不同旋光结构聚乳酸体系冷结晶行为及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸具有良好的生物相容性、可生物降解性以及良好的力学性能,在包装、农业、生物医学材料等领域得到了广泛的应用。不同旋光性的乳酸单体分子合成的聚乳酸有左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和消旋聚乳酸(PDLLA)三种。不同旋光结构聚乳酸的结晶能力不同。对结晶性高分子而言,结晶能力的大小、结晶度和晶体形态是影响高分子材料制品性能的重要因素。因此本文系统地研究了不同旋光结构聚乳酸体系的冷结晶行为。主要研究结果如下:
     (1)对比研究了物理老化和玻璃化温度(Tg)以上退火的PLLA样品的冷结晶行为。研究结果表明,物理老化和Tg以上退火PLLA的冷结晶能力都得到了增强,并且Tg以上退火样品的增强效果更明显。形态学观察发现,物理老化PLLA中的成核密高于Tg以上退火样品,但结晶动力学数据却显示物理老化PLLA的晶体生长速率有显著的下降。这是因为PLLA样品在物理老化过程中受限的链段运动能力在冷结晶过程没有完全回复,使得PLLA的晶体生长速率下降。而Tg以上退火对晶体的生长速率没有影响,成核密度的增加是结晶加快的唯一原因。
     (2)研究了热处理对左旋聚乳酸及其与消旋聚乳酸1:1共混物的冷结晶行为的影响。结果表明,热处理后PLLA冷结晶速率的加快,是通过增强成核来实现的。冷却速率越慢,成核效应越显著,PLLA的结晶速率越快。相比于PLLA,PLLA/PDLLA共混物成核能力的变化对冷却速率不敏感。这与非结晶性PDLLA阻碍了热处理过程中局部有序结构的形成有关。
     (3)研究了右旋聚乳酸与左旋聚乳酸共混物的冷结晶行为,探讨了高度有序PLA立体复合物的形成机理。研究发现PLLA/PDLA共混物的冷结晶温度越低,形成的PLA立体复合物的熔点反而更高。这是因为冷结晶温度越低,形成的PLA立体复合物的有序度越低。在低温冷结晶形成的无序PLA立体复合物,在高温会通过重要的固-固相转变进行结构重排,从而得到高度有序的PLA立体复合物,具有较高的熔点。而在高温结晶形成的有序PLA立体复合物,基本不进行结构重排,熔点相对较低。
Polylactides with good biocompatibility, biodegradability and mechanical properties,have been widely applied in packaging, agriculture and biomedical field. The synthesis ofthe lactic acid with different chiral structure yield three kinds of Polylactidehomopolymers(poly(L-lactide)(PLLA), poly(D-lactide)(PDLA) and poly(DL-lactide)(PDLLA)). The cold crystallization behavior of Polylactide is related to the chiral structrue.For the crystalline polymers, the crystallization ability, degree of crystallinity and crystalmorphology have a great influence on the performance of polymer. In this paper, the coldcrystallization behavior of PLLA, PLLA/PDLLA and PLLA/PDLA blends have beeninvestigated. Major results as follows:
     (1) A comparative study of cold crystallization behavior in poly (L-lactide)(PLLA)annealed below and just above glass transition temperature (Tg) has been conducted. Theresults show that annealing benefits the cold crystallization process, which becomessignificant in PLLA annealed just above Tg. Surprisingly, morphological observationreveals high density nuclei in PLLA annealed below Tg, contrary to its relatively slowcrystallization kinetics. This unusual crystallization behavior in physically aged PLLAarises from the retarded crystal growth rate because of incomplete recovery of reducedsegmental mobility above Tg. In contrast, annealing just above Tg has little influence onthe crystal growth rate, and the increased nucleation density alone accounts for theaccelerated crystallization rate.
     (2) Effect of thermal treatment on the cold crystallization of PLLA and PLLA/PDLLAblend have been studied. It has been evidenced that the acceleration in the coldcrystallization of PLLA arises from the enhanced nucleation after the thermal treatment.The slower is the cooling rate, the higher is the nucleation effect. As Compared to thePLLA, the change of nucleation ability with respect to cooling rate becomes lesssignificant in the PLLA/PDLLA blends, resulted from that amorphous PDLLA prevents the formation of local order during thermal treatment.
     (3) The cold crystallization behavior of the PDLA/PLLA blends and the formationmechanism of highly ordered PLA stereocomplex have been investigated. Coldcrystallization of poly (L-lactide)/poly (D-lactide) blends at low temperatures results in theformation of disordered stereocomplex. Upon heating disordered stereocomplex enduressignificant reorganization into highly compact one before dominant melting via solid-solidtransition, which yields extremely high melting point. In contrast, ordered stereocomplexgenerated at high temperatures exhibits little reorganization, and is melted directly attemperatures lower than that of reorganized stereocomplex.
