用户名: 密码: 验证码:
异氟醚与手术对老龄大鼠海马Cyt.C和ChAT表达及认知功能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     术后认知功能障碍(postoperative cognitive dysfunction,POCD)是指术前无精神障碍的病人,受多种因素的影响,在麻醉及手术后数天至数周出现认知能力减退、焦虑、记忆受损、语言理解能力和社会融合能力减退为临床特点的并发症,易发生于老年人。近年来尽管医疗技术水平的提高使围术期的死亡率和并发症大大降低,但POCD的发生率却居高不下,引起了临床上的广泛关注,然相关因素的确切影响及其分子机制仍未知。以往的研究认为老龄是POCD发生的确定危险因素,同时,越来越多的研究表明,麻醉药和手术成为POCD发生最密切关联的两大因素。而目前的研究认为海马胆碱能神经元的损伤是认知功能受损害的形态学基础,ChAT是生成乙酰胆碱的限速酶,常作为研究胆碱能神经元的特殊标志。在中枢神经系统损伤的研究中,细胞凋亡导致的神经元数量减少已作为包括阿尔兹海默病(Alzheimer’s disease,AD)在内的多种神经退行性疾病认知功能减退的可能基础,作为细胞凋亡的研究,近年来,人们逐渐认识到线粒体可能是调控细胞凋亡的中心,线粒体Cyt.C释放到胞浆是线粒体凋亡途径的主要特征。基于上述理由,我们推测在老龄后中枢胆碱能神经系统退行性变的基础上,异氟醚或手术通过经典的线粒体凋亡信号通路诱导海马神经细胞凋亡,损伤中枢胆碱能神经系统,进而引发POCD,这正是本研究立题的目的所在。本研究采用Morris水迷宫实验、免疫组化、反转录聚合酶链式反应(reverse transcriptase polymerase chain reactio,RT-PCR)、蛋白质印记(Western blot)等技术和方法,通过检测海马神经元胆碱乙酰转移酶(Choline acetyltransferase,ChAT)和胞浆内细胞色素C(Cytochrome C,Cyt.C)的表达水平变化、大鼠空间学习记忆能力的改变,探讨POCD发生的确切原因和可能机制。
     方法
     实验分三部分:
     健康雄性老龄SD大鼠103只,年龄20月龄,体重500g~600g,随机分为4组,对照组(C组)、0.75%异氟醚麻醉组(I1组)、1.5%异氟醚麻醉组(I2组)和手术组(O组)。C组吸入30%氧气2 h(n=16); I1组吸入0.75%异氟醚和30%氧气2 h(n=29);I2组吸入1.5%异氟醚和30%氧气2 h(n=29); O组吸入1.5%异氟醚和30%氧气2 h,并实施腹部手术(n=29)。在麻醉和手术中,维持动脉血氧饱和度≥95%,体温37.8℃~38.7℃,各组随机抽取5只大鼠在0.5、1、1.5 h时间点取动脉血样0.3ml,采用ABL700血气分析仪行血气分析,其后脱离实验。
     1、异氟醚与手术对老龄大鼠认知功能的影响
     麻醉结束后或术后24 h进行Morris水迷宫实验,测定认知功能。
     2、异氟醚与手术对老龄大鼠海马ChAT表达的影响
     麻醉结束后或术后24 h 10%水合氯醛腹腔麻醉成功后,取脑并分离海马,免疫组化法和RT-PCR法检测ChAT的表达。
     3、异氟醚与手术对老龄大鼠海马胞浆内Cyt.C表达的影响
     麻醉结束后或术后24 h 10%水合氯醛腹腔麻醉成功后,取脑并分离海马,免疫组化法和Western blot法检测Cyt.C的表达。
     结果
     1、实验动物的一般情况
     异氟醚麻醉或手术中生命体征平稳,大鼠口唇及肢端部位红润,无体动、低血压、呼吸抑制和缺氧征象出现,说明麻醉效果满意。同时,各组大鼠间天龄、体重、游泳速度、麻醉或手术中血氧饱和度和血气分析各项指标差异无统计学性意义(P>0.05),排除了相关因素对认知功能改变的干扰。
     2、老龄大鼠认知功能的改变
     2.1定位航行试验结果显示,各组大鼠随着训练天数的增加,逃避潜伏期缩短,说明逐渐产生学习记忆;与C组比较,I1组、I2组和O组老龄大鼠2d~5d逃避潜伏期延长(p<0.05),学习曲线后移,至第四天渐趋稳定,而C组第3天趋于稳定;与I2组比较,O组4d~5d逃避潜伏期延长(P<0.05);I1组和I2组之间差异无统计学意义(P>0.05)。
     2.2空间探索试验结果显示,与C组比较,I1组、I2组和O组老龄大鼠停留原平台象限时间和穿越原平台次数减少(p<0.05);与I2组比较,O组4d~5d停留原平台象限时间减少(P<0.05);I1组和I2组之间差异无统计学意义(P>0.05)。
     3、海马ChAT表达水平的改变
     与C组比较,I1组、I2组和O组海马ChAT的转录水平降低(p<0.05),蛋白的表达水平也降低(p<0.05);I1组和I2组之间无显著性差异(P>0.05);与I2组比较,O组海马ChAT表达水平降低(p<0.05)。
     4、海马胞浆Cyt.C表达水平的改变
     与C组比较,I1组、I2组和O组海马胞浆Cyt.C蛋白的表达水平增多(p<0.05);与I1组比较,I2组海马胞浆Cyt.C蛋白的表达水平增多(p<0.05);与I2组比较,O组海马胞浆Cyt.C蛋白的表达水平增多(p<0.05)。
     结论
     1、通过Morris水迷宫实验,证实异氟醚麻醉可导致老龄大鼠的早期认知功能减退,但无本研究范围内浓度差异,联合手术操作可加重此种损伤。
     2、异氟醚与手术可引起海马神经元ChAT表达减少和胞浆内Cyt.C表达增多,并且这种表达水平变化与老龄大鼠早期认知能力减退形成规律一致,提示麻醉与手术在老龄大鼠中枢胆碱能神经系统发生退行性改变的基础上,可能诱导海马神经元凋亡的发生,损伤海马胆碱能神经系统,进而引发老龄大鼠认知功能减退。
Background and purpose
