一种PBX炸药试样在复杂应力动态加载下的力学性能实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高聚物粘结炸药(Polymer Bonded Explosive,PBX)装药在常规武器战斗部及火箭推进剂中具有广泛应用。在制造、运输及发射等过程中往往要承受复杂应力过程,甚至是强动载。在不同作用下炸药装药的力学响应及损伤发展是炸药发生意外起爆的源头,严重影响着武器弹药的安全和可靠。因此,需要系统研究PBX炸药装药在复杂应力条件下的力学响应,这是深入认识起爆机理、研究弹药安全性的基础。
     论文首先介绍了本研究在实验方法方面的创新。建立的压拉通用Hopkinson杆实验系统将传统的Hopkinson压杆及Hopkinson杆拉杆集成到一个系统平台。单次加载技术保证了实验过程中试样只受到一次加载。基于夹心弹的可控双脉冲加载系统,可实现两个加载脉宽之间的距离以及两个脉宽的幅值比例可调。将同步高速摄影与数字图像相关相结合的技术引入到Hopkinson杆实验中来,得到了加载过程中试样表面的应变场。自行建立了激光光通量位移计测量系统,并将其应用到Hopkinson杆实验中。
     本文以某压装PBX炸药试样为研究对象,系统研究了其在复杂应力加载下的力学响应。在进行传统准静态加载及常规Hopkinson杆动态加载实验的基础上,结合激光光通量位移计应变测试技术及石英晶体应力测试技术,建立了材料在中应变率加载下的力学性能测试方法。对于平台Brazilian实验采用数值标定的方法将试样的中心应变和横向平均应变结合起来,建立了一种非接触式测量试样拉伸应变的方法。与同步高速摄影结合数字图像相关的方法对比,该方法具有可比拟的实验精度,但是能够得到更为完整的应变历史曲线。将实验结果与直接拉伸实验及半圆盘三点弯拉伸实验结果进行比较,前两者吻合较好,而由于半圆盘三点弯拉伸实验中试样沿断裂方向拉伸应力分布不均匀,需要采用非局域化的方法修正后才能与前两者吻合。论文通过准静态、中应变率以及高应变率加载实验,获得了不同初始密度(1.5、1.6和1.7 g/cm~3)不同应变率(10~(-4)~10~3 s~(-1))下该PBX炸药试样的应力-应变曲线,论文最后建立了反映试样初始压装密度和应变率效应的本构模型。研究结果表明,该PBX炸药试样的压缩和拉伸破坏应力均随着初始压装密度以及加载应变率的增加而增加。
     通过对被动围压及主动围压实验中试样与加载介质之间的摩擦效应的分析表明,被动围压实验中试样与加载介质之间滑动配合能够有效地减小摩擦对实验结果的影响,而主动围压实验中试样与加载介质之间的摩擦对实验结果影响较小。在动态围压加载条件下,该PBX炸药试样轴向应力和围压应力均随着初始压装密度以及加载应变率的增加而增加。随着围压应力的增加试样的破坏模式由应变软化转变为应变硬化。
     在考察试样动态强度的基础上,本文进一步建立了Hopkinson杆加载带预制裂纹的半圆盘三点弯试样来测试材料动态I型断裂参数的实验方法。该方法在一次实验中能够得到包括起裂韧度、传播韧度、表面能和裂纹传播速度在内的所有I型裂纹相关参数。采用同步高速摄影结合数字图像相关技术得到了在动态加载下带预制裂纹的该PBX炸药半圆盘三点弯试样表面的位移场以及应变场历史。该PBX炸药试样的Ⅰ型起裂韧度及传播韧度均随着加载率及试样密度的增加而增加。试样的表面能及传播韧度均随着裂纹传播速度的增加而增加,且存在裂纹传播的极限速度。
     论文最后根据压缩、围压和拉伸的实验结果,得到了PBX炸药试样的非线性破坏准则,加载-再加载实验结果与理论模型吻合较好,可以为工程应用与仿真计算提供材料模型和参数支持。通过分析材料强度、韧度、表面能等力学参数之间的相关性,得到了试样的破坏机理,结果表明试样的颗粒破坏强度远大于颗粒间的脱粘强度。宏观测到的试样拉伸强度与界面脱粘强度相近,而压缩强度介于两者之间。
Polymer bonded explosives (PBX) are used in a wide variety of applications, ranging from rocket propellants to the main explosive charges in conventional munitions. Of great concern to explosive researchers is the possibility of accidental ignition during manufacture, transport or handling. It is thus essential to obtain a complete description and understanding of the mechanical response of PBX. This description and understanding are necessary for modeling those events that may cause unwanted ignition of the energetic materials and the resulting hazards.
     A method is proposed to combine the traditional Split Hopkinson Pressure Bars and Split Hopkinson Tensile Bars in a newly developed Hopkinson Pressure-Tensile Bars. A momentum-trap system is introduced to ensure single pulse loading during tests. The controlled multi-pulse loading is carried out by a stuffed striker, and the dwell time and amplitudes of pulses can be accurately controlled. The strain field of the specimen is estimated by the Digital Image Correlation (DIC) processing of the photos which are taken by a synchronous high speed camera. In addition, a self made laser gap gauge (LGG) is developed in the experiment.
