利用转炉渣制备水泥和免蒸免烧砖的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转炉渣作为炼钢工艺过程中必然的副产品,其产量随着钢产量的增加大幅攀升,而转炉渣回收利用的方法和能力极其有限。因此,如何有效地综合利用这些转炉渣,对进一步促进我国钢铁工业持续高效地发展具有重要意义。
     本文利用转炉渣、铁尾矿、粉煤灰为主要原料制备了水泥和免蒸免烧砖建筑材料。采用XRD、显微镜等测试技术对材料的物相组成和显微结构等进行研究。
     首先,以转炉渣为主要综合利用对象,作为水泥原料和混合材料,采用烧结法制备了硅酸盐水泥,并测定其力学性能,分析了转炉渣作为原料时,对水泥制品性能产生的作用及其作用机理。实验结果表明:①转炉渣作原料时,制备硅酸盐水泥的最优实验方案为:转炉渣3%、铁尾矿3.5%、粉煤灰16%、石灰石77.5%,此时,IM=1.58、KH=0.88、SM=2.11;煅烧工艺为1350℃下保温2h;冷却方式为水淬急冷;石膏的加入量为水泥的3.5%。②转炉渣作混合材料时,当加入6%和10%转炉渣时,并没有使各龄期抗压强度产生明显下降,而当转炉渣掺量由0%增加到15%时,28d抗压强度由73.28Mpa降到47.83Mpa,降幅为34.7%,雷式夹的变化长度由1.5mm增大到3.5mm,凝结时间随转炉渣加入量的增大而延长;虽然转炉渣的加入引起各力学性能的变化,但均符合国家标准,属合格产品。
     其次,以转炉渣、铁尾矿、粉煤灰为主要原料,制备了新型墙体材料--免蒸免烧砖。采用正交实验考察粉煤灰、石灰、水泥和石膏四种因素对抗压强度影响的主次关系。进一步采用转炉渣替代实验、水泥用量实验确定免蒸免烧砖作结构材料时的配料方案,对免蒸免烧砖的性能进行了测试。研究了成型压力及养护时间等因素对免蒸免烧砖抗压强度的影响,分析了免蒸免烧砖强度的产生机理。实验结果表明:正交实验中,粉煤灰、石灰、水泥、石膏四种因素对抗压强度影响的主次关系为:水泥>石膏>粉煤灰>石灰;转炉渣替代实验可知,当转炉渣替代铁尾矿的百分含量为40%时,免蒸免烧砖的7d和28d抗压强度较高,分别为15.7Mpa,34.9Mpa;减少水泥用量实验可知,当水泥用量减少至2%时,其28d抗压强度为16.8Mpa,已达到MU15,免蒸免烧砖的抗压强度随水泥用量的增加而逐渐增大,最大值到达35.0 Mpa,因此,可以采用不同配料方案制备标号MU15~MU25的免蒸免烧砖;综合考虑个影响因素,当免蒸免烧砖作结构材料时的最优配料方案为:转炉渣26.8%、铁尾矿34.2%、粉煤灰10%、石灰12%、水泥16%、石膏1%;成型压力为20Mpa;测得试样体积密度平均值为1.96×103kg/m3;选用4种不同外加剂:木质素磺酸钙、萘系高效减水剂、氯化钙和硫酸钠,考察其对免蒸免烧砖抗压强度的影响,结果表明萘系高效减水剂免蒸免烧砖的抗压强度提高最为显著,当加入水泥用量1%的萘系高效减水剂时,免蒸免烧砖的7d抗压强度提高率达到了18.7%,28d抗压强度提高率达到6.9%;免蒸免烧砖经过15次冻融循环,平均抗压强度损失率为1.96%,平均质量损失率为0.67%,抗冻性能良好;吸水率平均值为9.7%,表明免蒸免烧砖孔隙率较少,内在质量较好;免蒸免烧砖的抗压强度随着成型压力的增大而增大;随养护时间的延长而增大。
Converter slag is the inevitable by-product of steel-making process, the output of converter slag increases with the increment of the steel output. However, the recovery method and technology of converter slag is laggard. Therefore, how to use the converter slag more effectively has important significance in promoting the continuous and efficient development of the iron and steel industry.