     Postoperative cognitive dysfunction (POCD) defined as patients without mental disorders before operation suffered cognitive decline, impaired memory, declined language comprehension and social integration ability a few days or several weeks after anesthesia and operation. This phenomenon usually occurres in the old people.In recent years, the high incidence of POCD attracts widespread attention, but the exact factors and mechanisms are still unknown. Previous studies showed that aging was the exact risk factors of POCD, At the same time, increasing evidences indicated that anesthetics and operation were closely correlated with the occurrence of POCD. The previous study suggested that the damage of hippocampal cholinergic neurons was the morphological basis of the decline of cognitive function. Choline acetyltransferase (ChAT), a rate-limiting enzyme, is always regarded as the special symbol of the cholinergic neurons. Study on the central nervous system showed that the reduction in the number of neurons due to apoptosis might be the basis of cognitive decline in various neurodegenerative diseases including Alzheimer's disease (AD). With the increasing study of apoptosis, it has gradually been realized that mitochondria may be the central regulation of apoptosis and the release of mitochondrial Cytochrome C (Cyt.C) into the cytoplasm is the main feature of mitochondrial apoptosis pathway. Based on the theories mentioned above, we speculated that, on the basis of central cholinergic system degeneration, isoflurane or operation might induce neuronal apoptosis through the classical mitochondrial apoptosis pathway and caused the damage of cholinergic nervous system and then triggered POCD. this was the main content of this study. In the present study, we adopted Morris water maze test, immunohistochemistry and reverse transcription polymerase chain reaction for observation the changes of choline acetyltransferase of hippocampal neurons and Cyt.C of cytoplasm expression and cognitive function in elder rats to explore the exact factors and the possible mechanism of POCD.
     Methods
     One hundred and three aged (20 months old) male Sprague-Dawley(SD) rats weighing 500-600g were randomly divided into 4 groups: group C inhaled 30% O2 for 2 h(control,n=16); group I1 was anesthetized with 0.75% isoflurane in 30% O2 for 2 h(0.75% isoflurane,n=29); group I2 was anesthetized with 1.5% isoflurane in 30% O2 for 2 h(1.5% isoflurane,n=29); operation group O underwent abodominal operation under 1.5% isoflurane (in 30% O2) for 2 h(operation,n=29). In the course of anesthesia and surgery, arterial oxygen saturation was maintained between 95% and 100% and body temperature was kept 37.8℃~38.7℃.Five rats were randomly selected from each group and arterial blood samples (0.3ml) were obtained at 0.5,1 and 2 h for blood gas analysis by ABL700 blood gas analyzer.