     The modified Hopkinson bar system is developed to measure material responses at intermediate strain rates (1 ~ 10~2 s~(-1)). In this work, the insituation Hopkinson bar technique is proposed, where the LGG is adopted in the traditional Hopkinson bars system to measure the sample deformation and an X-cut quartz stress gauge to measure the dynamic load directly. For the flattened Brazilian disc (FBD) test, the LGG is used to monitor the transverse expansion of the disc perpendicular to the loading axis, from which the average tensile strain is deduced. The numerical simulation reveals a linear relationship between the tensile strain at the center of the specimen and the average tensile strain. This scaling factor is not sensitive to the material elastic parameters. This method is as accurate as the DIC process, but the latter is limited by the number of frames of the high speed camera. The results are then compared to those from other two methods, the direct tension with‘dog bone’specimen and the semi-circular bending (SCB) tension test. The results from the first two methods are coincident with each other, while the result of the SCB test has to be properly adjusted by a‘non-local’failure approach due to the stress gradient along the fracture path. The mechanical properties of the PBX at three density levels (1.5, 1.6, 1.7 g/cm~3) are tested under strain-rates ranging from 10~(-4) to 10~3 s~(-1). A constitutive relation has been established based on the experimental curves, including the features such as mass density, strain, strain-rate et al. The results show that the mechanical behaviors of the PBX bear obvious rate-dependence, and the corresponding compression/tension failure stresses increase with the original density or the loading strain rates.
     Two types of confinement, the passive confinement using jacket and the active confinement using pneumatic pressure vessel, are used in the triaxial test. The friction between the specimen and the confinement medium is analyzed for both methods. There is noticeable difference in the jacket confinement due to friction, and sliding fit with lubrication could minimize the friction error. However, the friction-induced error is ignorable in the pneumatic pressure vessel method as long as the confinement stress is fixed during tests. Both the axial strength and the corresponding confinement stress increases proportionally as the rising of original density or strain rates. There is a change from strain softening after the maximum at the lower confining pressures to work hardening at larger strains at the higher confining pressures.
     Fracture initiation toughness, fracture energy, fracture propagation toughness, and fracture velocity are key dynamic fracture parameters. A method is proposed to simultaneously measure these parameters for mode-I fractures in SHPB testing with a notched SCB specimen. The crack propagating process is monitored by a synchronous high speed camera, and thus the strain field history is observed by DIC process. Both the initiation toughness and the propagation toughness are found to increase linearly with increasing loading rates. The propagation fracture toughness also increases with the fracture velocity, and a limiting fracture velocity is obtained.
     A dynamic failure criterion is set up to reveal the nonlinear effect of PBX. Parameters are obtained based on the experimental results of compression, tension and confinement. The model could potentially be implemented in commercial software such as ABAQUS and LS-DYNA. The failure modes are discussed in terms of various theoretical models. The results suggest that the debonding strength is much smaller than the crystal fracture strength. The measured tensile strength is similar to the debonding strength while the compression strength is somewhere between them.
引文
[1] Sandusky H W. Influence of fresh damage on the shock reactivity and sensitivity of several energetic materials[C]. 10th International Detonation Symposium. Boston, Massachusetts, 1993: 490-498.
    [2] Mellor A M, Wiegand D A, Isom K B. Hot-spot histories in energetic materials[J]. Combustion and Flame, 1995, 101(1-2): 26-35.
    [3] Winter R E, Field J E. The role of localized plastic flow in the impact initiation of explosives[J]. Proceedings of the Royal Society, 1975, 343(1634): 399-413.
    [4] Field J E, Swallowe G M, Heavens S N. Ignition mechanisms of explosives during mechanical deformation[J]. Proceedings of the Royal Society, 1982, 382(1782): 231-244.
    [5] Palmer S J P, Field J E. The deformation and fracture of b-HMX[J]. Proceedings of the Royal Society, 1982, 383(1785): 399-407.
    [6]胡时胜. Hopkinson压杆实验技术的应用进展[J].实验力学, 2005, 20(4): 589-594.
    [7]李玉龙,郭伟国,徐绯. Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5): 385-394.
    [8] Gama B A, Lopatnikov S L, Gillespie Jr J W. Hopkinson bar experimental technique: A critical review[J]. Applied Mechanics Review, 2004, 57(4): 223-250.
    [9] Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[C]. Containing Papers of a Mathematical or Physical Character. London, 1914: 437-456.
    [10] Davies R M. A critical study of the Hopkinson pressure bar[J]. Proceedings of the Royal Society of London Series: Mathematical and Physical Sciences, 1948, 240(821): 375-457.
    [11] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1949, B62: 676-700.
    [12] Hopkinson J. Further experiments on the rupture of iron wire (1872)[C]. // Hopkinson B, (ed.). Original Papers-by the late John Hopkison: Cambridge Univ Press. 1901, 316-320.
    [13] Hopkinson J. On the rupture of iron wire by a blow(1872)[C]. // Hopkinson B, (ed.). Original Papers-by the late John Hopkinson: Cambridge Univ Press. 1901, 316-320.
    [14] Hopkinson B. The effects of momentary stresses in metals[J]. Proceedings of the Royal Society, 1905, A74: 498-506.
    [15] Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
    [16] Harding J, Wood E D, Campbell J D. Tensile testing of material at impact rates of strain[J]. Journal of Mechanical Engineering Science, 1960, 2(1): 88-96.
    [17] Albertini C, Montagnani M. Testing techniques based on the split Hopkinson bar[C]. Harding J, (ed.). Mechanical Properties at High Rates of Strain. London, 1974: 22-32.
    [18] Nicholas T. Tensile testing of materials at high rates of strain[J]. Experimental Mechanics, 1981, 21(5): 177-185.
    [19] Schuler H, Mayrhofer C, Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J]. International Journal of Impact Engineering, 2006, 32(10): 1635-1650.
    [20] Baker W W, Yew C H. Strain rate effects in the propagation of torsional plastic waves[J]. Journal of Applied Mechanics, 1966, 33(6): 917-923.