     In this paper, converter slag, iron tailings and fly ash are taken as raw materials for the preparation of cement and steaming-free and burning-free brick. The components and microstructures were examined by element analyzer, X-ray diffraction (XRD) and Microscope.
     Firstly, converter slag was used as the mainly raw material for the preparation of cement and steaming-free and burning-free brick. The sintered method is adopted to prepare the Portland cement. And the mechanical capabilities are determined. The effect of converter slag as raw material on cement's capabilities and mechanism is analyzed. The results showed that:①converter slag was used for raw material, the best experimental scheme for preparing Portland cement was converter slag 3%, iron tailings 3.5%, fly ash 16% and limestone 77.5%, respectively; and at this time, IM=1.58、KH=0.88、SM=2.11. Burning craft was at 1350℃keeping 2h; the cooling quomodo was fast cooling in the water. The amount of adding gypsum was 3.5% of cement.②converter slag was used for the additives. The compressive strength of cement at variable ages didn't go down obviously when adding 6% and 10% converter slag; the compressive strength of cement at 28 day went down from 73.28Mpa to 47.83Mpa when the adding converter slag from 0% to 15%, the extent of decrease was 34.7%. Length change of Le chatelier was from 1.5mm to 3.5mm; the setting time prolonged while adding more converter slag; although adding converter slag led to the change of mechanical capabilities, the product satisfied the standard of GB and belonged to the eligible product.
     Secondly, The new-style wall material:Steaming-free and burning-free brick making use of converter slag、iron tailings、fly ash as primary material was prepared. The orthogonal experiment is used to determine the successive relationship, such as the effect of fly ash, lime, cement and gypsum on the compressive strength. Then the replacement test of converter slag and experiment of the decreasing cement's amount to determine the best scheme of steaming-free and burning-free brick are studied. At the same time, the capabilities of steaming-free and burning-free brick are determined. The effect of the molding tension and curing time on the compressive strength of steaming-free and burning-free brick are analyzed, also the mechanism of strength form. The result showed that the effect of fly ash、lime、cement and gypsum on the compressive strength in the orthogonal experiment was:cement> gypsum> fly ash> lime. It showed that the substitute experiment:the compressive strength of steaming-free and burning-free brick was improved as the adding of 40% converter slag in the replacement test of converter slag. Compressive strength was 15.7Mpa and 34.9Mpa, respectively. It showed in the decreasing of cement's amount in experiment:compressive strength of steaming-free and burning-free brick was 16.8Mpa while the amount of cement decreasing to 2%, already attained MU15. Compressive strength increased with the increment of cement. The highest compressive strength was 35.0 Mpa. Therefore, steaming-free and burning-free brick of MU15-MU25 could be made by using the different scheme; When steaming-free and burning-free brick were used for the structural material, considering all the influencing factors synthetically, the best experimental scheme was that:converter slag 26.8%, iron tailings 34.2%, fly ash 10%, cement 16%, lime 12% and gypsum 1%, respectively; the molding tension was 20Mpa; Average density was 1.96×103 kg/m3. Effects of different additives calcium lignosulfonate, high range water reducing agents, CaCl2, Na2SO4 on compressive strength have been investigated, and its mechanism is analyzed. It showed that the effect of high range water reducer on compressive strength was remarkable. The addition of 1%cement led to the increase of the rate of compressive strength, namely 18.7% for 7 day. The rate of the compressive strength increment was 6.9% for 28 day. Steaming-free and burning-free brick endured 15 freeze-thaw circles. The average losing rate of the compressive strength was 1.96%. The average losing rate of weight was 0.67%. The freeze-proof character is good. The average drink rate was 9.7%. These showed that the porosity is low and the internal quality was well; the compressive strength of steaming-free and burning-free brick increased with the increment of molding tension; and the compressive strength of steaming-free and burning-free brick increased with the increment of curing time.
