6-RSS并联机构在六维主动减振平台中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于并联机构的多维减振平台系统是多维减振领域里的新理念,新突破,在减振领域有着重要的应用前景和开发价值。鉴于并联机构具有结构简单,机型紧凑,精确度高,易于控制等特点,本文提出采用6-RSS并联机构作为六维减振平台的主体机构,来实现低频大幅多维的主动减振,对与系统相关的各项关键技术进行了研究。具体内容如下:
     利用牛顿-欧拉法建立六维减振平台主体机构6-RSS并联机构的动力学模型,由于充分考虑了动平台惯性,支腿惯性等因素,保证了模型的精确程度,通过数值仿真验证了以6-RSS并联机构为减振平台主体减振机构的动力学模型的正确性和精确性。
     由于六维减振平台是复杂的机电系统,机构参数和控制参数之间存在着耦合现象,为提高减振平台系统的性能指标,从控制与机构同步优化的观点出发,对以6-RSS并联机器人为主体机构的减振平台的参数进行优化设计,通过计算仿真说明六维减振平台的控制和主体机构同步优化的有效性。
     考虑到时滞对控制精度的影响,建立了减振平台主体机构静平台中心点的测量运动学模型,此模型充分考虑到测量仪器的误差和未知扰动等因素对系统的影响。之后采用卡尔曼滤波算法,对静平台中心点的位姿进行重新估计,并同时求得该点的速度和加速度。并通过数据仿真,从不同方面说明了该模型的有效性和合理性。最后对静平台中心点的位姿提前一步预测。
     在六维减振平台主体机构的关节空间构造了强鲁棒性的自抗扰控制器,利用遗传算法对参数进行整定,给出了其稳定性的必要条件,并对该控制器良好的磨擦扰动补偿能力进行了仿真证明。在此基础上,提出了复合控制的策略实现以6-RSS并联机器人为六维减振平台主体机构的主动减振控制,数值仿真结果说明该方法可以有效的抑制振动对减振平台定位精度的影响。
Multi-dimensional vibration absorber based on the parallel mechanism is the new idea and the new breakthrough in the multi-dimensional vibration domain,has the important application prospect and the development value.A 6-RSS parallel mechanism is used as the main mechanism of six-dimension vibration absorber bemuse of its advantage on simple structure,the compact type,the high precision, easy-to-control and so on.This dissertation studies the application of the 6-RSS mechanism on active control of large amplitude low frequency multi-dimensional vibration.And the key technology of the vibration absorber system is studied carefully. The main research works can be described as follows.
     The dynamics model of the main mechanism of six dimension vibration absorber is achieved by Newton-Eular method.In order to ensure the accuracy of the model,the moving platform inertial,branched-chain inertia and other factors are considered deeply. Through the numerical simulation,the correctness and the accuracy of the dynamic model of the main mechanism are verified.
     As the six dimension vibration absorber is a complex mechanical and electrical systems,between the structure parameter and the controlled variable,the coupling phenomenon is existence.To enhance the performance of the vibration absorber,the parameters of the vibration absorber system are designed by the integrated optimal design of structure and control system.By simulation,the validity of this method is proved.
     Considering the effect of the time delay of the system,the measurement kinematical model of the base platform center is built to obtain exact states values of the center involves displacement,velocity,acceleration based on kalman filter theory.The influence of measuring instrument error and unknown disturbance to the system is considered fully in the model.The effective and the rationality of the model are analyzed from different aspects by simulation.Finally,the pose of the base platform center is predicted ahead of time.
     A robust auto-disturbance rejection controller in linkspace is developed to accomplish the high precision vibration control of the six dimension vibration absorber. Genetic algorithm is used for setting the controller parameters,a necessary condition of the controller stability is given,and the good compensation capability of the controller for friction disturbance is proved by simulated.This paper proposed compound control strategy to realize the active vibration isolation of six dimension vibration absorber.The numerical simulation results showed this method may effective suppress the influence of the vibration to moving platform pointing accuracy.
引文
[1]W.Pollard and Evanston.Position-controlling apparatus,Application,1938,Serial No.203:634,April 22.
    [2]D.Stewart.A platform with six degrees of freedom,IME,Proc.80,1965,Part Ⅰ(15):371-386.
    [3]K.H.Hunt.Structural Kinematics of In-Parallel-Actuated Robot Arm.Trans.ASME J.Mechanisms,Transmissions,and Automation in Design,1983,105:705-712.
