多支承索杆振动参数识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量的索杆桥梁不断建设,大量的索杆结构被应用,由于减振器、减振架、支承架、索夹的安装,这些索杆结构呈现多支承的特点,所以叫做多支承索杆结构。多支承索杆结构作为索杆桥梁的“生命线”,其安全性至关重要,同时多支承索杆结构振动参数是索杆桥梁在设计、施工、维修加固安全评估中的重要参数,因此,多支承索杆结构振动参数识别具有重要的现实意义。本文根据多支承索杆结构振动特点,以理论推导、模型试验和实际工程应用相结合的方法,深入系统的研究了多支承索杆结构振动参数识别问题。本文的研究内容包括以下几个部分:
     (1)提出了多支承索杆横向自由振动频率的解析算法。构造带有中间弹性支承及轴向力的梁模型,综合考虑拉索的中间弹性支承、轴向力、抗弯刚度、端部边界条件等振动影响因素,推导出了带有中间弹性支承的索杆横向自由振动频率的解析公式。从多支承索杆结构试验分析可知,索杆频率计算结果与试验结果偏差较小,最大偏差为0.5%,因此,多支承索杆结构横向自由振动频率的解析算法可行,计算结果可靠。
     (2)探讨了多支承索杆结构横向自由振动频率与支承刚度的关系。从多支承索杆结构试验分析可知,索杆中间支承刚度与频率呈正比变化,当支承刚度增加40%时,索杆频率增大15%,可见两者互相影响较大,因此,必须考虑索杆中间支承对频率的影响,如斜拉索的减振器及索夹,吊索的减振器与索夹,系杆的支承架等。
     (3)提出了多支承索杆振动参数识别算法。多支承索杆振动参数识别算法是多支承索杆横向自由振动频率的解析算法的反算法,是个以计算频率与测试频率的差值为0为目标函数的最优化识别方法。该算法是由多支承索杆结构频率识别出其振动参数,如索杆的长度、质量、抗弯刚度、支承刚度、内力等。该算法根据测试频率阶次及未知振动参数个数的不同,分别建立了单参数识别法和多参数识别法:单参数识别法只能识别一个未知振动参数,根据测试频率阶次等于1及超过1两种情况分别建立了单参数单频率识别法及单参数多频率识别法;多参数识别法需要满足测试频率的阶次比未知参数的个数多。
     (4)提出了索杆截面抗弯刚度的计算方法,同时其计算结果可以为多支承索杆抗弯刚度识别提供迭代初值。索杆是由平行钢丝或者钢绞线组成。索杆截面是由几十根,上百根的钢丝截面构成不规则、不封闭的面域。钢丝圆截面构造特征是以一根钢丝截面为圆心,其它钢丝截面以等六边形的形式分层逐级向外紧密排列。由此索杆截面构造规律为基础,可以分层级计算钢丝圆截面惯性矩,累积得到索杆截面的惯性矩,最后计算出索杆截面抗弯刚度,在此建立了索杆截面抗弯刚度与钢丝根数、直径的计算公式。
     (5)多支承索杆振动参数识别方法在复杂工程中的应用,对三山西大桥的吊杆及系杆的振动参数进行了识别。三山西大桥的吊杆及系杆内力是桥梁安全评估的重要参数,对于运营中的桥梁,获得索杆内力最佳方法是振动法,而传统的振动法无法精确识别出来主要有两方面的原因:1)其它振动参数的精确度影响内力计算结果的精确度,而其它索杆振动参数的取值非常难,特别是索杆的抗弯刚度及支承刚度;2)传统计算公式是基于端支承索杆结构振动理论推导的应用公式,对于复杂的多支承振动体系,无法准确计算索杆内力。为此,本文根据工程特点,做了如下分析:1)采用多参数识别吊杆振动参数,其中包括吊杆抗弯刚度、支承刚度、内力;2)采用单参数多频率识别吊杆内力;3)采用单参数单频率识别短吊杆及系杆内力。从分析结果可知,多支承索杆振动参数识别方法在工程应用中非常有效,具有非常巨大的应用价值。
With the cable-strut bridge constantly building, a large number of cable-strut structure isapplied. Due to the installation of shock absorber, damping frame, supporting frame, cableclip, cable-strut structure presents a multi-bearing characteristics, so called multi-supportcable-strut structure. Multi-supporting cable-strut structure is the "lifeline" of the cable-strutbridge, its security is essential, while vibration parameters of the multi-supporting cable-strutstructure are important parameters of cable-strut bridge safety assessment in the design,construction, maintenance and reinforcement. Therefore, vibration parameters of themulti-supporting cable-strut structure have important practical significance. In this paper,based on the vibration characteristics of multi-supporting cable-strut structure, with method ofcombining theoretical analysis, model test and practical engineering applications, In-depthresearch of vibration parameter identification problem of multi-support cable-strut structure.The study includes the following sections:
     (1) The proposed resolution algorithm of transverse free vibration frequency ofmulti-supporting cable-strut. Constructing model of axial force beam with intermediate elasticsupport, and considering vibration influencing factors of intermediate elastic support, axialforce, flexural rigidity, end boundary conditions, and then the lateral free vibration frequencyanalytic formula of cable-strut structure with an intermediate elastic support is deduced.Frommulti-support cable-strut structure test, the frequency deviation of calculated results and theexperimental is small, the maximum deviation of0.5%. Therefore, the transverse freevibration frequency resolution algorithm of multi-supporting cable-strut structure is feasibleand calculation results is reliable.