    [21] Eleiche A M, Campbell J D. Strain-Rate effects during reverse torsional shear[J]. Experimental Mechanics, 1976, 16(8): 281-290.
    [22] Vinh T, Khalil T. Adiabatic and viscoplastic properties of some polymers at high strain and high strain rate[C]. Institute of Physics Conference Series. Oxford, 1984: 39-46.
    [23] Meyer L W, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression / shear loading[J]. Mechanics of Materials, 1994, 17(2-3): 203-214.
    [24] Lindholm U S, Yeakley L M. High strain rate testing: tension and compression[J]. Experimental Mechanics, 1968, 8(1): 1-9.
    [25] Wang Q Z, Jia X M, Kou S Q, et al. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 245-253.
    [26] Scheunemann P. The influence of failure criteria on strength prediction of ceramic components[J]. Journal of the European Ceramic Society, 2004, 24(8): 2181-2186.
    [27] Goldsmith W, Sackman J L, Ewert C. Static and dynamic fracture strength of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1976, 13(11): 303-309.
    [28] Huang W, Zan X, Nie X, et al. Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 443(1-2): 33-41.
    [29] Ogawa K. Impact-Tension Compression Test by Using a Split-Hopkinson Bar[J]. Experimental Mechanics, 1984, 24(2): 81-86.
    [30] Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasistatic and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121.
    [31] Li M, Wang R, Han M-B. A Kolsky bar: tension, tension-tension[J]. Experimental Mechanics, 1993, 33(1): 7-14.
    [32] Nie X, Song B, Ge Y, et al. Dynamic tensile testing of soft materials[J]. Experimental Mechanics, 2009, 49(4): 451-458.
    [33] Ross C A, Thompson P Y, Tedesco J W. Split-Hopkinson pressure bar tests on concrete and mortar in tension and compression[J]. ACI Materials Journal, 1989, 86(5): 475-481.
    [34] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London Series: Mathematical and Physical Sciences, 1991, 435(1894): 371-391.
    [35] Berenbaum R, Brodie I. Measurement of the tensile strength of brittle materials[J]. British Journal of Applied Physics, 1959, 10(6): 281-286.
    [36] Awaji H, Sato S. Diametral compressive testing method[J]. Journal ofEngineering Materials and Technology-Transactions of the ASME, 1979, 101(2): 139-147.
    [37] Ruiz C, Mines R. The Hopkinson pressure bar: an alternative to the instrumented pendulum for Charpy tests[J]. International Journal of Fracture, 1985, 29: 101-109.
    [38] Jiang F, Vecchio K S. Hopkinson bar loaded fracture experimental technique a critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(6): 060802.
    [39]郑坚,王泽平,段祝平.动态断裂的加载和测试技术[J].力学进展, 1994, 24(4): 459-475.
    [40]李玉龙.利用三点弯曲试样测试材料动态起裂韧性的技术与展望[J].稀有金属材料与工程, 1993, 22(5): 12-18.
    [41] Klepaczko J R. Discussion of a New Experimental-Method in Measuring Fracture-Toughness Initiation at High Loading Rates by Stress Waves[J]. Journal of Engineering Materials and Technology-Transactions of the Asme, 1982, 104(1): 29-35.
    [42] Weisbrod G, Rittel D. A method for dynamic fracture toughness determination using short beams[J]. International Journal of Fracture, 2000, 104(1): 89-103.
    [43] Rubio L, Fernadez-Saez J, Navarro C. Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified Hopkinson pressure bar[J]. Experimental Mechanics, 2003, 43(4): 379-386.
    [44] Jiang F C, Vecchio K S. Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test[J]. Review of Scientific Instruments, 2007, 78(6): 063903.
    [45] Jiang F C, Rohatgi A, Vecchio K S, et al. Analysis of the dynamic responses for a pre-cracked three-point bend specimen[J]. International Journal of Fracture, 2004, 127(2): 147-165.
    [46] Yokoyama T, Kishida K. A novel impact three-point bend test method for determining dynamic fracture initiation toughness[J]. Experimental Mechanics, 1989, 29(2): 188-194.
    [47] Foster J T, Luk V K, Chen W. Dynamic initiation fracture toughness of high strength steel alloys[C]. 2008 SEM XIth International Congress & Exposition on Experimental and Applied Mechanics. Orlando, Florida 2008: 77.
    [48] Weerasooriya T, Moy P, Casem D, et al. A four-point bend technique to determine dynamic fracture toughness of ceramics[J]. Journal of the American Ceramic Society, 2006, 89(3): 990-995.
    [49] Rittel D, Maigre H, Bui H D. A new method for dynamic fracture toughness testing[J]. Scripta Metallurgica Et Materialia, 1992, 26(10): 1593-1598.
    [50] Fowell R J, Xu C, Dowd P A. An update on the fracture toughness testing methods related to the cracked chevron-notched Brazilian disk (CCNBD) specimen[J]. Pure and Applied Geophysics, 2006, 163(5-6): 1047-1057.
    [51] Dai F, Chen R, Iqbal M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 606-613.
    [52] Owen D M, Zhuang S, Rosakis A J, et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets[J]. International Journal of Fracture, 1998, 90(1-2): 153-174.
    [53] Stroppe H, Clos R, Schreppel U. Determination of the dynamic fracture toughness using a new stress pulse loading method[J]. Nuclear Engineering and Design, 1992, 137(3): 315-321.
    [54] Kalthoff J F. On the measurement of dynamic fracture toughnesses - a review of recent work[J]. International Journal of Fracture, 1985, 27(3-4): 277-298.