    [4]H.MacCallion and D.T.Pham.The analysis of a six degree of freedom workstation for mechanized assembly,Proceedings of the 5~(th) World Congress on Theory of Machines and Mechanisms,July 1979.
    [5]E.F.Fitcher.A Stewart platform-based manipulator:General Theory and Practical Construction,Int.J Robotics Research,1986,Vol.5,No.2:157-182.
    [6]J.P.Merlet.Direct kinematic and assembly motion parallel manipulators,Int.J.Robotics Research,1992,Vol.11,No.2:150-162.
    [7]余晓流,岑豫皖,潘紫微,吴玉国.并联机器人的理论及应用研究.安徽工业大学学报.2003,20.
    [8]刘善增,余跃庆,杜兆才,杨建新.并联机器人的研究进展与现状.组合机床与自动化加工技术,2007,20(7):4-10.
    [9]D.R.Kerr.Analysis,properties and design of a Stewart-platform transducer,J.Mech.Transm.Autom.design,1989,Vol.111:25-28.
    [10]C.C.Nguyen,et al.Analysis and experimentation of a Stewart platform-based force/torque sensor,International Journal of Robotics and Automation,Vol.7,No.3,19:133-140.
    [11]C.Ferraresi,et al.Static and dynamic behavior of a high stiffness Stewart platform-based force/torque sensor,Journal of Robotic Systems,1995,Vol.12,No.12,pp.883-893.
    [12]陈滨,机器人手腕测力装置,机械工程学报.1988,24(2).
    [13]熊有伦,机器人力传感器的各向同性,自动化学报.1996,22(1).
    [14]Hongrui Wang,Feng Gao and Zhen Huang.Design of 6-axis force/torque sensor based on Stewart platform related to isotropy,Chinese Journal of Mechanical Engineering,1998,Vol.11,No.3:217-222.
    [15]G.W.Ellis.Piezoelectric micromanipulators,Science Instruments and Techniques,1962,Vol.138:84-91.
    [16]R.Stoughton.Kinematic optimization of a chopsticks-type micromanipulator,ASME Japan/USA on Flexible Automation,Vol.1,pp151-157,1992.
    [17]J.C.Hudgens,and D.Tesar.A fully-parallel six degree-of-freedom micro-manipulator:kinematic analysis and dynamic model,Proc.20~(th) Biennal ASME,Mechanisms Conf.Trends and Development in Mechanisms Machines and Robotics,Vol.15(3),pp29-37,1988.
    [18]K M Lee,and S Arjunnan.A three degree of freedom micro-motion-in-parallel actuated-manipulator,Proc.of the IEEE Int.Conf.On Robotics and Automation,pp 1698-1703,1989.
    [19]安辉.压电陶瓷驱动六自由度并联微动机器人的研究,哈尔滨工业大学.博士论文,1995.
    [20]杜铁军.机器人误差补偿器研究.硕士论文,燕山大学,1994.
    [21]毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人.1997,Vol.19,No.4.
    [22]徐卫平,张玉茹.六自由度微动机构的运动分析.机器人.1995,Vol.17,No.5,pp 298-302.
    [23]Akihiko Nagakubo and Shigeo Hirose.Walking and running of the quadruped wall-climbing robot,Proc.IEEE Int.Conf.on Robotics and Automation,1994,pp 1005-1012.
    [24]Lionel Birglen,Cl(?)ment Gosselin,etc.A New 3-DOF Haptic Device,PREPRINT OF A PAPER PUBLISHED IN IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,VOL.18,No.2,APRIL 2002,pp166-175.
    [25]Y.Tsumaki,H.Naruse,D.N.Nenchev and M.Uchiyama.Design of a Compact 6-DOF Haptic Interface,Proceedings of the 1998 IEEE International Conference on Robotics and Automation,Leuven,Belgium,(1998/5/16-20),2580-2585.
    [26]M.D.Bryfogle,C.C.Nguyen.Kinematics and control of a fully parallel force-reflecting hand controller for manipulator teleoperation,Journal of Robot Systems,Vol.10.1993,5.
    [27]D.E.Koditschek.Adaptive techniques for mechanical systems,Proe,5th Yale Workshop on Adaptive Systems,1987.
    [28]M.Honegger,R.Brega,G.Schweizer.Application of a nonlinear adaptive controller to a 6 dof parallel manipulator,Pro.of the 2000 IEEE,Inter Conf.On Robotics&Automation,2000.