     1. Effects of isoflurane and surgical operation on cognitive function in aged rats. Cognitive function was assessed by Morris water maze test at 24 h after anesthesia or operation.
     2. Effects of isoflurane and surgical operation on the expression of ChAT in hippocampus in aged rats
     24 h after anesthesia or operation, the animals were anesthetized with 10% chloral hydrate intraperitoneally. Then the animals were killed and their brains were immediately removed for the detection of the expression of ChAT in hippocampus by RT-PCR and immunohistochemistry.
     3. Effects of isoflurane and surgical operation on the expression of Cyt.C in hippocampus cytoplasm in aged rats
     24 h after anesthesia or operation, the animals were anesthetized with 10% chloral hydrate intraperitoneally. Then the animals were killed and their brains were immediately removed for the detection of the expression of Cyt.C in hippocampus cytoplasm by Western blot and immunohistochemistry.
     Result
     1. General state of experimental animals
     During the period of anesthesia and operation, the vital signs of rats were stable; Lips were rosy, as well as the end part of the body; No limb movement, hypotension, respiratory depression and hypoxia signs were found. There weren’t significant difference between the groups in age, body weight, swimming speed, blood oxygen saturation and blood gas analysis (P>0.05).
     2. Change of cognitive function in aged rat
     2.1 The results of place navigation test showed that the escape latency of rats became shorter with the increase of the training days, which showed that the learning and memory were gaining gradually. Learning and memory curve was shift right in group I1, group I2 and group O, and turned to be stable at the 4th day but at the 3rd day in group C. At day 2, 3, 4 and 5 after treatment, the escape latency in group I1, group I2 and group O were observed significantly longer compared with group C(P<0.05). The escape latency at day 4 and 5 was significantly longer in group O than that in group I2(P<0.05).No significant differences was found between group I1 and group I2(P>0.05).
     2.2 The results of spatial probe test showed that the frequency of crossing the original platform and the time consumption of staying at the original platform quadrant was lower in group I1, group I2 and group C compared with those in group C(P<0.05). The time consumption of staying at the original platform quadrant at day 4 and 5 was significantly lower in group O than that in group I2(P<0.05).There weren’t significant differences between group I1 and group I2.
     3. Change of ChAT expressions in hippocampus
     Compared with group C, the mRNA and protein expression levels of ChAT in hippocampus in aged rats was significantly lower in group I1, group I2 and group O(P<0.05). No significant difference was found between group I1 and group I2(P>0.05). The mRNA and protein expressions of ChAT was significantly lower in group O than group I2(P<0.05).
     4. Change of Cyt.C expressions in hippocampal cytoplasm
     Compared with group C, the protein expression levels of Cyt.C were significantly increased in group I1, group I2 and group O(P<0.05). At the same time, The protein expression level of Cyt.C was lower in group I1 compared with group I2(P<0.05). The protein expression level of Cyt.C was higher in group O than that in group I2(P<0.05).
     Conclusion
     1. Isoflurane reduced cognitive function in aged rats in the early period after anesthesia and operation, and operation further increased this damage.
     2. Isoflurane or operation resulted in the reduced expression of ChAT and the increased expression of cytosolic Cyt.C in neurons in hippocampal. Operation aggravated these changes in the expressions of ChAT and Cyt.C. This abnormal change of the expression levels of ChAT and Cyt.C was consistent with the cognitive decline in rats. This suggests that anesthesia or operation based on degeneration of the central cholinergic system induced apoptosis in hippocampal neurons and damaged hippocampal cholinergic nervous system, and in turn leaded to cognitive dysfunction in aged rats. This was the possible mechanisms of POCD.
引文
[1] Muller SV,Krause N,Schmidt M , et al.Cognitive dysfunction after abdominal surgery in elderly patients.Z Gerontol Geriatr,2004 ,37:475-485.
