲劳裂纹扩展速率的预测.机械工程学报,1994,30(S1):54-59
    [124]贾星兰,方华灿.海洋平台用钢板状焊接接头的低温疲劳试验.石油机械,1996,24(6):18-20,25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700