    [55] Dally J W, Fourney W L, Irwin G R. On the uniqueness of the stress intensity factor-crack velocity relationship[J]. International Journal of Fracture, 1985, 27(3-4): 159-168.
    [56] Server W L. Impact Three Point Bend Testing for Notched and Precracked Specimens[J]. Journal of Testing and Evaluation, 1978, 6(1): 29-34.
    [57] B?hme W, Kalthoff J F. The behavior of notched bend specimens in impact testing[J]. International Journal of Fracture, 1982, 20(4): R139-R143.
    [58] Jiang F C, Vecchio K S. Dynamic effects in Hopkinson bar four-point bend fracture[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2007, 38A(12): 2896-2906.
    [59]李玉龙,刘元镛.用裂纹张开位移计算三点弯曲试样的动态应力强度因子[J].爆炸与冲击, 1993, 13(3): 249-258.
    [60]李玉龙,刘元镛.用弹簧质量模型求解三点弯曲试样的动态应力强度因子[J].固体力学学报, 1994, 15(1): 75-79.
    [61] Jiang F C, Liu R T, Zhang X X, et al. Evaluation of dynamic fracture toughness K-Id by Hopkinson pressure bar loaded instrumented Charpy impact test[J]. Engineering Fracture Mechanics, 2004, 71(3): 279-287.
    [62]李玉龙,郭伟国,贾德新,等. 40Cr材料动态起裂韧性KId(σ)的实验测试[J].爆炸与冲击, 1996, 16(1): 21-30.
    [63]刘瑞堂,张晓欣,姜风春,等.用Hopkinson压杆技术测试材料动态断裂韧性的方法研究[J].哈尔滨工程大学学报, 2000, 21(6): 18-21.
    [64] Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791.
    [65] Lifshitz J M, Leber H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering, 1994, 15(6): 723-733.
    [66] Yang L M, Shim V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2): 129-150.
    [67] Frantz C E, Follansbee P S, Wright W J. New experimental techniques with the split Hopkinson pressure bar[C]. Berman I and Schroeder J W, (eds.). 8th International Conference on High Energy Rate Fabrication. San Antonio, 1984: 17-21.
    [68] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106.
    [69] Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. American Ceramic Society, 1994, 77(1): 263-267.
    [70]赵习金,卢芳云,王悟.入射波整形技术的实验和理论研究[J].高压物理学报, 2004, 18(3): 452-236.
    [71] Samanta S K. Dynamic deformation of aluminium and copper at elevatedtemperatures[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(3): 117-135.
    [72] Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates[J]. Journal of Physics E-Scientific Instruments, 1982, 15(3): 280-282.
    [73]李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学, 2005, 24(23): 4215-4218.
    [74] Song B, Chen W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops[J]. Experimental Mechanics, 2004, 44(6): 622-627.
    [75] Lindholm U S. Some experiments with the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5): 317-335.
    [76] Luo H Y, Chen W N W, Rajendran A M. Dynamic compressive response of damaged and interlocked SiC-N ceramics[J]. Journal of the American Ceramic Society, 2006, 89(1): 266-273.
    [77] Xia K, Chen R, Huang S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing[J]. Review of Scientific Instruments, 2008, 79: 053906.
    [78]施绍裘,王礼立.材料在准一维应变下被动围压的SHPB试验方法[J].实验力学, 2000, 15(4): 377-384.
    [79] Nemat-Nasser S, Isaacs J B, Rome J. Triaxial Hopkinson techniques[C]. Mechanical Testing and Evaluation, OH: ASM Int, Materials Park. 2000, 1163-1168.
    [80] Hanina E, Rittel D, Rosenberg Z. Pressure sensitivity of adiabatic shear banding in metals[J]. Applied Physics Letters, 2007, 90(2): 021915.
    [81] Chen W, Zhang B, Forrestal M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39(2): 81-85.
    [82]刘剑飞,王正道,胡时胜.低阻抗多孔介质材料的SHPB实验技术[J].实验力学, 1998, 13(2): 218-223.
    [83] Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6.
    [84]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用[J].高压物理学报, 2005, 19(4): 299-304.
    [85] Wright P W, Lyon R J. Unknown title[C]. Proceedings of Conference on Properties of Materials at High Rates of Strain. London, 1959: 37-50 // In: Griffith L J, Martin D J. Study of dynamic behavior of a carbon-fiber composite using split Hopkinson pressure bar[J]. Journal of Physics D-Applied Physics, 1974, 7(17): 2329-2344.
    [86] Griffith L J, Martin D J. Study of dynamic behavior of a carbon-fiber composite using split Hopkinson pressure bar[J]. Journal of Physics D-Applied Physics, 1974, 7(17): 2329-2344.
    [87]唐志平,胡时胜,王礼立.动态力学量的光电测试法[J].实验力学, 1991, 6(4): 401-406.
    [88] Ramesh K T, Narasimhan S. Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments[J]. International Journal of Solids and Structures, 1996, 33(25): 3723-3738.
    [89] Li Y, Ramesh K T. An optical technique for measurement of material propertiesin the tension Kolsky bar[J]. International Journal of Impact Engineering, 2007, 34(4): 784-798.
    [90] Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physics E-Scientific Instruments, 1981, 14(1): 1270-1273.
    [91] Peter W H, Ranson W F. Digital imaging technique in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
    [92] Field J E, Proud W G, Walley S M. Review of optical and X-ray techniques used at the Cavendish Laboratory[J]. Imaging Science Journal, 2009, 57(6): 317-325.