引文
1.吴艳青.硅还原转炉渣气化脱磷热力学和动力学基础研究[D].河北理工大学,2007.
    2.董保澍.钢渣的处理和应用[J].金属世界,1997,6:13.
    3.黄志芳,周勇强.谈谈钢渣综合利用的有效途径[J].有色金属设计,2005,32(2):50-53.
    4.冷光荣,朱美善.钢渣处理方法与展望[J].江西冶金,2005,25(4):44-46.
    5.张春雷.国内外钢渣再利用技术发展动态及对鞍钢开发钢渣产品的探讨[J].鞍钢技术,2003,4:5-6.
    6.陈盛建,高宏亮.钢渣综合利用技术及展望[J].南方金属,2004,5:1-4.
    7.刘树振.钢渣在炼钢领域中的应用[J].炼钢,1994,10(6):54-59.
    8.朱佳林.钢铁渣研究开发的现转与发展方向[J].废钢铁,2001,1(2):1-5.
    9.项长祥,陈亚辉.还原法处理转炉渣研究[J].环境工程,1997,15(3):34-39.
    10.黄勇刚,狄焕芬,祝春水.钢渣综合利用的途径[J].工业安全去环保,2005,31(1):44-46.
    11.龚志作,唐建英,王士彬.转炉渣在铁水脱硅领域的应用研究[J].炼钢,2005,21(4):28-30.
    12.陈兆平,夏幸明,蒋晓放.转炉渣在宝钢铁水预处理中的应用[J].2001中国钢铁年会论文集(上卷),2001,415-418.
    13.陈友德,岳润清.资源和环境与生态化水泥技术[J].水泥技术,2004,5:15-19.
    14.章崇伦.钢渣桩加固软弱地基土效果分析[J].矿业快报,2001,14:11-13.
    15.郑礼胜,王士龙.用钢渣处理含铬废水[J].材料保护,1999,32(5):40-41.
    16.廖宗文,刘可星,卢维盛.利用工农业废物制造有机无机复肥的技术进展[J].磷肥与复肥,1996,11(6):8-11.
    17.金恒阁,于力波.钢铁废渣与磷肥[J].中国物质再生,1999,18(6):31-32.
    18.程金树,黄玉生.钢渣微晶玻璃的研究[J].武汉工业大学学报,1995,17(4):1-3.
    19.张元志.钢渣、粉煤灰微晶玻璃试制探讨[J].安徽化工,1999,24(6):31-33.
    20.章耿.宝钢钢渣综合利用现状[J].冶金环境保护,2006,1:16-20.
    21.曾清海.转炉钢渣在武钢一烧的使用[J].钢铁研究,1990,2:84-85.
    22.张云鹏,张旭.国内外钢铁企业钢渣资源利用及技术进展[J].江苏冶金,2007,35(6):4-6.
    23.单志峰.国内外钢渣处理技术与综合利用技术的发展分析[J].工业安全与防尘,2000,2:27-32.
    24.沈建国,郭春媛,于景坤等.钢铁冶金资源化利用[J].材料与冶金学报,2003,2(3):163-166.
    25.吴胜文.溅渣层炉渣特性及气化脱硫[D].北京科技大学,2000.
    26. Saigusa M. Rececyling of converter slag in Chiba works[J].Recycling Steel Ind. Proc. Process Technol.Conf.1st 1980,168-171.
    27. Allemand B, Lelu B, Pluquet R.Rececyling of converter slag[J].Eur Oxygen Steel-making Conger.1st 1993,2005.8.
    28.吴学权.工业废渣利用的新途径:碱矿渣水泥的现状与展望[J].江苏建材,1990,2:9-11.
    29.郭随华,翁端,陈益民.我国水泥工业“生态化”的研究现状和发展趋势[J].硅酸盐学报,2001,29(2):172-177.
    30.孙恒虎,李宇,李化建.凝石技术与循环经济[J]建材发展导向,2005,3(5):61-65.
    31.孙恒虎,李化建.凝石材料:原理与意义[J].建设科技,2004,13:30-32.
