遥控装载机电液操纵系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内装载机的运行需要较多的人工操作控制,严重制约了其各项技术性能和功能的发展和提高,使得操纵者劳动强度大,作业效率和作业质量完全依赖于操纵者个人技术水平的发挥情况;并且制约着人类向核污染等恶劣的领域发展;随着科技的发展与社会的进步,装载机遥控化、机器人化成为了未来的发展方向。然而,目前装载机液压系统的控制精度完全依赖于普通手控阀的通断时间,通过操作工人观察装载机动作效果来实现反馈,造成系统的控制精度低,无法满足其遥控、自主控制的要求,因而研究和设计能够满足遥控、自主控制要求的电液系统的意义非常重大,也可为类似工程机械的遥控化、自动化改造提供参考依据。本文从现代机电液一体化产品的设计理论出发,结合遥控装载机电液操纵系统这一实例,开展了以下研究和设计工作:
     (1) 根据一般装载机作业指令的要求,提出遥控变量,规划出整个无线电遥控系统的总体结构及其功能,设计出基于CANopen总线协议的遥控器与控制器之间的通讯程序。
     (2) 在分析多种方案优缺点的基础上,提出用比例流量阀/比例减压阀控制主油路上换向阀阀芯的开口度,用普通电磁换向阀控制主油路上换向阀阀芯的运动方向的遥控装载机电液比例控制系统的设计方案;并成功地运用于ZL50遥控装载机电液系统设计中。
     (3) 在建立多路阀的静态模型以及分析多路阀的静态特性、电液比例阀的静态特性的基础上,建立了多路阀与电液比例先导阀之间的匹配关系,为类似工程机械先导控制下电液系统设计提供参考依据;
     (4) 为了满足装载机的智能铲装要求,以ZL50装载机工作装置为对象,建立遥控装载机电液操纵系统的数学模型,并对其进行了仿真研究,仿真结果表明:该系统响应速度较快,负载抗干扰能力较强,稳定好,能够满足装载机的遥控和局部自主控制的要求;
At present, the homemade Loader is manipulated by manual work, which will baffle the development of its function and capability badly, and lead to heavy labor, working efficiency and quality depending on the manipulator's technology, it is prevented from working in the polluted fields by nucleus. At the same time, with the development of society, science and technology, the robotic and remote-control Loader become the research topic. However, the control accuracy of Loader's hydraulic system depend on the ON-OFF time of the common valve, the feedback come from worker observing the loader's motion. It lead to the lower control accuracy, and it can't fulfill the need of the robotic and remote control, so the research and design on electronic-hydraulic system fulfilling the need of self-determination control and remote control will become important, and it will provide the reference for robotic and remote-control engineering machinery, too. According to the example of designing the electro-hydraulic system for
    remote-control Loader, the dissertation will develop the research and design as represent followed using the designing theory of the latter-day mechatronic product:
    (1) According to the require of working command for common loader, the remote-control variable is represented, the framework of radio remote-control system is built, the function is expressed. At the same time, the program for communication based on CANopen protocol between remote-control equipment and controller is worked out.
    (2) After analyzing the virtue and flaw of kinds designing, the dissertation select the method for the electro-hydraulic proportional control system of the remote-control Loader where the proportional fluid valve or the proportional reducing-pressure valve control hatch of the multi-spool valve and the common electromagnetic change-direction valve control the direction of the spool of the multi-spool valve . Furthermore , it is used to the type ZL50 remote- control Loader successfully.
    
    
    
    (3) After establishing the static model of the multi-spool valve and analyzing the static properties of multi-spool valve and electro-hydraulic proportional valve, the rule representing the matching relation between multi-spool valve and electro-hydraulic proportional valve is found. It will provide the reference for the design of electro-hydraulic system of similarity engineering machinery under control of pilot valve.
    (4) In order to fulfill the need of intelligent loading ,the type ZL50 Loader equipment is selected as the research object, the mathematic model of radio remote-control Loader's electro-hydraulic proportional control system is established and its dynamic properties is analyzed by the software named MATLAB .The result prove that the system has quick response and good anti-jamming capacity, its stability is good ,too. The system can fulfill the need on remote-control function and self-determination control function.
引文
[1] D汤姆森,V·阿特肯.矿山设备遥控技术的发展.世界采矿快报,1998,NO.11:42~47.
    [2] 陈洪,等.采掘机器人远程无线遥控系统的设计.机电工程,1998,No.2:37~39.
    [3] Gerd Hirzinger,Brunner, Johannes Dietrich,and Johann heindl. Sensor-Based space robotics-ROTEX and its telerobotics features. IEEE transactions on robotics and automation,1993, NO.5.
    [4] 黄宗益,王康.建设机器人和工程机械机电信一体化.工程机械,1999,No.7:1~5.
    [5] Philippe Gravez, Herve Le Bars and Raymond Fournier. Supervision computer Aided Teleoperation: an approach based on the description of remote tasks. Telemanipulator technology, SPLE, 1992, VOL 1833.
    E6] K. Machida, S. Hirai and P. Schenker,Study on long distance space teleroboticss, concept of inter-operation experiment between Japan and USA in proc. 37th space science and technology conf, 1993: 213~214.
    [7] Bai xiaobo,Li Gang, etc. A computer control system for mobile robot manipulator. proceedings of the 1988 IEEE international conference on systems,Man,and cybernetics
    [8] S. Hirai, Y. Wakita, K. Machida, K. Ogimoto,T. Katsuragewa and M/Kitami. Application of intelligent telerobotics to super long distance teleoperation.pro JSME Ann conf on Robotics and Mechatronics, 1994: 1136~1139.
    [9] 戴尚文.新型遥控挖掘机.国外工程机械,1992,No.5:4~7.
    [10] T. Katsuragawa. Application of hybrid compliance force control to super long distance teleoperation. Advanced Robotics, 1997, N0.2: 199~212.
    [11] Thomas B. sheridan, Telerobotics.Automation and Human Supervisory control. The MZT press, 1992.
    [12] 黄种惠.危险环境中作业的遥控挖掘机.国外工程机械,1993,N0.2:pp8~10.
    