    [2] Cohendy R , Brougere A , Cuvillon P. Anaesthesia in the older patient.Curr Opin Clin Nutr Metab Care,2005,8:17-21.
    [3] Bekker A Y, Weeks EJ.Cognitive function after anaesthesia in the elderly. Best Pract Res Clin Anaesthesiol ,2003,17:259-272.
    [4] Satomoto M, Satoh Y, Terui K, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology, 2009, 110(3):628-637
    [5] Fesenko UA.Piracetam improves children's memory after general anaesthesia. Anestezjol Intens Ter, 2009, 41(1):13-18
    [6] Culley DJ,Baxter M,Yukhananov R,et a1.The memory effects of general anesthesia persist for weeks in young and aged rats.Anesth Ana1g,2003,96(4):1004-1009
    [7] Criswell HE,Ming Z,Pleasant N,et al.Macrokinetic analysis of blockade of NMDA-gated Currents by substituted alcohols alkanes and ethers.Brain Res, 2004,1015(122): 107-113
    [8] Namo H,Onizuka S,Prince D,et al.Sevoflurane blocks cholinergic synaptic transmitssion postsynaptically but does not affect Short-term potentiation. Anesthesiology. 2005, 102(5):920-928
    [9] Xie Z, Dong Y, Maeda U, et al. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation.J Neurosci, 2007, 27(6): 1247-1254.
    [10]徐静,万燕杰,曾因明.脾切除术对大鼠空间学习记忆能力的影响.中华麻醉学.2006, 26: 144-147
    [11] Bernardino L, Xapelli S, Silva AP,et al. Modulator effects of interleukin-1 beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005,25:6734-6744
    [12] Pouzet B,Zhang WN,Feldon J,et al.Hippocampal lesioned rats are able to learn a spatial position using non-spatial strategies. Behav Brain Res,2002,133: 279-291.
    [13] Zhang X,Jin G,Tian M,et al.The denervated hippocampus provides proper microenviromet for the survival and differentiation of neural progenitors. Neurosci Lett, 2007,414:115-120.
    [14]朱长庚.主编.神经解剖学.第1版.北京:人民卫生出版社,2002.269.
    [15] Hasselmo ME.Neuromodulation:acetylcholine and memory consolidation.Trends Cogn Sci.1999, 3:351-359.
    [16] Ogren SO,Kehr J,Schott PA.Effects of ventral hippocampal galanin on spatial learning and on vivo acetylcholine release in the rat. Neuroscience,1996,75(4):1127- 1140.
    [17] Darnaudery M,Koehl M,Piazza PV,et al.Pregnenolone sulfate increases hippocampal acetylcholine release and spatial recognition.Brain Res,2000,852(1):173-179.
    [18]孙凤艳,主编.医学神经生物学.第1版.上海:上海科学技术出版社,2008.112.
    [19] Yuan J,Yankner BA.Apoptosis in the Nervous System. Nature,2000,407:802-809.
    [20] Savitz SI,Rosenbaum DM.Apop tosis in neurological diseases.Neursurg,1998,42: 555-572.
    [21] Yamatsuji T,Okamoto T,Takeda S,et al.Expression of V64 APPmutant cause cellular apoptosis as Alzheimer traitlinked phenotye.EMBOJ,1996,15:498-509.
    [22]陈等,吴亚宁,张俊武.线粒体与阿尔茨海默病.基础医学与临床, 2001,21:395-399.
    [23] Kroemer G.Mitochondrial control of apoptosis:an overview. Biochem Soc Symp. 1999, 66:1-15.
    [24] Alessandro National, George E.N. Kass, Micheal J, et al. The mitochondrial pathway of apoptosis is triggered during feline calicivirus infection.General Virology,2006,87:3 57-361.
    [25] Martini N, Preckel B, Thamer V, et al.Can isoflurane mimic ischaemic preconditioning in isolated rat heart?Br J Anaesth.2001,86: 269-271.
    [26] Orliaguet G,Vivien B,Langeron O,et al.Minimum alveolar concentration of volatile anesthetics in rats during postnatal maturation[J].Anesthesiology,2001,95(3):734-739
    [27]原著:Paul G. Barash,Bruce F. Cullen,Robert K. Stoelting.主译:艾登斌,马海燕.临床麻醉手册.第4版.北京:人民卫生出版社.2004,122-123.