     (2) Explore the relationship between transverse free vibration frequency and bearingstiffness of multi-supporting cable-strut structure. From multi-supporting cable-strut structuretest, the middle bearing stiffness and frequency of the cable-strut structure are inverselyproportional to each other. When the middle bearing stiffness is reduced by40%, frequency ofthe cable-strut structure increases to15%. So they are affecting each other larger. Therefore,the intermediate support must be considered to solve frequency of cable-strut structure, suchas shock absorber and cable clip of stayed-cable, shock absorber and cable clip of suspender,supporting frame of tie bar.
     (3) The proposed algorithm of vibration parameter identification of multi-supportingcable-strut structure. Algorithm of vibration parameter identification is anti algorithm oftransverse free vibration frequency of multi-supporting cable-strut structure, and is optimization identification method with the objective function of the difference betweencalculate frequency and test frequency as zero. The algorithm is identified vibrationparameters by frequency of multi-supporting cable-strut structure, such as the length, quality,flexural rigidity, bearing stiffness, internal force etc. A single parameter identification methodand multi-parameter identification method are established, based on the number of order oftest frequency and unknown vibration parameters of multi-supporting cable-strut structure.Single parameter identification method can only identify one unknown vibration parameters,according to whether the number of order of test frequency is equal to1, a singleparameter&single-frequency identification method and the single-parameter&multi-frequency identification method are established respectively. Multi-parameter identificationmethod needs to meet the number of order of test frequency more than the number ofunknown vibration parameters.
     (4) The proposed calculation method of cable-strut flexural rigidity, at the same time, itsresults can be provided iterative initial value for flexural rigidity identification ofmulti-supporting cable-strut structure. Cable-strut is composed of parallel steel wire orstrand.Cross-section of cable-strut structure is Irregular and not closed surface domain, whichis composed of dozens or hundreds of root wire cross-sectional. The structural characteristicsof the wire, is a wire section as the center, and other wire section tiered progressively outwardclosely packed with the form of a hexagon.Thus, based on cross-sectional structuralcharacteristics of cable-strut structure, moment of inertia of the wire can be hierarchicalcalculated. And then moment of inertia of cable-strut structure can be cumulative gotten.Finally, flexural stiffness of cable-strut structure can be calculated. So the formula has beenestablished,which composed of flexural stiffness of cable-strut structure, the number of thewire, the diameter of the wire.
     (5) The complex engineering application of vibration parameter identification method ofmulti-supporting cable-strut structure. Some vibration parameter of suspender and the tie barof Sanshanxi Bridge have been identified. Internal forces of suspender and the tie bar ofSanshanxi Bridge is important parameters for safety assessment. The best way to get internalforces of cable-strut structure is vibration method for the operation bridge, but there are tworeasons for the traditional vibration method cannot be accurately identified:1) the accuracy ofthe other vibration parameters influence the accuracy of the internal forces, and the otherparameters of cable-strut structure is very difficult to obtain accurately, especially bendingrigidity and supporting rigidity of cable-strut structure;2) traditional formula is someapplication formulas based on the vibration theory of end support cable-strut structure. In this paper, based on characteristics of the engineering, the following analysis have been done:1)the use of multi-parameter identification method for identifying vibration parameters ofsuspender, including flexural rigidity, bearing stiffness, internal force;2) the use ofsingle-parameter&multi-frequency identification method for identifying internal force ofsuspender;3) using a single parameter&single-frequency identification method for identifyinginternal force of short suspender and the tie bar. From the analysis results, the vibrationparameter identification method of multi-supporting cable-strut structure is very effective inengineering applications. So it has tremendous value.