    [93] Gilat A, Schmidt T E, Walker A L. Full field strain measurement in compression and tensile split Hopkinson bar experiments[J]. Experimental Mechanics, 2009, 49(2): 291-302.
    [94] Yu J L, Li J R, Hu S S. Strain-rate effect and micro-structural optimization of cellular metals[J]. Mechanics of Materials, 2006, 38(1-2): 160-170.
    [95] Xia K, Nasseri M H B, Mohanty B, et al. Effects of microstructures on dynamic compression of barre granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 879-887.
    [96] Luo Y S, Lv L H, Sun B Z, et al. Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites[J]. Composite Structures, 2007, 81(2): 202-209.
    [97] Shim V P W, Liu J F, Lee V S. A technique for dynamic tensile testing of human cervical spine ligaments[J]. Experimental Mechanics, 2006, 46(1): 77-89.
    [98] Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. Journal of Biomechanics, 2007, 40(13): 2999-3005.
    [99]王宝珍,胡时胜.猪后腿肌肉的冲击压缩特征实验[J].爆炸与冲击, 2010, 30(1): 33-38.
    [100]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击, 2002, 22(3): 242-264.
    [101] Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(9): 967-976.
    [102]李玉龙,郭伟国.高g值加速度传感器校准系统的研究[J].爆炸与冲击, 1997, 17(1): 90-96.
    [103]张学舜,沈瑞琦.火工品动态着靶模拟仿真技术研究[J].火工品, 2003, 29(4): 1-4.
    [104]张学舜,王娜,沈瑞琪.自由式霍普金森杆测量火工品过载加速度的数值模拟[J].爆破器材, 2004, 33(S): 39-42.
    [105] Asay B. Quantitative analysis of damage in PBX 9501 subjected to a Linear thermal gradient[C]. 12th International Detonation Symposium. San Diego, California, 2002: 108-118.
    [106] Idar D J. Low amplitude insult project:PBX9501 high explosive violent reaction experiments[C]. 11th International Detonation Symposium. Colorado, 1998: 101-110.
    [107] Lanzerotti Y. Mechanical behavior of energetic materials during high acceleration[C]. 12th International Detonation Symposium. San Diego, California, 2002: 269-275.
    [108] Wiegand D A. Changes in the mechanics properties of energetic materials with aging[C]. 12th International Detonation Symposium. San Diego, California, 2002:179-194.
    [109] Rae P J, Goldrein H T, Palmer S J P, et al. The use of digital image cross-correlation (DICC) to study the mechanical properties of a polymer bonded explosive (PBX)[C]. Proceedings 12th International Detonation Symposium. San Diego, California, 2002: 112-119.
    [110] Goudrean G. Evaluation of mechanical properties of PBXW-113 explosive[R], 1985: UCID-20358.
    [111] Drodge D R, Addiss J W, Williamson D M, et al. Hopkinson bar studies of a PBX simulant[C]. // Elert M, et al., (eds.). Shock Compression of Condensed Matter - 2007, Pts 1 and 2. 2007, 513-516.
    [112] Hoffman H J. High-strain rate testing of gun propellants[R], 1989: AD-A208826.
    [113] Blumenthal W R, Thompson D G, Cady C D, et al. Compressive properties of PBXN-110 and Its HTPB-based binder as a function of temperature and strain rate[C]. 12th International Detonation Symposium. California, 2002:
    [114] Grantham S G, Siviour C R, Proud W G, et al. High-strain rate Brazilian testing of an explosive simulant using speckle metrology[J]. Measurement Science and Technology, 2004, 15(9): 1867-1870.
    [115]韩小平,张元冲,沈亚鹏. Comp.B复合炸药动态压缩力学性能和本构关系的研究[J].实验力学, 1996, 11(3): 303-309.
    [116]李英雷,李大红,胡时胜. TATB钝感炸药本构的实验研究[J].爆炸与冲击, 1999, 19(4): 355-359.
    [117]吴会民,卢芳云.一种高聚物粘结炸药和B炸药的本构关系研究[J].高压物理学报, 2005, 19(2): 139-144.
    [118]陈荣,卢芳云,林玉亮,等.一种含铝炸药压缩力学性能和本构关系研究[J].含能材料, 2007, 15(5): 460-463.
    [119]罗景润,张寿齐,李大红,等高聚物粘结炸药断裂特性实验研究[J].爆炸与冲击, 2000, 20(4): 339-342.
    [120]吴会民.三种含能材料本构行为的应变率效应分析[D]:长沙:国防科学技术大学, 2003. 56.
    [121] Pinto J, Wiegand D A. The mechanical response of TNT and a composite, composition B, of TNT and RDX to compressive stress: ?? Triaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(3): 205-263.
    [122] Wiegand D A, Reddingius B. Mechanical properties of confined explosives[J]. Journal of Energetic Materials, 2005, 23(2): 75-98.
    [123]韩小平,张元冲.高能材料动态力学性能的研究[J].爆炸与冲击, 1995, 15(1): 20-27.
    [124]施绍裘,陈江瑛,李大红,等.水泥砂浆石在准一维应变下的动态力学性能研究[J].爆炸与冲击, 2000, 20(4): 326-332.
    [125]施绍裘,王礼立.水泥砂浆石在一维与准一维应变状态下动态力学响应的比较和讨论[J].岩石力学与工程学报, 2001, 20(3): 327-331.
    [126] Palmer S J P, Field J E, Huntley J M. Deformation, strengths and strains of failure of polymer bonded explosives[J]. Proceedings of the Royal Society of London Series: Mathematical Physical and Engineering Sciences, 1993, A440(1909): 399-419.