引文
[1]苑静,生物降解塑料的研究现状及发展前景,塑料科技[J],2009(02):77-81.
    [2]陈庆,刘宏,生物降解塑料的市场竞争研究与分析,新材料产业[J],2011(02):55-59.
    [3] D. Garlotta, A Literature Review of Poly(Lactic Acid), Journal of Polymers and theEnvironment[J],2001(2):63-84.
    [4] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Crystal Modifications and ThermalBehavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy, Macromolecules[J],2005(19):8012-8021.
    [5]汪朝阳,赵海军,侯晓娜,罗玉芬,宋秀美,聚乳酸合成研究进展,高分子材料科学与工程[J],2009(03):162-165.
    [6]赵丹,冯辉霞,陈娜丽,张苗,张建强,聚乳酸的合成工艺及应用研究进展,应用化工[J],2009(01):128-130.
    [7] L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid), Progress in PolymerScience[J],2008(8):820-852.
    [8] W.H. Carothers, G.L. Dorough, F.J.V. Natta, STUDIES OF POLYMERIZATION AND RINGFORMATION. X. THE REVERSIBLE POLYMERIZATION OF SIX-MEMBERED CYCLICESTERS, Journal of the American Chemical Society[J],1932(2):761-772.
    [9] A. S derg rd, M. Stolt, Properties of lactic acid based polymers and their correlation withcomposition, Progress in Polymer Science[J],2002(6):1123-1163.
    [10] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Epitaxial crystallization andcrystalline polymorphism of polylactides, Polymer[J],2000(25):8909-8919.
    [11] W. Hoogsteen, A.R. Postema, A.J. Pennings, G. Ten Brinke, P. Zugenmaier, Crystal structure,conformation and morphology of solution-spun poly(L-lactide) fibers, Macromolecules[J],1990(2):634-642.
    [12] T. Iwata, Y. Doi, Morphology and Enzymatic Degradation of Poly(l-lactic acid) Single Crystals,Macromolecules[J],1998(8):2461-2467.
    [13] B. Eling, S. Gogolewski, A.J. Pennings, Biodegradable materials of poly(l-lactic acid):1.Melt-spun and solution-spun fibres, Polymer[J],1982(11):1587-1593.
    [14] P. De Santis, A.J. Kovacs, Molecular conformation of poly(S-lactic acid), Biopolymers[J],1968(3):299-306.
    [15] C. Marega, A. Marigo, V. Di Noto, R. Zannetti, A. Martorana, G. Paganetto, Structure andcrystallization kinetics of poly(L-lactic acid), Die Makromolekulare Chemie[J],1992(7):1599-1606.
    [16] M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics[J],1939(12):1103-1112.
    [17] M. Avrami, Kinetics of Phase Change. II Transformation-Time Relations for RandomDistribution of Nuclei, The Journal of Chemical Physics[J],1940(2):212-224.
    [18] M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, TheJournal of Chemical Physics[J],1941(2):177-184.
    [19]杨芳,几种生物降解多相多组分高分子材料的制备、形态、结构与性能研究[D].北京化工大学.2011
    [20]任杰,杨军,任天斌,生物可降解材料聚乳酸结晶行为研究进展,高分子通报[J],2006(12):51-56.
    [21]李旭娟,李忠明,聚乳酸结晶的研究进展,中国塑料[J],2006(10):6-12.
    [22] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Polymorphous Crystallization and Multiple MeltingBehavior of Poly(l-lactide): Molecular Weight Dependence, Macromolecules[J],2007(19):6898-6905.
    [23] P. Pan, Z. Liang, B. Zhu, T. Dong, Y. Inoue, Blending Effects on Polymorphic Crystallization ofPoly(l-lactide), Macromolecules[J],2009(9):3374-3380.
    [24] Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon, Stereocomplex formation between enantiomericpoly(lactides), Macromolecules[J],1987(4):904-906.
    [25] N. Rahman, T. Kawai, G. Matsuba, K. Nishida, T. Kanaya, H. Watanabe, H. Okamoto, M. Kato,A. Usuki, M. Matsuda, K. Nakajima, N. Honma, Effect of Polylactide Stereocomplex on theCrystallization Behavior of Poly(l-lactic acid), Macromolecules[J],2009(13):4739-4745.
    [26] J. Sun, H. Yu, X. Zhuang, X. Chen, X. Jing, Crystallization Behavior of AsymmetricPLLA/PDLA Blends, The Journal of Physical Chemistry B[J],2011(12):2864-2869.
    [27] L. Bouapao, H. Tsuji, Stereocomplex Crystallization and Spherulite Growth of Low MolecularWeight Poly(L-lactide) and Poly(D-lactide) from the Melt, Macromolecular Chemistry andPhysics[J],2009(12):993-1002.