引文
[1]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [2]林元培.我国桥梁的进展[J].城市道桥与防洪.2006(4):1-8.
    [3]马坤全.大跨径斜拉桥建设与展望[J].国外桥梁.2000(4):60-65.
    [4]陈明宪.斜拉桥的发展与展望[J].中外公路.2006(4):76-86.
    [5]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报.2000,33(3):1-6.
    [6]经柏林,谢华鸾.斜拉桥拉索研究综述[J].中国市政工程.2003(6):22-24.
    [7]李飞泉,杜德灿,李承昌.系杆拱桥吊杆更换工艺研究[J].公路交通科技.2006(9):110-112.
    [8]赵洋.系杆拱桥吊杆更换研究[D].浙江大学,2006.
    [9]陈丕华.大跨斜拉桥拉索的参数振动及其控制[D].湖南大学,2009.
    [10]王荣辉,甘泉,龚玲玲,等.一种考虑弹性多支承拉索索力求解的有限单元法[J].振动工程学报.2010,23(5):567-571.
    [11]许汉铮,黄平明.带减振架的吊索索力测试研究[J].公路.2003(S1):76-78.
    [12]李庭波,戴亚军,任瑞雪.带减振架的吊索索力测试研究[J].山西建筑.2009(16):331-332.
    [13]唐小萍.平行钢绞线拉索与平行钢丝拉索的特性、经济性比较分析[J].桥梁建设.1997(4):17-19.
    [14]朱新实,刘效尧.预应力技术及材料设备[M].北京:人民交通出版社,2005.
    [15]汤国栋,杨弘,朱正刚.桥梁吊杆及拉索的健康诊断[J].公路.2002(9):36-40.
    [16]叶觉明.缆索用钢丝断丝问题[J].钢结构.2003,18(3):35-37.
    [17]梁雄.斜拉桥拉索腐蚀行为及使用寿命预测研究[D].重庆交通大学,2008.
    [18]李文琪,贺立新.对宜宾小南门桥事故的思考[J].中国公路.2002(22):47-48.
    [19]徐宏.桥梁拉(吊)索损伤后力学分析及安全评价[D].长安大学,2008.
    [20]姜健,李国强,郝坤超.拉索端部弹性约束振动控制研究(I)——理论模型[J].地震工程与工程振动.2010,30(1):118-125.
    [21]姜健,李国强,郝坤超.拉索端部弹性约束振动控制研究(Ⅱ)——试验验证[J].地震工程与工程振动.2010,30(2):92-98.
    [22]左晓宝,李爱群,赵翔.斜拉索在平面内的非线性自由振动分析[J].工程力学.2005,22(4):101-105.
    [23] Abdel G A. Importance of cable vibration in dynamics of cabled-stayed bridges[J].Journal of Engineering Mechanics.1991,117(11):2571-2589.
    [24] Triantafyllou M S. The Dynamies of Taut Inelined Cables[J]. Quarterly Journal ofMechanics and Mathematics.1984,37(3):421-440.
    [25] Russell J C, Lardner T J. Experimental Determination of Frequencies and Tension forElastic Cables[J]. Journal of Engineering Mechanics.1998,124(10):1067-1072.
    [26] Matsumoto M, Daito Y, Kanamura T, et al. Wind-induced vibration of cables ofcable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,74–76:1015-1027.
    [27] Wilde K, Witkowski W. Simple model of rain-wind-induced vibrations of stayedcables[J]. Journal of Wind Engineering and Industrial Aerodynamics.2003,91(7):873-891.
    [28] Irvine H M. Cable struetures[M]. Cambridge: MITPress,1981.
    [29]周孟波.悬索桥手册[M].北京:人民交通出版社,2003:175-182.
    [30] Takahashi K, Konishi Y. Non-linear vibrations of cables in three dimensions PartII:Out-of-plane-vibrations under in-plane sinuoidally time-varying load[J]. Journal of sound andvibration.2005,118(1):85-97.
    [31] Ni Y Q, Ko J M, Zheng G. dynamic analysis of large-diameter sagged cables taking intoaccount flexural rigidity[J]. Journal of Sound and Vibration.2002,257(2):301-319.