    32.成希弼.“凝石”究竟为何物[J].中国水泥,2005,9:20.
    33.左铁镛.水泥工业:循环经济链的重要一环[J].中国建材,2005,8:20-23.
    34.韩永奇.大地与环境的呼唤—关于加快粘土实心砖退出步伐的观察与思考[J].砖瓦,2006,9:10-13.
    35.陈福广.新型墙体材料手册[M].北京:中国建材工业出版社,2000,63-75.
    36.唐仁美.面少准的制造方法[J].新型建筑材料,1995,9:15-17.
    37.郭春丽.利用铁尾矿制造建筑用砖[J].砖瓦,2006,2:42-44.
    38. Malhotra S K, Tehri S P. Development of bricks from granulated blast furnace slag[J]. Construction of Building Materials,1996,10(3):191-193.
    39.王梅.赤泥粉煤灰免烧砖的研制[D].华中科技大学,2005.
    40.苏达根.水泥与混凝土工艺[M].北京:化学工业出版社,2004,31-36.
    41.徐兵,徐永斌.宝钢转炉渣—水泥生产的绿色资源[J].中国水泥,2005,8:60-62.
    42.杨明华,张广页.钢渣资源化的现状与前景[J].矿产综合利用,1999,3:35-37.
    43.张锦瑞,贾清梅.用高硅铁尾矿生产尾矿砖[J].中国资源综合利用,2005,1:10-12.
    44.张锦瑞.唐山地区铁尾矿资源化整体利用研究[D].北京科技大学,2007.
    45.李理弦.SSC绿色胶凝材料的研制[D].广西大学,2007.
    46.唐明,邱晴,王博.现代混凝土外加剂及掺合料[M].沈阳:东北大学出版社,1999,13-30.
    47.王培铭.无机非金属材料学[M].上海:同济大学出版社,1999,269-301.
    48.袁润章,沈威,陈志源.胶凝材料学[M].北京:中国建筑工业出版社,1983,60-64.
    49.化琨,赵洪义.水泥生料配料计算原料方程法及EXCEL工作表[J].水泥,2002,3:19-22.
    50.苏达根.水泥与混凝土工艺[M].北京:化学工业出版社,2004,31-36.
    51.丁虹.混合胶凝材料性能研究[D].大庆石油学院,2007.
    52.杨永民,林永权,杨东.减水剂饱和点与水泥浆体流动性及硬化性能关系的研究[J]. 混凝土,2007,3:42-45.
    53.陶海征.钢渣的综合利用研究[D].河北理工大学,2001.
    54.张继芳,赵伟.钢渣作铁质校正原料在生产中的应用[J].中国水泥,2006,12:61-63.
    55.李子成.利用工业废渣制备新型轻质墙体材料及其性质研究[D].广西大学,2006.
    56. Farrell M, Wild S, Sabir B. Pore size distribution and compressive strength of waste clay brick mortal[J].Cement & Concrete Composites,2001,23:81-91.
    57.刑伟宏.高掺量粉煤灰免烧砖的研究[J].新型建筑材料,1998,9:39-40.
    58. Poon C S, Kou S. Use of recycled aggregates in molded concrete bricks and blocks[J].Construction of Building Materials,2002,16:281-289.
    59.张海涛,杨久俊,张磊.免烧结免蒸养粉煤灰砖力学性能及水化机理[J].2005,6:25-27.
    60.刘凤春,刘家弟,傅海霞.铁矿尾矿双免砖的研制[J].矿业快报,2007,3:33-35.
    61.张锦瑞,王伟之,郭春丽.利用铁尾矿制造建筑用砖[J].矿山环保,2001,2:14-16.
    62.杨南如.碱胶凝材料形成的物理化学基础[J].硅酸盐学报,1996,24(4):459-465.
    63.孙江安.浅谈界面科学与硅酸盐废渣胶凝材料[J].房材与应用,1997,4:36-39.
    64.刘文永.高掺量粉煤灰固结材料力学性能和水化固结反应机理研究[D].北京科技大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700