    [28] Bryson GL, Wyand A. Evidence-based clinical update:General anesthesia and the risk of delirium and postoperative cognitive dysfunction. Can J Anaesth,2006,53:669-677.
    [29] Van Dijk D,Jansen EWL,Hijman R,et al.Cognitive outcome after off pump andon-pump coronary artery bypass graft surgery. JAMA, 2002,287(11):1405-1412.
    [30] Rasmussen LS, Steentoft A, Rasmussen H, et al. Benzodiazepines and postoperative cognitive dysfunction in the elderly. Br J Anaesth,1999,83(4):585-589.
    [31]郭权,赵红英.老年术后认知障碍的分析.中国临床康复,2003;7 (4):643
    [32] Rasmuseen LS,Johnson T,Kuipers HM,et a1.Does anaesthesthesia cause postoperative fcognitive dysfunction? A randomized study of regional ver-SUS general anaesthesia in 438 elderly patients. Acta Anaesthesial Scand,2003,43:260-266.
    [33] Wollman SB,Orkin LR. Postoperative human reaction time and hypocarbia during anaesthesia. Br J Anaesth,1968,40(12):920-926.
    [34] Insted TU,Meyer O,Berkau A,et al.Does intraoperative hyperventilation improve neurological functions of older patients after general anaesthesia?.Anaesthesist,2002,51 (6):457-462.
    [35] Slater JP,Guarino T,Stack J,et al.Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery.Ann Thorac Surg,2009,87:36-44.
    [36] Dodds C, Allison J.Postoperative cognitive deficit in the elderly surgical patient. Br J Anaesth,1998,81(3):4492462.
    [37] Silverstein JH,Jeffrey H.Central nervous system dysfunction after noncardiac surgery and anesthesia in the elderly.Anesthesiologists,2007,106(3):622-628.
    [38] Rohan D,BuggyDJ,Crowley S,et a1.Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly.CanAnaesth,2005;52(2):137-142.
    [39] Edwards H,Rose EA,Schorow M,et al.Postoperative deterioration in psychomotor function. JAMA, 1981, 245(13):1342-1343.
    [40]夏月峰.异氟醚对老龄大鼠认知功能及海马CA3区突触界面结构的影响.中国优秀硕士学位论文全文数据库,2007.
    [41]欧阳文.异氟醚对老龄大鼠学习记忆功能和海马蛋白质组的影响.中国优秀博士学位论文全文数据库,2007.
    [42] Komatsu H,Nogaya J,Anabuki D,et al.Memory facilitation by posttraining exposure to halothane,enflurane,and isoflurane in ddN mice.Anesth Analg,1993,76:609-612
    [43] Ancelin ML,De Roquefeuil G,Ledesert B,et al.Exposure to anesthetic agents,cognitive functioning and depressive symptomatology in the elderly.British Journal of Psychiatry, 2001,178:360-366.
    [44] Deborah J,Culley,Mark Cz Baxter, et al.Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats. AnesthAnalg, 2004,99:1393-1397.
    [45]耿德勤,王红梅,王志萍等.老龄大鼠麻醉术后认知障碍动物模型的建立及评价.实用临床医药杂志,2005,9(1):9-12.
    [46] Coleman PD,Flood DC.Neuron numbers and dendritic extent in normal aging and Alzheimer's disease.Neurobiol Aging,1987,8:521-545.
    [47] Mueller SG,Stables L,Du AT,et al. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T.Neurobiol Aging, 2007,28(5): 719-726.
    [48] Grady CL,McIntosh AR,Horwitz B,et al.Age-related reductions in human recognition memory due to impaired encoding. Science,1995,269:218-221.
    [49] Schuff N,Amend DL, Knowlton R, et al. Age-related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging. Neurobiol Aging, 1999, 20(3): 279-85.
    [50] Jernigan TL,Archibald SL,Fennema-Notestine C,et al.Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging,2001,22(4):581-594.
    [51] Mani RB, Lohr JB, Jeste DV Hippocampal pyramidal cells and aging in the human quantitative study of neuronal loss in sectors CA1 to CA4. Exp Neurol, 1986, 94(1):29-40.