    [28] H. Yamane, K. Sasai, Effect of the addition of poly(d-lactic acid) on the thermal property ofpoly(l-lactic acid), Polymer[J],2003(8):2569-2575.
    [29]吕悦慈,刘君妹,贾立霞,聚乳酸织物热处理工艺研究,产业用纺织品[J],2009(12):20-23.
    [30]张慎,张歆,蔡晴,邓旭亮,杨小平,左旋聚乳酸纳米纤维膜的热处理研究,北京化工大学学报(自然科学版)[J],2011(02):69-75.
    [31]全大萍,廖凯荣,赵剑豪,物理老化对聚乳酸玻璃化转变行为的影响,高分子学报[J],2004(05):726-730.
    [32]沈德言,钱人元,高聚物的物理老化和链的凝聚缠结,高分子通报[J],1993(04):193-196+216.
    [33] P. Pan, Z. Liang, B. Zhu, T. Dong, Y. Inoue, Roles of Physical Aging on Crystallization Kineticsand Induction Period of Poly(l-lactide), Macromolecules[J],2008(21):8011-8019.
    [34] M. Kwon, S. Lee, Y. Jeong, Influences of physical aging on enthalpy relaxation behavior, gaspermeability, and dynamic mechanical property of polylactide films with various D-isomercontents, Macromolecular Research[J],2010(4):346-351.
    [35] M. Niaounakis, E. Kontou, M. Xanthis, Effects of aging on the thermomechanical properties ofpoly(lactic acid), Journal of Applied Polymer Science[J],2011(1):472-481.
    [36] T. Zhang, J. Hu, Y. Duan, F. Pi, J. Zhang, Physical Aging Enhanced Mesomorphic Structure inMelt-Quenched Poly(l-lactic acid), The Journal of Physical Chemistry B[J],2011(47):13835-13841.
    [37] X. Ou, M. Cakmak, Influence of biaxial stretching mode on the crystalline texture in polylacticacid films, Polymer[J],2008(24):5344-5352.
    [38]袁华,杨军伟,张乃文,任杰,生物可降解聚乳酸/Ecoflex共混薄膜拉伸性能研究,塑料[J],2008(06):48-50.
    [39]林高强,崔毅,闫喜春,商雪,陈学思,拉伸取向自增强左旋聚乳酸的结构与性能,高分子材料科学与工程[J],2012(02):68-71.
    [40] Y. Wang, M. Li, C. Shen, Effect of constrained annealing on the microstructures of extrusion castpolylactic acid films, Materials Letters[J],2011(23–24):3525-3528.
    [41] S.H. Tabatabaei, P.J. Carreau, A. Ajji, Effect of processing on the crystalline orientation,morphology, and mechanical properties of polypropylene cast films and microporousmembrane formation, Polymer[J],2009(17):4228-4240.
    [42] J.K. Lee, K.H. Lee, B.S. Jin, Structure development and biodegradability of uniaxially stretchedpoly(l-lactide), European Polymer Journal[J],2001(5):907-914.
    [43] K. Aou, S. Kang, S.L. Hsu, Morphological Study on Thermal Shrinkage and DimensionalStability Associated with Oriented Poly(lactic acid), Macromolecules[J],2005(18):7730-7735.
    [44] X. Lu, J.N. Hay, The effect of physical aging on the rates of cold crystallization of poly(ethyleneterephthalate), Polymer[J],2000(20):7427-7436.
    [45] E.A. Mcgonigle, J.H. Daly, S. Gallagher, S.D. Jenkins, J.J. Liggat, I. Olsson, R.A. Pethrick,Physical ageing in poly(ethylene terephthalate)—its influence on cold crystallisation,Polymer[J],1999(17):4977-4982.
    [46] J. Zhao, J. Yang, R. Song, X. Linghu, Q. Fan, The effect of annealing on the subsequent coldcrystallization of amorphous poly(ethylene terephthalate), European Polymer Journal[J],2002(4):645-648.
    [47] M. Salmerón Sánchez, V.B.F. Mathot, G. Vanden Poel, J.L. Gómez Ribelles, Effect of the CoolingRate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology,Macromolecules[J],2007(22):7989-7997.
    [48] P. Badrinarayanan, K.B. Dowdy, M.R. Kessler, A comparison of crystallization behavior for meltand cold crystallized poly (l-Lactide) using rapid scanning rate calorimetry, Polymer[J],2010(20):4611-4618.
    [49] B. Na, N. Tian, R. Lv, Z. Li, W. Xu, Q. Fu, Evidence of sequential ordering during coldcrystallization of poly (l-lactide), Polymer[J],2010(2):563-567.
    [50] J. Zhang, H. Tsuji, I. Noda, Y. Ozaki, Weak Intermolecular Interactions during the MeltCrystallization of Poly(l-lactide) Investigated by Two-Dimensional Infrared CorrelationSpectroscopy, The Journal of Physical Chemistry B[J],2004(31):11514-11520.