    [127] Quidot M, Racimor P, Chabin P. Constitutive models for PBX at high strain rate[C]. // Furnish M D, Chhabildas L C, and Hixson R S, (eds.). ShockCompression of Condensed Matter: American Institute of Physics. 1999, 687-690.
    [128] Quidot M, Racimor P, Chabin P. Cmex project: development of a constitutive model for cast plastic bonded explosives[C]. // Furnish M D, Chhabildas L C, and Hixson R S, (eds.). Shock Compression of Condensed Matter: American Institute of Physics. 1999, 134-145.
    [129] Quidot M, Chabin P. Constitutive model and equation of state of unreacted PBXN-109[C]. 13th International Detonation Symposium. Norfolk, Virginia, 2006: 113.
    [130]陈鹏万,黄风雷,张瑜,等.用巴西实验评价炸药的力学性能[J].兵工学报, 2001, 22(4): 533-537.
    [131]陈鹏万.高聚物粘结炸药的细观结构及力学性能[D]:北京:中国科学院力学研究所, 2001. 125.
    [132]宋华杰,郝莹,董海山,等.用直径圆盘试验评价小样品塑料粘接炸药拉伸性能的初步研究[J].爆炸与冲击, 2001, 21(1): 35-40.
    [133] Wiegand D A, Pinto J. The mechanical response of TNT and a composite, composition B, of TNT and RDX to compressive stress: ? Uniaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(1): 19-80.
    [134] Zhurkov S N. Kinetic concept of strength of solids[J]. International Journal of Fracture Mechanics, 1965, 1(4): 311-323.
    [135] Charles R J. Dynamic fatigue of glass[J]. Journal of Applied Physics, 1958, 29(12): 1657-1662.
    [136] Liu Z W, Xie H M, Li K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6): 627-635.
    [137]罗景润. PBX的损伤、断裂及本构关系[D]:绵阳:中国工程物理研究院, 2001. 155.
    [138]赵习金.分离式霍普金森压杆实验技术的改进和应用[D]:长沙:国防科学技术大学, 2003. 68.
    [139]林玉亮.软材料高应变率测试试验技术及本构行为研究[D]:长沙:国防科学技术大学, 2005. 140.
    [140]赵鹏铎.分离式霍普金森压剪杆实验技术[D]:长沙:国防科学技术大学, 2007. 85.
    [141]崔云霄.改进Hopkinson杆实现压剪复合加载[D]:长沙:国防科学技术大学, 2005. 63.
    [142]王晓峰. 205A铝合金动态断裂性能实验研究[D]:长沙:国防科学技术大学, 2008. 57.
    [143]覃金贵. LC9铝合金在高温和不同动载条件下力学性能研究[D]:长沙:国防科学技术大学, 2009. 53.
    [144] George T, Gray III. Classic split-Hopkinson pressure bar testing[C]. Mechanical Testing and Evaluation, OH: ASM Int, Materials Park. 2000, 1027-1067.
    [145] Huh H, Kang W J, Han S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals[J]. Experimental Mechanics, 2002, 42(1): 8-17.
    [146] Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys[J]. Acta Materialia, 1997, 45(3): 907-919.
    [147] Li Y, Ramesh K T, Chin E S C. Viscoplastic deformation and compressive damage in an A359/SiCp metal-matrix composite[J]. Acta Materialia, 2000, 48(7): 1536-1573.
    [148]陈荣,卢芳云,林玉亮,等.单脉冲加载的Hopkinson压杆实验中预留缝隙确定方法的研究[J].高压物理学报, 2008, 22(2): 187-191.
    [149] Tang C N, Xu X H. A new method for measuring dynamic fracture-toughness of rock[J]. Engineering Fracture Mechanics, 1990, 35(4-5): 783-789.
    [150] Ramesh K T, Kelkar N. Technique for the continuous measurement of projectile velocities in plate impact experiments[J]. Review of Scientific Instruments, 1995, 66(4): 3034-3036.
    [151] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing[J]. Engineering Fracture Mechanics, 2009, 76(9): 1268-1276.
    [152] Kolsky H. Stress waves in solids[M]. Oxford: Clarendon Press, 1953. 212.
    [153] Bruck H A, McNeill S R, Sutton M A. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 1989, 29(3): 261-267.
    [154] Sutton M A, Wolters W J, Peters W H, et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1983, 1(3): 133-139.
    [155] Sutton M A, McNeill S R, Jang J. The effects of subpixel image restoration on digital correlation error estimates[J]. Optical Engineering, 1988, 27(3): 173-185.
    [156] Sutton M A, Yan J H, Tiwari V, et al. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements[J]. Optics and Lasers in Engineering, 2008, 46(10): 746-757.
    [157] http://www.correlatedsolutions.com.
    [158] Miao H, Ge F, Jiang Z. Wavelet transform based on digital speckle correlation method: principle and algorithm[C]. Third International Conference on Experimental Mechanics. Beijing, China, 2002: 402-405.
    [159]孟利波,金观昌,姚学锋. DSCM中摄像机光轴与物面不垂直引起的误差分析[J].清华大学学报(自然科学版), 2006, 46(11): 1930-1936.
    [160]孟利波,马少鹏,金观昌.数字散斑相关测量中亚像素位移测量方法的比较[J].实验力学, 2003, 18(3): 343-348.
    [161]金观昌,孟利波,陈俊达,等.数字散斑相关技术进展及应用[J].实验力学, 2006, 21(6): 689-702.
    [162]马少鹏,金观昌,赵永红.数字散斑相关方法亚像素求解的一种混合方法[J].光学技术, 2005, 31(6): 871-877.