    
    [13] 管建民.无线遥控系统在起重机上的运用.起重运输机械,2001,NO.10:23~24.
    [14] David Rock. control system for automatically controlling work implement of an earth working machine to capture material. US5528843,1996.
    [15] 王维德译,吴斌校.采矿的自动化计划.国外黄金参考,1997,NO.2:pp1~6.
    [16] 近石康司日.PC200R-2型无线电操纵液压挖掘机.国外工程机械,1985,NO.5:10-12.
    [17] 唐荣庆,曹智裕,等.“探索者”号自治式水下机器人抛载系统的研制.海洋工程,2001 NO.5:85~87.
    [18] 杨汝清,宗克威.“勇士号”遥控移动式作业机器人.高技术通讯,1997,NO.2:11~14.
    [19] 王仲文.工程遥控遥测系统.北京:机械工业出版社,1985.
    [20] 黄佑国.别具一格的YKCY-1.5型遥控铲运机.矿山研究与开发,1995,NO.5:72~76.
    [21] 路同浚,等.机器人化炉渣铲掘机的研究.机器人,1999,NO.4:317~321.
    [22] 路甬祥.电液比例控制技术.北京:机械工业出版社,1988.
    [23] 王春行.液压控制系统.北京:机械工业出版社,1982.
    [24] 李孝明.中国装载机发展及趋势.建筑机械,1999,NO.05:pp16~19.
    [25] 焦运生.工程机械机电一体化.北京:中国交通出版社,1999.
    [26] 宋占伟,闻邦椿.21世纪工程机械的发展趋势.建筑机械,1999,NO.12:27~30.
    [27] 宋占伟,闻帮椿,等.装载机铲装过程电子控制模型研究.机械工程学报,2001,NO.8:52~54.
    [28] 黄海东,宫文斌,等.装载机工作装置电子定位系统.建筑机械,2002,NO.12:26~28.
    [29] 于秀敏,诸文农,等.装载机动臂与铲斗机电一体化控制研究.中国公路学报,1997,NO.2:1~4.
    [30] EPEC公司,SPK系列控制器产品说明书.
    [31] 德国海德公司,Hedetronic系列遥控器说明书.
    [32] 邬宽明.CAN总线原理和应用系统设计.北京:北京航空航天大学出版社,1991.
    [33] 陈杨.基于CAN总线的数据通讯系统的研究.测控技术,2000,NO.10:
    
    53~55.
    [34] 薛雷.CAN总线的数据帧结构与接口设计.测控技术,2000,NO.9:16~18.
    [35] 郇极,杨斌,魏继光.一种开放式的现场总线协议CANopen.制造业自动化,2002,NO.10:pp33~34、38.
    [36] 马永辉,等.工程机械液压系统设计计算.北京:机械工业出版社,1985.
    [37] 冯开林,高松,等.遥控工程机械液压系统设计方法研究.机床与液压,2001,NO.4:45~46.
    [38] 李丽荣.ZL50装载机工作装置液压系统.青海大学学报(自然科学),1999,NO.1:25~27.
    [39] P.德兰斯菲尔德.液压控制系统的设计与动态分析.北京:科学出版社,1987.
    [40] 日本液压气动协会.液压气动手册.北京:机械工业出版社,1984.
    [41] 雷天宽,等.新编液压工程设计手册。北京:机械工业出版社,1991.
    [42] 文百行.先导阀静态与动态特性计算.工程机械,1981,No.5:30~34.
    [43] 杨力夫.装载机工作装置电液比例控制系统.工程机械,2002,NO.4:1~4.
    [44] 岳利明.装载机工作装置液压系统的动态设计.矿山机械,1991,NO.7:6~8.
    [45] 何存兴.液压元件.北京:机械工业出版社,1981.
    [46] 陈愈,沈关耿,等.液压阀.北京:中国铁道出版社,1982.
    [47] 齐伦贤.液压传动与液力传动.北京:冶金工业出版社,1981.
    [48] 刘长年.液压伺服系统优化设计理论.北京:冶金工业出版社,1989.
    [49] 薛定宇.控制系统计算机辅助设计——MATLAB语言及应用.北京:清华大学出版社.1997.
    [50] 刘顺安,宫文斌.机器人化装载机工作装置数字电液比例控制系统.吉林工业大学自然科学学报,2000,NO.3:30~34.
    [51] 王沫然.Simulink4建模级动态仿真.北京:电子工业出版社,2002.
    [52] 魏克新,王云亮,等.MATLAB语言与自动控制系统设计.北京:机械工业出版社,2000.
    [53] 龚剑,朱亮.MATLAB5.X入门与提高.北京:清华大学出版社,2000.
    [54] James B.Dabney,Thomas L.Harman.Mastering simulink2.
    [55] 王鸿歌,吴礼民.自动控制原理.长沙:中南工业大学出版社,1994.
    [56] 吴麟.自动控制原理.北京:清华大学出版社,1992.
    
    
    [57] Mike Cobo, Richard Ingram, Sabri Cetinkunt.Modeling, identification, and real-time control of bucket hydraulic system for a wheel type loader earth moving equipment. Mechatronics, 1998, NO.8: 863~885.
    [58] 中南大学机电工程学院,长沙凯瑞重工机械有限公司.智能装载机控制系统研究工作报告.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700