    [29]I.E Chung,H.H.Chung,C.T.Lin.Fuzzy control of a s ix-degree motion platform with stability analysis,Proc.Of the 38th Conference on Decision&Control,Dec.1999.
    [30]孔令富等.基于动力学的6-DOF并联机器人力补偿控制[J].机械工业自动化,1995,2.
    [31]张建明,王平,王树青.使用模糊转换器的并联机器人神经元控制[J].系统仿真学报,2001,13(1).
    [32]方浩,周冰,冯祖仁.基于层叠CMAC的六自由度并行机器人控制[J].机器人,2001,23(4).
    [33]朱龙彪,龚建伟,徐海黎,庄健.并联六自由度机器人智能控制算法的研究.机械设计与制造.2004.10.第5期,47-48.
    [34]王益群,张泽强.并联机器人电液伺服系统控制策略的研究[J].机床和液压,1992(3): 112-117.
    [35]吴博,吴盛林,赵克定.并联机器人控制策略的现状和发展趋势.机床与液压.2005,No.10.
    [36]顾仲权,马扣根,陈卫东著.振动主动控制.国防工业出版社,1997.
    [37]E.F.Berkman,E.K.Bender.Perspectives on Active Noise and Vibration Control.30~(th)Anniversary Issue,Sound and Vibration,1997(2):80-94.
    [38]Yashiya Nakamur,Masanao Nakayam,Keiji Masuda,Kiyoshi Tanaka,Masashi Yasuda and Takafumi Fujita.Development of Active Six-degree-of-freedom Micro-vibration Control System Using Giant Magnetostrictive Actuator.Smart Mater.Struct.Printed in the UK,2000(9):175-185.
    [39]M.H.Wassim,Ali Razavi,C.H.David.Active Vibration Isolation of Multi-Degree of Freedom System.Proceedings of the American Control Conference Albuquerque,New Mexico.1997(6):168-188.
    [40]Yueh-Jaw Lin,Yi-Qing Lu.Passivity-driven Fuzzy Logic Control of a Multidegree-of-freedom Reaction Compensating System.Int.J.System SCI.,Vol.26,No.10,1995:2005-2014.
    [41]屈文忠,邱阳,张陵,杨月诚.模糊自适应滤波的主动控制方法研究.振动工程学报.第13卷第1期,2000(3):112-116.
    [42]刘志刚,孙承顺,杨铁军,黄金娥.人工神经网络在柴油机振动有源控制中的应用研究.船舶工程,2000(2):33-36.
    [43]黄金娥,杨铁军.基于神经网络自适应PID方法的柴油机振动主动控制.中国内燃机学会大功率柴油机分会学术年会,浙江桐庐,2000年10月.
    [44]T.X.Mei,T.H.E.Foo and R.M.Goodall.Genetic Algorithms for Optimizing Active Controls in Railway Vehicles.1998.The institution of Electrical Engineers.Printed and Published by the IEEE,Savoy Place,London WC2R OBL,UK.
    [45]何玉敖,郭婷.基于遗传算法的结构主动控制.振动工程学报.Vol.12,No.2,1999(6):182-187.
    [46]Marac T.Simpson and Colin H.Hansen.Use of Genetic Algorithm to Optimize Vibration Actuator Placement for Active Control of Harmonic Interior Noise in a Cylinder with Floor Structure.Noise Control Eng.J.44(4).1996 Jun-Aug.
    [47]C.R.Fuller and A.H.Von Flotow.Ativc Control of Sound and Vibration.IEEE Control Systems,December 1995.
    [48]Sen M.Kuo and Dennis R.Morgan.Active Noise Control:A Tutorial Review.Proceedings of The IEEE,Vol.87,No.6,June 1999.
    [49]Y.Iwata and M.Ohshio,N.Suzuki,K.Uchida and K.Karasawa.Active Control of Precision Vibration Isolation System.Trans.Japan Soc.Mech.Eng.1991:521-526.
    [50]岛宗亮平等,姚英译.油压促动器在机车车辆主动悬挂系统中的应用,国外内燃机车.1996(5):10-18.
    [51]Sang-il Lee,Daniel B.DeBra.Six Degree of Freedom Vibration Isolation Using Electromagnetic Suspension.NASA,N93-27559.