    [32] Chucheepsakul S, Srinil N. Free vibrations of three-dimensional extensible marine cableswith specified top tension via a variational method[J]. Ocean Engineering.2002,29(9):1067-1096.
    [33] Perkins N C, Mote D. Three-dimensional vibration of traveling elastic cables[J]. Journalof sound and vibration.1987,114(2):325-340.
    [34] Takahashi K, Konishi Y. Non-linear vibrations of cables in three dimensions, PartI:Non-linear free vibrations[J]. Journal of sound and vibration.1987,118(1):69-84.
    [35] Tan G E B, Pellegrino P. Non-linear dynamic identification: an application to pretestedcable structures[J]. Journal of sound and vibration.1997,208(1):33-45.
    [36]方志,张智勇.斜拉桥的索力测试[J].中国公路学报.1997(1):51-58.
    [37]王卫锋,韩大建.斜拉桥的索力测试及其参数识别[J].华南理工大学学报(自然科学版).2001,29(1):18-21.
    [38]宋一凡,贺拴海.斜拉索动力计算长度研究[J].中国公路学报.2001,14(3):73-75.
    [39]刘文峰,应怀樵,柳春图.考虑刚度及边界条件的索力精确求解[J].振动与冲击.2003,22(4):14-16.
    [40]张宏跃,田石柱.提高斜拉索索力估算精度的方法[J].地震工程与工程振动.2004,24(4):148-151.
    [41]邵旭东,李国峰,李立峰.吊杆振动分析与力的测量[J].中外公路.2004,24(6):29-31.
    [42]陈常松,陈政清,颜东煌.柔索索力主频阶次误差及支承条件误差[J].交通运输工程学报.2004,4(4):17-20.
    [43]魏建东.索力测定常用公式精度分析[J].公路交通科技.2004(2):53-56.
    [44]魏建东.斜拉索各参数取值对索力测定结果的影响[J].力学与实践.2004(4):42-44.
    [45]任伟新,陈刚.由基频计算拉索拉力的实用公式[J].土木工程学报.2005,38(11):26-31.
    [46]苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技.2005,22(5):75-78.
    [47]吴文清,王成树,刘国吕,等.大跨度系杆拱桥柔性吊杆张力监测和参数识别研究[J].公路交通科技.2007,24(1):69-73.
    [48]方志,汪建群,颜江平.基于频率法的拉索及吊杆张力测试[J].振动与冲击.2007,26(9):78-82.
    [49]徐宏,黄平明,韩万水.刚性短索索力计算及边界条件分析[J].长安大学学报(自然科学版).2008,28(2):58-62.
    [50]赵跃宇,周海兵,金波,等.弯曲刚度对斜拉索非线性固有频率的影响[J].工程力学.2008,25(1):196-202.
    [51]李金海,李世兵,张松林.考虑斜拉索刚度、垂度、阻尼的非线性运动方程研究[J].防灾减灾工程学报.2010,30(z1):222-225.
    [52] Verniere P L, Irassar D, Ficcadenti G M, et al. Dynamic analysis of a beam with anintermediate elastic support[J]. Journal of Sound and Vibration.1984,96:381-389.
    [53] Xu H, Li W L. Dynamic behavior of multi-span bridges under moving loads withfocusing on the effect of the coupling conditions between spans[J]. Journal of Sound andVibration.2008,312:736-753.
    [54] Lin H Y. Dynamic analysis of a multi-span uniform beam carrying a number of variousconcentrated elements[J]. Journal of Sound and Vibration.2008,309:262-275.
    [55]任伟新.环境振动系统识别方法的比较分析[J].福州大学学报(自然科学版).2001,29(6):80-86.
    [56]陶悦.基于环境激励的模态参数识别方法综述[J].科技风.2010,21(18):276.
    [57]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击.2002,21(3):3-7.
    [58] Ren W X, Harik I E. Blandford G. E. Roebling Suspension Bridge:II.Ambient TestingandLive Load Response[J]. J Bridge Engineering.2004,9(2):119-126.
    [59] Andersen P. Identification of Civil Engineering Structures Using Vector ARMAModels[D]. Aalborg,Denmark: Aalborg University,1997.
    [60] Calcada R, Cunha A, Delgado R. Dynamic Analysis of Metallic Arch Railway Bridge[J].Journal of Bridge Engineering.2002,7(4):214-222.