    [52] Monk TG,Weldon BC,Garvan CW,et al.Predictors of cognitive dysfunction after majornoncardiac surgery. Anesthesiology, 2008,108:18-30.
    [53] Price CC,Garvan CW,Monk TG.Type and severity of cognitive decline in older adults after noncardiac surgery.Anesthesiology,2008,108:8-17.
    [54] Heim C,Nemeroff CB.The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders.Biol Psychiatry, 1999,46 (11):1509-22.
    [55] Jing XH,Shi H,Cai H,at al.Effect of acupuncture on long-term potentiation of hippocampal CA1 area in diabetic rats with concurrent cerebral ischemia.Zhen Ci Yan Jiu. 2008,33(6):397–401
    [56] Eichenbaum H.A cortical-hippocampal system for declarative memory.Nat RevNeurosci, 2000, 1(1):41-50.
    [57] Nerad L,Liu P,Bilkey DK.Bilateral NMDA lesions centered on the postrhinal cortex have minimal effects on hippocampal place cell firing.Hippocampus,2009,19(3): 221-227.
    [58]杜艳军,田青,孙国杰.艾炙对老年鼠乙酰胆碱含量及胆碱酯酶活性影响的研究.湖北中医杂志,2007,29:3-4.
    [59]范文辉,李露斯,刘之荣.血管性痴呆的动物模型、神经病理及其胆碱能机制.中国临床康复, 2002, 6(21):3172-3173.
    [60] Li XL, Wang de S, Zhao BQ, et al.Effects of Chinese herbal medicine fuzhisan on aged rats.Exp Gerontol, 2008, 43(9):853-858
    [61]薛静.脾切除术后空间记忆及海马ChAT改变和CoQ10干预效果的研究.中国优秀硕士学位论文全文数据库,2008.
    [62]覃扬.SDS-聚丙酰胺凝胶电泳测定蛋白质分子量.医学分子生物学实验教程. 2004.149-153.
    [63] Kluck RM,Bossy-Wetzel E,Green DR,et al.The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis.Science, 1997, 275:1132-1136.
    [64]张红梅,牛侨.细胞色素C在铝致海马神经细胞凋亡中的变化.环境与职业医学.2006, 23:4-7
    [65] Andrea Renz, Wolfgang E,Berdel,et al. Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo.blood,2001,98:1542-1548.
    [66] SA Johnson,C Young,JW Olney.Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. Neurosurg.Anesthesiol,2008,20:21-28.
    [67]王国毅,陶国才,易斌,等.咪达唑仑对幼龄大鼠大脑神经元caspase-3活化的影响.第三军医大学学报.2008,30(4):337-339。
    [68] Zhang Y,Dong Y,Wu X,et al.The mitochondrial pathway of anesthetic isoflurane- induced apoptosis.J Biol Chem,2010,285(6):4025-4037.
    [69] NA Anis,SC Berry,NR Burton,D Lodge.The dissociative anaesthetics,ketamine and phencyclidine,selectively reduce excitation of central mammalian neurones by N-methyl–aspartate.Br J Pharmacol,1983,79:565-75.
    [70] TG Hales, JJ Lambert. The actions of propofol on inhibitory amino acid receptors ofbovine adrenomedullary chromaffin cells and rodent central neurones.Br J Pharmacol, 1991, 104:619-628.
    [71] K Nishikawa, A Jenkins, I Paraskevakis,NL Harrison. Volatile anesthetic actions on the GABAA receptors: contrasting effects of alpha 1(S270) and beta 2(N265) point mutations. Neuropharmacology, 2002, 42: 337-345.
    [72] Pizzi M,Consolandi O,Memo,et al. Activation of multiple metabotropic glutamate receptors subtypes prevents NMDA-induced excitotoxicity in rat hippocampal slices. Eur J Neurosci, 1996,8:1516-1521.
    [73] Marcoux FW,Probert AW Jr,Weber ML, Hypoxic neuronal injury in tissue culture is associated with delayed calcium accumulation. Stroke,1990,21 (11):11171-11174.
    [74] Carnini A,Lear JD,Eckenhoff RG.Inhaled anesthetic modulation of amyloid beta(1-40) assembly and growth. Curr Alzheimer Res,2007,4(3):233-241.