    [52]J.S.Vipperman,R.A.Burdisso and C.R.Fuller.Active Control of Broadband Structural Vibration Using the LMS Adaptive Algorithm.Journal of Sound and Vibration,1993,166(2):283-299.
    [53]戴焕云,张汉全.车辆主动悬挂的鲁棒稳定性及鲁棒性能研究.铁道学报,Vol.20,Suppl.1998(4):50-55.
    [54]D.W.Miller,B.A.Ward,E.F.Crawley.Development of Intelligent Structures Using Finite Control Element in a Hierarchic and Distributed Control System.MIT,1986.
    [55]A.Baz,K.Iman,J.McCoy.Active Vibration Control of Flexible Beams Using Shape Memory Actuators.Journal of Sound and Vibration,1990.140(3):437-456.
    [56]S.B.Ehoi,M.Y.Gandho,B.S.Tompson.An Active Vibration Tuning Methodology for Smart Flexible Structures Incorporation Electro-rheological Fluids:A Proof-of-Concept Investigation.In:Proc.Of American Control Conference,1989,694-699.
    [57]王光远.高耸结构风振控制.石油建筑设计,No.2,1981.
    [58]J.McInroy.Dynamic modeling of flexure jointed hexapods for control purposes.In Proceedings of the 1999 IEEE International Conference on Control Applications,pages 508-513,Kohala Coast-Island of Hawaii,USA,August 1999.
    [59]Chen Yini,McInroy John E.Identification and decoupling control of flexure jointed hexapods.Proceedings of the 2000 IEEE International Conference on Robotics and Automation.2000,1936-1941.
    [60]Z.Geng and L.Haynes.Six degrees-of-freedom active vibration control using the Stewart platforms.IEEE Transactions on Control Systems Technology,2(1):45-53,March 1994.
    [61]B.Wada,Z.Rahman,and R.Kedikian.Vibration isolation,suppression,steering,and pointing(VISSP).In Proc.Conference on Spacecraft Structures,Materials and Mechanical Testing,volume 15,Noordwijk,The Netherlands,March 1996.
    [62]Thayer D,Campbell M,Vagners J and yon Flotow.A six-axis vibration isolation system using soft actuators and multiple sensors.Journal of Spacecraft and Rockets,2002,39(2):206-212.
    [63]Ahmed Abu Hanieh.Active Isolation and Damping of Vibration via Stewart Platform:[PHD Thesis].Georgia Institute of Libre Bruxelles,2003.
    [64]赵锡芳.机器人动力学[M].上海:上海交通大学出版社,1992,2-3.
    [65]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [66]Merlet J P.Parallel robots[M].Dordrecht:Kluwer Academic Publishers,2000.
    [67]张国伟,宋伟刚.并联机器人动力学问题的Kane方法.系统仿真学报.Vol.16 No.7 July 2004.1386.
    [68]Dasgupta B,Mruthynnjaya T S.Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach[J].Mechanism and Machine Theory,1998,33(7):993-1011.
    [69]Dasgupta B,Choudhury P.A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J].Mechanism and Machine Theory,1999,34(6):801-82.
    [70]Liu K,Fitzgerald M,Dawson D W and Lewis F L.Modeling and control of a Stewart platform manipulator[J].ASME DSC,Control of Systems with Inexact Dynamic Models,1 991,3 3:83-89.
    [71]刘敏杰,田涌涛,李从心.并联机器人动力学的子结构Kane方法[J].上海交通大学学报,2001,35(7):1032-1035.
    [72]李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J].哈尔滨工业大学学报,1999,18(1):1-4.
    [73]孔令富,张世辉,肖文辉,李成元,黄真.基于牛顿.欧拉方法的6-PUS并联机构刚体动力学模型[J].机器人.2004,26(5):395-399.
    [74]Gosselin C.Stiffness mapping for parallel manipulators,IEEE Transactions on Robotics and Automation,1990,6(3):377-382.
    [75]Gosselin C.and Zhang D.Stiffness analysis of parallel mechanisms using a lumped model,International Journal of Robotics and Automation,2002,17(1):17-27.
    [76]Guo Q D,Liu Y and Liu Y.Local structurization kinematic decoupling of six-leg virtual-axis NC machine tool,IEEE Transactions on Mechatronics,2002,7(4):515-518.
    [77]Tanikawa T and Arai T.Development of a micro-manipulation system having a two-fingered micro-hand,IEEE Transactions on Robotics and Automation,1999,15(1):152-162.