    [61] Di R D. Subspace System Identification of the Kalman Filter[J]. Modeling Identificationand Control.2003,24(3):125-157.
    [62] Hermans L, Van D A H. Modal Testing and Analysis of Structures underOperationalConditions: Industrial Applications[J]. Mechanical Systems and Signal Processing.1999,13(2):193-216.
    [63] James G H, Carne T G, Lauffer J P. The Natural Excitation Technique (NExT) forModalParameter Extraction from Operating Structures:Modal Analysis[J]. International JournalofAnalytical and Experimental Modal Analysis.1995,10(4):260-277.
    [64] Koh C G, Hong B, Liaw C Y. Substructural and Progressive Structural IdentificationMethods[J]. Engineering Structures.2003,25(12):1551-1563.
    [65] Pappa R S, Juang J N. Some Experiences with the Eigensystem Realization Algorithm[J].Sound and Vibration.1988,22(1):30.
    [66] Bendat J S, Piersol A G. Engineering Application of Correlation and Spectral Analysis.SecondEdition[M]. New York: John Wiley&Sons,1993.
    [67] Felber A J. Development of a Hybrid Evaluation System[D]. Vancouver: UniversityofBritish Columbia,1993.
    [68] Ren W X, Obata M. Elastic-Plastic Seismic Behavior of Long Span Cable-StayedBridges[J]. J Bridge Engineering.1999,4(3):194-203.
    [69] Ren W X, Harik I E. Blandford G. E. Roebling Suspension Bridge:I.FE Model andFreeVibration Response[J]. J Bridge Engineering.2004,9(2):110-118.
    [70] Van O P, De M B. Subspace Identification for LinearSystems:Theory,Implementation,Applications[M]. Dordrecht, the Netherlands: KluwerAcademic Publishers,1996.
    [71] Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proc Royal Society.1998,454(1971):903-995.
    [72]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [73]张清华,卜一之,李乔.基于非线性振动的斜拉索参数识别无模型方法[J].振动工程学报.2008,21(6):571-576.
    [74]张清华,冉志红,卜一之,等.拉索非线性振动问题求解及参数识别方法研究[J].土木工程学报.2009(6):86-91.
    [75]郑罡,倪一清,高赞明,等.斜拉索张力测试和参数评估的理论和应用[J].土木工程学报.2005,38(3):64-69.
    [76]段波,曾德荣,卢江.关于斜拉桥索力测定的分析[J].重庆交通学院学报.2005,24(4):6-8,12.
    [77]蔡永壮,王振龙,季英瑞.振弦式压力传感器在桥梁索力监测中的应用[J].筑路机械与施工机械化.2009,26(1):62-64.
    [78]何立忠,齐怀展,闫燕红.磁通量法在索力检测中的应用[J].天津市政工程.2008(4):18-19.
    [79]郝超,裴岷山,强士中.斜拉桥索力测试新方法-磁通量法[J].公路.2000(11):30-31.
    [80]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报.2006,19(2):62-66.
    [81] Kim B H, Park T. Estimation of cable tension force using the frequency-based systemidentification method[J]. Journal of Sound and Vibration.2007,304(3–5):660-676.
    [82] Zui H, Shinke T, Namita Y. Practical formulas for estimation of cable tension byvibration method[J]. J Struct Eng.1996,122(6):651-665.
    [83] Flamand O. Rain-wind induced vibration of cables[J]. J Wind Eng IndAerodyn.1995,57:353-362.
    [84] Wu J, Chen C. A lumped-mass TMM for free vibration analysis of a multiple-step beamcarrying eccentric tip masses with rotary inertias[J]. Journal of Sound and Vibration.2007,301:878-897.
    [85] Wu J S, Chen C T. A continuous-mass TMM for free vibration analysis of a non-uniformbeam with various boundary conditions and carrying multiple concentrated elements[J].Journal of Sound and Vibration.2008,311:1420-1430.
    [86] Yesilce Y. Effect of Axial Force on the Free Vibration of Reddy–Bickford Multi-spanBeam Carrying Multiple Spring–mass System[J]. International Journal of MechanicalSciences.2010,16(1):11-32.
    [87] Yesilce Y, Oktay D. Effect of axial force on free vibration of Timoshenko multi-spanbeam carrying multiple spring-mass systems[J]. International Journal of Mechanical Sciences.2008,50:995-1003.