    [163]芮嘉白,金观昌,徐秉业.一种新的数字散斑相关方法及其应用[J].力学学报, 1994, 26(5): 599-607.
    [164]周剑,杨玉孝,赵明涛,等.层析三维数字化测量原理及层析图像边缘精度分析与标定[J].西安交通大学学报, 1999, 33(7): 84-88.
    [165]李喜德.数字散斑强度相关计量理论和应用[D]:西安:西安交通大学, 1992. 112.
    [166]方钦志,李慧敏,王铁军.数字图像相关分析法增量位移场测试技术[J].应用力学学报, 2007, 24(4): 535-539.
    [167] Ji H W, Qin Y, Lu H. Initial estimates in digital image correlation method by anew displacement mode[J]. Journal of Experimental Methmatics, 2001, 46(1): 49-52.
    [168]王怀文,亢一澜,谢和平.数字散斑相关方法与应用研究进展[J].力学进展, 2005, 35(2): 195-202.
    [169] Sharpe W N. Digital image correlation for shape and deformation measurements[M]. // Sutton M A (ed.). Springer Handbook of Experimenatl Solid Mechanics: Springer. 2008: 565.
    [170]金观昌.计算机辅助光学测量[M].北京:清华大学出版社, 2007. 146.
    [171] Zhao W, Jin G. An experimental study on measurement of Poisson's ratio with digital correlation method[J]. Journal of Applied Polymer Science, 1996, 60(8): 1083-1088.
    [172]简龙辉,马少鹏,张军.基于小波多级分解的数字散斑相关搜索方法[J].清华大学学报(自然科学版), 2003, 43(5): 680-683.
    [173] Ma S, Jin G. Digital speckle correlation method improved by genetic algorithm[J]. Acta Mechanica Solida Sinica, 2003, 16(4): 366-370.
    [174] Schreier W H, Braasch R J, Stutton A M. Systematic errors in digital image correlation caused by intensity interpolation[J]. Optical Engineering, 2000, 39(11): 2915-2921.
    [175]潘兵,谢惠民,续伯钦, et al.数字图像相关中的亚像素位移定位算法进展[J].力学进展, 2005, 35(3): 345-352.
    [176] Gonzalez R C, Woods R E, Eddins S L.阮秋琦等译. Digital Image Processing Using MATLAB[M].北京:电子工业出版社, 2004. 473.
    [177]宋力,胡时胜. SHPB数据处理中的二波法与三波法[J].爆炸与冲击, 2005, 25(4): 368-373.
    [178] Kuhn H A. Uniaxial Compression Testing[C]. ASM Handbook Vol 8, Mechanical Testing and Evaluation, OH: ASM Int, Materials Park. 2000, 338-357.
    [179]张学峰,夏源明.中应变率材料试验机的研制[J].实验力学, 2001, 16(1): 13-18.
    [180]吴衡毅,马钢,夏源明. PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学, 2005, 20(2): 194-199.
    [181] Song B, Chen W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1336-1343.
    [182] Song B, Chen W, Lu W Y. Compressive mechanical response of a low-density epoxy foam at various strain rates[J]. Journal of Materials Science, 2007, 42(17): 7502-7507.
    [183] Othman R, Guegan P, Challita G, et al. A modified servo-hydraulic machine for testing at intermediate strain rates[J]. International Journal of Impact Engineering, 2009, 36(3): 460-467.
    [184] Gray G T, Blumenthal W R. Split-Hopkinson pressure bar testing of soft materials[C]. Mechanical Testing and Evaluation, OH: ASM Int, Materials Park. 2000, 1093-1114.
    [185] Song B, Chen W W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1336-1343.
    [186] Liu K, Li X. A new method for separation of waves in improving the conventional SHPB technique[J]. Chinese Physics Letters, 2006, 23(11): 3045-3049.
    [187] Song B, Syn C J, Grupido C L, et al. A long Split Hopkinson Pressure Bar (LSHPB) for intermediate-rate characterization of soft materials[J]. Experimental Mechanics, 2008, 48(6): 809-815.
    [188] Zhao H, Gary G. A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1185-1202.
    [189] Tarigopula V, Albertini C, Langseth M, et al. A hydro-pneumatic machine for intermediate strain-rates: Set-up, tests and numerical simulations[C]. Dymat 2009: 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, Vol 1/2. 2009, 381-387.
    [190] Chen R, Huang S, Xia K, et al. A modified Kolsky bar system for testing ultrasoft materials under intermediate strain rates[J]. Review of Scientific Instruments, 2009, 80(7): 076108.
    [191] Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials[J]. Journal of Applied Mechanics-Transactions of the ASME, 2002, 69(3): 214-223.
    [192] Karnes C H, Ripperge E A. Strain rate effects in cold worked high-purity aluminium[J]. Journal of the Mechanics and Physics of Solids, 1966, 14(2): 75-88.
    [193] Wasley R J, Hoge K G, Cast J C. Combined strain gauge-quartz crystal instrumented Hopkinson split bar[J]. Review of Scientific Instruments, 1969, 40(7): 889-894.
    [194] Casem D, Weerasooriya T, Moy P. Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(4): 368-377.
    [195] Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3): 405-411.
    [196] Song B, Ge Y, Chen W, et al. Radial inertia effects in Kolsky bar testing of extra-soft specimens[J]. Experimental Mechanics, 2007, 47(5): 659-670.
    [197] Couque H, Boulanger R, Bornet F. A modified Johnson-Cook model for strain rates ranging from 10-3 to 105 s-1[J]. Journal De Physique Iv, 2006, 134(1): 87-93.