    [78]魏世民,周小光,廖启征.六轴并联机床运动精度的标定研究,中国机械工程,2003,14(23):1981-1985.
    [79]Xiu D X.Trajectory control of a new class of CNC machine tools,Ph.D.Thesis,Department of Mechanical Engineering,Florida Altantic University,1999.
    [80]Simaan N.and Shoham M.Geometric interpretation of the derivatives of parallel robots'Jacobian matrix with application to stiffness control.Journal of Mechanical Design(ASME),2003,125(1):33-42.
    [81]Lin H M and McInroy J E.Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platform,IEEE Transactions on Control Systems Technology,2003,11(2):267-272.
    [82]Lee S H,Song J B,Choi W C and Hong C D.Position control of a Stewart platform using inverse dynamics control with approximate dynamics,Mechatronics,2003,13:605-619.
    [83]姚燕安,查建中,颜鸿森.机构与控制的协同设计,机械工程学报,2004,40(10):1-5.
    [84]朱灯林,姜涛,王安麟,王石刚.柔性机械手结构/控制融合设计,机器人,2005,27(1):73-77.
    [85]肖志权,崔玲丽.基于遗传算法的柔性机械臂的同时优化设计,机器人,2004,26(2):170-175.
    [86]Yamakawa H.A unified method for combined structural and control optimization of nonlinear mechanical and structural systems,Computer Aided Optimum Design of Structure,2002:287-298.
    [87]舒兆根,现代控制引论,国防科技大学出版社,长沙,1997.
    [88]Tsuchiya T and Suzuki S J.A simultaneous optimization technique for spaceplane shape and trajectory,AIAA,2001-1847:1-10.
    [89]Hiroshi Yamakawa.Simulaneous optimization of structural and control systems of flexible robot arms considering geometric nonlinearity,8~(th) AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,2000:4917-4924.
    [90]李炳威,结构优化设计,人民交通出版社,北京,1989.
    [91]Singer Robert.A estimating optimal tracking filter performance for manned maneuvering targets,IEEE Trans.Aerospace and Electronic Systems,1970,6(4):473-483.
    [92]Levine J and Marino R.Constant-Speed target tracking via bearings-only measurements,IEEE Trans.Aerospace and Electronic Systems,1992,28(1):174-182.
    [93]李恒年,祝转民,李济生.空间机动目标的跟踪和定位,中国空间科学技术,2003(3):13-18.
    [94]周启煌,邱晓波,谢志宏.卡尔曼滤波在坦克目标状态估计中的应用,装甲兵工程学报,1998,12(2):40-46.
    [95]Li R X and Jilkov V P.Survey of maneuvering target tracking.Part Ⅰ:dynamic models,IEEE Trans.Aerospace and Electronic Systems,2003,39(4):1333-1363.
    [96]马登武,吴国良,孙隆和.空中机动目标数学模型的研究,电光与控制,2000,78(2):7-12.
    [97]Chen B and Tugnait J K.Interacting multiple model fixed-lag smoothing algorithm for markovian switching systems.IEEE Trans.Aerospace and Electronic Systems,2000,36(1):234-241.
    [98]郑容,文成林,施晨鸣,张洪才.多分辨多模型机动目标跟踪,电子学报,1998,26(12):115-117.
    [99]Song T L and Lee D G.Effective filtering of target glint,IEEE Trans.Aerospace and Electronic Systems,2000,36(1):234-241.
    [100]许录平,跟踪机动目标的自适应α-β滤波算法,西安电子科技大学学报,1998,25(3): 314-317.
    [101]Tae Y,Lee J G,Park S T and Park C G.Noise covariances estimation for systems with bias states,IEEE Trans.Aerospace and Electronic Systems,2000,36(1):226-233.
    [102]Ousingsawat J and Campbell M E.On-line estimation and path planning for multiple vehicles in an uncertain environment,Int.J.Robust Nonlinear Control,2004,14:741-766.
    [103]Cao XR.Semi-Markov decision problems and performance sensitivity analysis,IEEE Transactions on automatic control,2003,48(5):758-769.
    [104]宋小全,孙仲康.非高斯噪声下的机动目标跟踪,电子学报,1998,26(9):40-46.
    [105]王宏强,黎湘,刘丹,郭桂蓉.非线性系统中的机动目标跟踪算法,2002,24(4):57-60.