    [88] Ricciardi G, Saitta F. A continuous vibration analysis model for cables with sag andbending stiffness[J]. Engineering Structures.2008,30(5):1459-1472.
    [89]王进儒. Diracδ函数的数学表示[J].应用数学和力学.1981(3):333-338.
    [90]李平杰,王荣辉,马牛静.带中间弹性支承拉索的横向振动频率解析算法[J].华南理工大学学报(自然科学版).2012(2):7-12.
    [91]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001.
    [92]柳辉.解非线性方程的牛顿迭代法及其应用[J].重庆工学院学报(自然科学版).2007,21(8):95-98.
    [93]邵陆寿,吴怀孔.内点惩罚函数法的改进算法[J].工科数学.2001,17(3):26-30.
    [94]霍水泉,李人厚.多目标规划的惩罚函数法[J].西安交通大学学报.1993,27(3):75-80.
    [95]白富生,张连生.近似全局精确障碍方法:对数障碍函数法[J].运筹学学报.2000,4(3):13-18.
    [96]谢政,李建平,陈挚.非线性最优化理论与方法[M].北京:高等教育出版社,2010.
    [97] Cunha A, Caetano E. From Input-Output to Output-Only Modal Identification ofCivilEngineering Structures[C]. Copenhagen,Denmark:2005.
    [98]吴智深,李素贞,P. Adewuyi A.基于应变分布响应的模态分析理论与应用[J].科技导报.2010(8):94-103.
    [99]禹丹江.土木工程结构模态参数识别[D].福州大学,2006.
    [100]李杭生,陈丹.频谱分析中窗函数的研究[J].微计算机信息.2008(10):272-273.
    [101]陈奎孚,焦群英,高小榕.谱峰法的窗函数选择[J].中国农业大学学报.1997(4):21-27.
    [102] Pawel A, Penczek. Three-dimensional spectral signal-to-noise ratio for a class ofreconstruction algorithms[J]. Journal of Structural Biology.2002,1-2(138):34-46.
    [103]王卫锋,徐郁峰,韩大建,等.崖门大桥施工中的索力测试技术[J].桥梁建设.2003(1):23-26.
    [104]姚文斌,程赫明.钢丝绳抗弯刚度的测定[J].力学与实践.1998(2):44-46.
    [105]李宗凯,秦杰,吴金志,等.索体的抗弯刚度测定及实用简化[Z].中国山东济南:2009732-734.
    [106]严琨,沈锐利,唐茂林.大跨度悬索桥主缆抗弯刚度模型试验[J].建筑科学与工程学报.2010,27(3):41-46.
    [107]周云,易伟建.斜拉索截面信息未知时的刚度识别及索力计算[J].湖南农业大学学报(自然科学版).2006,32(4):445-449.
    [108]孙汝蛟,刘健新,胡兆同.高阻尼橡胶剪切型拉索减振器[J].长安大学学报(自然科学版).2005,25(1):37-40.
    [109]钱雪松,艾永明.斜拉桥拉索的减振措施[J].工业技术经济.2004,23(6):106-108.
    [110]崔永祥,何鹏,黄祖伟.拉索减振阻尼器的理论分析[J].延边大学学报(自然科学版).2004(2):124-128.
    [111]雷凡.带减振器的斜拉桥索力测试方法的理论与试验研究[D].武汉理工大学,2007.
    [112]刘志勇.斜拉桥斜拉索索力测试方法综述[J].铁道建筑.2007(4):18-20.
    [113]韦立林,谢开仲,秦荣.钢管混凝土拱桥吊杆索力测试与有限元分析[J].中外公路.2007,27(2):66-69.
    [114]陈淮,董建华.中、下承式拱桥吊索张力测定的振动法实用公式[J].中国公路学报.2007,20(3):66-70.
    [115]徐谦,黄勇.三山西大桥的吊杆更换过程[J].公路工程.2010,35(6):78-81.
    [116]董晓博,程鹏.三山西大桥系杆病害研究及养护策略[J].公路.2008(4):90-94.
    [117]孙汝蛟.高阻尼橡胶剪切型拉索减振器的研究[D].西安:长安大学,2003.
    [118]龚玲玲.带减震器斜拉索的索力影响和计算[J].山西建筑.2008(26):315-316.
    [119]郑楷柱.基于频率法的斜拉桥索力识别研究[D].华南理工大学,2009.
    [120]贺赟晖.盲孔法中弹性阶段释放系数的数值计算方法研究[D].合肥工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700