    [75] Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition inwell-functioning African-American and white elders. Neurology. 2003,61:76-80.
    [76] Buvanendran A,Kroin JS,Berger RA,et al.Up regulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans.Anesthesiology,2006,104:403-410 .
    [77] Kalman J,Bogats G,Babik B,et al. Elevated levels of inflammatory biomarkers in the cerebrospinal fluid after coronary artery bypass surgery are predictors of cognitive decline. Neurochem Intern, 2006,48:177-180.
    [78] Wan Y, Xu J, Ma D, et al. Postoperative impairment of cognitive function in rats: A possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 2007, 106:436-443.
    [79] Cibelli M,Hossain M,Ma D,et al.Microglia and astrocyte activation in the hippocampus in a model of orthopedic surgery in adult mice.Anesthesiology,2007,107: A1557.
    [1] Krasowski, M.D, Harrison, N.L. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci,1999, 55: 1278-1303.
    [2] Dilger, J.P. The effects of general anaesthetics on ligand-gated ion channels. Br J Anaesth, 2002, 89: 41-51.
    [3] Solt, K, Raines, D.E. Differential modulation of human N-methyl-d-aspartate receptors by structurally diverse general anesthetics. Anesth Analg, 2006, 102: 1407-1411.
    [4] Ikonomidou, C, Bosch, F, Miksa, M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 1999, 283: 70-74.
    [5] Ikonomidou, C, Bittigau, P, Ishimaru, M.J, et al.Ethanol-induced apoptotic neurodegenera- tion and fetal alcohol syndrome. Science, 2000, 287: 1056-1060.
    [6] Hayashi, H, Dikkes, P, Soriano, S.G. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth, 2002, 12: 770-774.
    [7] Scallet, A.C, Schmued, L.C, Slikker, W. Jr, et al.Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci,2004, 81: 364-370.
    [8] Young, C, Jevtovic-Todorovic, V, QIN Y.Q, et al.Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol, 2005, 146:189-197.
    [9] Slikker W Jr, Zou X, Hotchkiss CE, et al. Ketamine-Induced Neuronal Cell Death in the Perinatal Rhesus Monkey. Toxicol Sci, 2007,98(1): 145-158.
    [10] Loop T, Dovi-Akue D, Frick M,et al. Volatile anesthetics induce caspase -dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 2005 ,102(6): 1147-1157.
    [11] Cattano D , Young C , Straiko MMW , Olney JW . Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. ANESTHESIA AND ANALGESIA, 2008,106(6): 1712-1714
    [12] Majewski-Tiedeken CR , Rabin CR , Siegel SJ. Ketamine exposure in adult mice leads to increased cell death in C3H, DBA2 and FVB inbred mouse strains. DRUG AND ALCOHOL DEPENDENCE, 2008, 92:217-227
    [13] Zou X , Sadovova N , Patterson TA,et al. The effects of L-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. NEUROSCIENCE ,2008,151:1053-1065
    [14] Johnson SA, Young C, Olney JW. Isoflurane-induced Neuroapoptosis in the Developing Brain of Nonhypoglycemic Mice. J Neurosurg Anesthesiol ,2008,20(1): 21–28.
    [15] Sanders RD , Xu J , Shu Y , et al. General anesthetics induce apoptotic neurodegeneration in the neonatal rat spinal cord. ANESTHESIA AND ANALGESIA. 2008, 106(6):1708-1711
    [16] Fredriksson A, Archer T, Alm H, et al. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res ,2004, 153:367–376.
    [17] Fredriksson A , Ponten E , Gordh T, et al. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent Behavioral deficits. ANESTHESIOLOGY, 2007, 107(3):427–436.
    [18] Jevtovic-Todorovic V, Beals J, Benshoff N, Olney JW. Prolonged exposure to inhalational anesthetic nitrous oxide kills neurons in adult rat brain. NEUROSCIENCE, 2003, 122: 609-616
    [19] Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system.Annu Rev Neurosci. 2005, 28:223-250
    [20] Jevtovic-Todorovic V, Lisa B. Carter,The anesthetics nitrous oxide and ketamine are more neurotoxic to old than to young rat brain.2005,26(6):947-956
    [21] SlikkerWJr, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci ,2007,98:145–158.