    [106]高庆余,高梅国,韩月秋.一种新型机动目标跟踪算法-VDQ算法,北京理工大学学报,1999,19(1):92-94.
    [107]朱炬波,贺明科,冉承其,刘秋辉.自由节点样条函数平滑滤波技术,电子学报,2004,32(1):135-138.
    [108]邓自立.卡尔曼滤波与维纳滤波——现代时间序列分析方法,哈尔滨工业大学出版社,1996.7.
    [109]邓自立.最优滤波理论及其应用——现代时间序列分析方法,哈尔滨工业大学出版社,1996.2.
    [110]Kalman R E.A New Approach to Linear Filtering and Prediction Problems.Trans.ASME,J.BASIC Eng.,1960.
    [111]Kalman R E,Bucy R S.New results in linear filtering and prediction theory.Journal of Basic Eng(ASME),83D:95-98,1960.
    [112]Cobb G R,Sullivan J M,Das A and Porter L.Vibration isolation and suppression system for precision payloads in space,Smart Material and Structures,1999,.8:781-790.
    [113]McInry J E.Modeling and design of flexure jointed Stewart platforms for control purpose,IEEE/ASME Transactions on Mechatronics,2002,7(1):95-99.
    [114]Lin H and McInroy J E.Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platforms,IEEE Transactions on control systems technology,2003,1(2):267-272.
    [115]B.Armstrong-Helouvry,P.Dipont and C.Canudas de Wit.A survey of models,analysis,tools and compensation methods for the control of machines with friction,Automat.,1994,30(6):1083-1138.
    [116]K K Tan,Tong Heng Lee,Huixing X Zhou.Micro-position of linear-piezoelectric motors based on a learning nonlinear PID controller,IEEE/ASME Trans.Mechatron.,2001,6(4):428-436.
    [117]Jason T Teeter,Mo-yuen Chow and James J Brickley Jr.A novel fuzzy friction compensation approach to improve the performance of a DC motor control system,IEEE Trans.Ind.Electron.,1996,43(1):113-120.
    [118]Hensen R H A,van de Molengraft M J G and Steinbuch M.Frequency domain Identification of dynamic friction model parameters,IEEE Trans.Contr.System.Technology.,2002,10(2):191-196.
    [119]Gou-Jen wang,Chuan-Tzueng Fong,Kang J.Chang,Neural-network-based self-turning PI controller for precise motion control of PMAC motors,IEEE Trans.Ind.Electron.,2001,48(2):408-415.
    [120]Makoto Iwasaki,Tomohiro Shibata and N obuyuki Matsui.Disturbance-observer-based nonlinear friction compensation in table drive system,IEEE/ASME Trans.Mechatron.,1999,4(Ⅰ):3-8.
    [121]Liu Xu and Bin Yao.Output feedback adaptive robust precision motion control of linear motors,Automat.,2001,37(7):1029-1039.
    [122]R.Martinez-Guerra,A.Poznyak,E.Gortcheva and V Diaz de Leon.Robot angular link velocity estimation in the presence of high-level mixed uncertainties,IEEE Proc.-Control Theory Application.,2000,147(5):515-522.
    [123]韩京清,王伟.非线性跟踪.分器,系统科学与数学,1994,14(2):177-183.
    [124]韩京清.一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85-88.
    [125]韩京清.非线性PID控制器,自动化学报,1994,20(4):487-490.
    [126]韩京清.自抗扰控制器及其应用,控制与决策,1998,13(1):19-23.
    [127]韩京清,袁露林.跟踪-微分器的离散形式,系统科学与数学,1997,19(3):268-273.
    [128]王伟,张晶涛,柴天佑.PID参数先进正定方法综述,自动化学报,2000,26(3):347-355.
    [129]Brain Armstrong,David Neevel,and Todd Kusik.New results in NPID control:tracking,integral control,friction compensation and experimental results,IEEE Trans.Contr.Syst.,Technol.,2001,9(2):399-406.
    [130]Homayoun Seraji.A new class of nonlinear PID controllers with robotic applications,J.Robot.Sys.,1998,15(3):161-181.
    [131]W.J.Rugh,Design of nonlinear PID controllers,AIChE J.,1987,33(10):1738-1741.
    [132]S M Shahruz and A L Schwartz.Design and optimal tuning of nonlinear I compensators,J.Optimization Theory Application.,1994,83(1):181-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700