    [198] Kabir M E, Chen W W. Dynamic triaxial test on sand[C]. The 2010 SEM Annual Conference. Indianapolis, Indiana, 2010: 77.
    [199] Kabir M E, Chen W W, Kuokkala V T. Measurement of Stresses and Strains in High Rate Triaxial Experiments[C]. The 2010 SEM Annual Conference. Indianapolis, Indiana, 2010: 128.
    [200] Chen W, Lu F. A technique for dynamic proportional multiaxial compression on soft materials[J]. Experimental Mechanics, 2000, 40(2): 226-230.
    [201] Chen P, Xie H, Huang F, et al. Deformation and failure of polymer bonded explosives under diametric compression test[J]. Polymer Testing, 2006, 25(3): 333-341.
    [202] Mellor M, Hawkes I. Measurement of tensile strength by diametral compression of discs and annuli[J]. Engineering Geology, 1971, 5(3): 173-225.
    [203]喻勇,陈平.岩石巴西圆盘试验中的空间拉应力分布[J].岩土力学, 2005,26(12): 1913-1916.
    [204] Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International Journal of Solids and Structures, 1996, 33(23): 3363-3375.
    [205] Carter B. Size and stress gradient effects on fracture around cavities[J]. Rock Mechanics and Rock Engineering, 1992, 25(3): 167-186.
    [206] Lajtai E Z. Effect of tensile stress gradient on brittle-fracture initiation[J]. International Journal of Rock Mechanics and Mining Sciences, 1972, 9(5): 569-578.
    [207] Van de Steen B, Vervoort A. Non-local stress approach to fracture initiation in laboratory experiments with a tensile stress gradient[J]. Mechanics of Materials, 2001, 33(12): 729-740.
    [208] Baz?ant Z P, Li Z. Modulus of rupture size due to fracture initiation in boundary layer[J]. Journal of Structural Engineering, 1995, 121(4): 739-746.
    [209] Chong K P, Kuruppu M D. New specimen for fracture-toughness determination for rock and other materials[J]. International Journal of Fracture, 1984, 26(2): R59-R62.
    [210] Zhang Z X, Kou S Q, Yu J, et al. Effects of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 597-611.
    [211] Bergmann G, Vehoff H. Precracking of Nial single-crystals by compression-compression fatigue and its application to fracture-toughness testing[J]. SCR METALL MATER, 1994, 30(8): 969-974.
    [212] James M, Human A, Luyckx S. Fracture-toughness testing of hardmetals using compression-compression precracking[J]. Journal of Materials Science, 1990, 25(11): 4810-4814.
    [213] Suresh S, Nakamura T, Yeshurun Y, et al. Tensile fracture toughness of ceramic materials: Effects of dynamic loading and elevated temperatures[J]. Journal of the American Ceramic Society, 1990, 73(8): 2457-2466.
    [214] Lim I L, Johnston I W, Choi S K, et al. Fracture testing of a soft rock with semicircular specimens under 3-point bending. 1. Mode-I[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(3): 185-197.
    [215] ASTM-E399-06e2, Standard test method for plane strain fracture toughness of metallic materials[S].
    [216] Barsoum R S. Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 85-98.
    [217] Freund L B. Dynamic fracture mechanics[M]. Cambridge: Cambridge University Press, 1990. 563.
    [218]钟卫洲,罗景润,徐伟芳,等.三点弯曲试样动态应力强度因子计算研究[J].实验力学, 2005, 20(4): 602-605.
    [219] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745-762.
    [220] Song B, Chen W. Energy for specimen deformation in a split Hopkinson pressure bar experiment[J]. Experimental Mechanics, 2006, 46(3): 407-410.
    [221] Huang S, Luo S, Xia K. Dynamic fracture initiation toughness and propagation toughness of PMMA[C]. The 2009 SEM Annual Conference. Albuquerque, New Mexico, 2009: 211.
    [222] Luo Y J, Du M. The use of inverse gas chromatography (IGC) to determine the surface energy of RDX[J]. Propellants Explosives Pyrotechnics, 2007, 32(6): 496-501.
    [223] Maugis D M, Barquins M. Fracture mechanics and adhence of viscoelastic bodies[J]. Journal of Physics D-Applied Physics, 1978, 11(14): 1989-2023.
    [224] Zehnder A T, Rosakis A J. Dynamic fracture initiation and propagation in 4340 steel under impact loading[J]. International Journal of Fracture, 1990, 43(4): 271-285.
    [225] Anderson T L. Fracture mechanics[M]. Boca Raton: CRC Press, 2005. 185.
    [226]俞茂宏.工程强度理论[M].北京:高等教育出版社, 1999.
    [227] Lockner D A. Rock Failure[C]. Rock Physics and Phase Relations A Handbook of Physical Constants, US: American Geophysical Union.
    [228] Kipp M E. Modeling granular explosive detonation with shear band concepts[C]. 8th International Detonation Symposium. Albuquerque N.M., 1985: 25-30.
    [229] GJB296A-95,黑索今规范[S].
    [230] GJB1738-93,特细铝粉规范[S].
    [231] Nicholson D W. On the detachment of an aigiol inclusion from an elastic matrix[J]. Journal of Adhesion, 1979, 10(3): 255-260.
    [232] Gent A N, Schultz J. Effect of wetting liquids on the strength of adhesion of viscoelasetic material[J]. Journal of Adhesion, 1972, 4(4): 281-294.
    [233] Rivera T, Matuszak M L. Surface properties of potential plastic-bonded explosives (PBX)[J]. Journal of Colloid Interface Science, 1983, 93(1): 105-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700