    [22] Yon JH, Niel-Johnson J, Carter LB, Jevtovic-Todorovic V. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience ,2005, 135:815–827.
    [23] Rizzi, Sabina, Carter, Lisa B, Ori, Carlo, et al. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. BRAIN PATHOLOGY ,2008,18(2): 198-210
    [24] Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg,2005, 101:651–657.
    [25] Mckay R. Stem cells in the central nervous system. Science. 1997, 276(5309): 66-71
    [26] Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat-Rev-Neurosci.2002,3(9):715-727.
    [27] Jelitai M, Anderova M, Marko K. Role of gamma-aminobutyric acid in early neuronal development: studies with an embryonic neuroectodermal stem cell clone. J-Neurosci-Res. 2004, 76(6): 801-811.
    [28] Zhang G, Dong Y, Zhang B, et al. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine.J Neurosci. 2008,28(17):4551-4560
    [29] Pulsinelli W A, Buchan A M. The four-vessel occlusion rat model : method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke, 1988, 19(7): 913-914
    [30] Lipton SA,Rosenbery PA.Excitatory amina acids as a final common path way for neurological disorders. N Engl J Med,1994, 330(9):613-622.
    [31] Pizzi M,Consolandi O,Memo,et al. Activation of multiple metabotropic glutamate receptors subtypes prevents NMDA-induced excitotoxicity in rat hippocampal slices. Eur J Neurosci, 1996,8:1516-1521.
    [32] Marcoux FW,Probert AW Jr,Weber ML, Hypoxic neuronal injury in tissue culture isassociated with delayed calcium accumulation. Stroke,1990,21(11):11171-11174.
    [33] Slikker W, Paule MG, Wright LKM, Patterson TA, Wang C. Systems biology approaches for toxicology. J Appl Toxicol,2007,27:201–17
    [34] Janz R,Sudhof TC,Hammer RE,et al. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I.Neuron, 1999, 24: 687-700
    [35] Yamauchi T. Neuronal Ca2 + /Calmodulin-dependent p rotein kinase II-discovery, pro gress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull, 2005,28 (8) :1342-1354.
    [36] Nikizad H, Yon JH, Carter LB, et al. Early Exposure to General Anesthesia Causes Significant Neuronal Deletion in the Developing Rat Brain.Ann N Y Acad Sci,2007,1122:69-82
    [37] Carnini A, Lear JD, Eckenhoff RG. Inhaled anesthetic modulation of amyloid beta(1-40) assembly and growth. Curr Alzheimer Res,2007,4(3):233-241.
    [38] Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology,2004,101:703-709.
    [39] Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology, 2006, 104:988-994.
    [40] Xie Z, Dong Y, Maeda U, et al. Isoflurane-induced apoptosis: a potential Pathogenic link between delirium and dementia. J Gerontol A Biol Sci Med Sci,2006, 61:1300–1306.
    [41] Xie Z, Dong Y, Maeda U, et al. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci,2007, 27:1247-1254.
    [42] Szatmari E ,Kalita KB ,Kharebava G,et al . Role of kinase suppressor of Ras-1 in neuronal survival signaling by ext racellular signal - regulated kinase 1/ 2. Neurosci ,2007 ,27 (42):11389-11400.
    [43] Rossler OG,Giehl KM , Thiel G. Neuroprotection of immortalized hippo campal neurones by brain - derived neurot rophic factor and Raf - 1 protein kinase : role of ext racellular signal regulated protein kinase and phosphatidylinositol 3 - kinase. Neurochem ,2004 ,88 (5):1240- 1252.
    [44] Baharia M , Renata B , Isabelle B et al . Glia1 cell line– derived neurot rophic factor 3/ stimulated phosphatidylinositol 3 - kinase and Akt activities exert opposing effect s on t he ERK pathway. Biological Chem ,2001,276 (48) :45307-45319.
    [45] Volosin M ,Song W,Almeida RD et al . Interaction of survival and deat h signaling in basal forebrain neurons : roles of neurot rophins and proneurot rophins. Neurosci, 2006, 26 (29): 7756-7766.
    [46] Lu LX, Yon JH, Carter LB, Jevtovic-Todorovic V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis, 2006 ,11(9): 1603- 1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700