    [51] B. Braun, J.R. Dorgan, S.F. Dec, Infrared Spectroscopic Determination of Lactide Concentrationin Polylactide: An Improved Methodology, Macromolecules[J],2006(26):9302-9310.
    [52] N. Stribeck, U. N chel, A. Almendárez Camarillo, S.V. Roth, M. Dommach, P. B secke, SAXSStudy of Oriented Crystallization of Polypropylene from a Quiescent Melt,Macromolecules[J],2007(13):4535-4545.
    [53] B. Na, Y. Wang, Q. Zhang, Q. Fu, Shish and its relaxation dependence of re-crystallization ofisotactic polypropylene from an oriented melt in the blends with high-density polyethylene,Polymer[J],2004(18):6245-6260.
    [54] F. Sakai, K. Nishikawa, Y. Inoue, K. Yazawa, Nucleation Enhancement Effect in Poly(l-lactide)(PLLA)/Poly(-caprolactone)(PCL) Blend Induced by Locally Activated Chain MobilityResulting from Limited Miscibility, Macromolecules[J],2009(21):8335-8342.
    [55] B.P. Grady, F. Pompeo, R.L. Shambaugh, D.E. Resasco, Nucleation of PolypropyleneCrystallization by Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B[J],2002(23):5852-5858.
    [56] J.Y. Nam, S. Sinha Ray, M. Okamoto, Crystallization Behavior and Morphology ofBiodegradable Polylactide/Layered Silicate Nanocomposite, Macromolecules[J],2003(19):7126-7131.
    [57] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in PolymerScience[J],2007(8–9):762-798.
    [58] H. Tsuji, Y. Ikada, Blends of isotactic and atactic poly(lactide)s:2. Molecular-weight effects ofatactic component on crystallization and morphology of equimolar blends from the melt,Polymer[J],1996(4):595-602.
    [59] J. Ren, O. Urakawa, K. Adachi, Dielectric and Viscoelastic Studies of Segmental and NormalMode Relaxations in Undiluted Poly(d,l-lactic acid), Macromolecules[J],2002(1):210-219.
    [60] J. Xu, B.-H. Guo, J.-J. Zhou, L. Li, J. Wu, M. Kowalczuk, Observation of banded spherulites inpure poly(l-lactide) and its miscible blends with amorphous polymers, Polymer[J],2005(21):9176-9185.
    [61]沈兆宏,钱欣,钱仕杰,成核剂对生物降解聚乳酸结晶行为的影响,石油化工高等学校学报[J],2008(02):10-14+19.
    [62] H. Tsuji, Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, andApplications, Macromolecular Bioscience[J],2005(7):569-597.
    [63] D. Brizzolara, H.-J. Cantow, K. Diederichs, E. Keller, A.J. Domb, Mechanism of theStereocomplex Formation between Enantiomeric Poly(lactide)s, Macromolecules[J],1996(1):191-197.
    [64] J.-R. Sarasua, N.L. Rodríguez, A.L. Arraiza, E. Meaurio, Stereoselective Crystallization andSpecific Interactions in Polylactides, Macromolecules[J],2005(20):8362-8371.
    [65] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, Infrared Spectroscopic Study of CH3···OCInteraction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation, Macromolecules[J],2005(5):1822-1828.
    [66] X. Wang, R.E. Prud'homme, Differences Between Stereocomplex Spherulites Obtained inEquimolar and Non-Equimolar Poly(L-lactide)/Poly(D-lactide) Blends, MacromolecularChemistry and Physics[J],2011(7):691-698.
    [67] Y. He, Y. Xu, J. Wei, Z. Fan, S. Li, Unique crystallization behavior ofpoly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states, Polymer[J],2008(26):5670-5675.
    [68] J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Disorder-to-Order Phase Transition and MultipleMelting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD andDSC, Macromolecules[J],2008(4):1352-1357.
    [69] T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada,A. Usuki, N. Honma, K. Nakajima, M. Matsuda, Crystallization and Melting Behavior of Poly(l-lactic Acid), Macromolecules[J],2007(26):9463-9469.
    [70] P. Opaprakasit, M. Opaprakasit, P. Tangboriboonrat, Crystallization of Polylactide and ItsStereocomplex Investigated by Two-Dimensional Fourier Transform Infrared CorrelationSpectroscopy Employing Carbonyl Overtones, Appl. Spectrosc.[J],2007(12):1352-1358.
    [71] P. Opaprakasit, M. Opaprakasit, Thermal Properties and Crystallization Behaviors of Polylactideand Its Enantiomeric Blends, Macromolecular Symposia[J],2008(1):113-120.
    [72] S.J. Organ, J.K. Hobbs, M.J. Miles, Reorganization and Melting of Polyethylene SingleCrystals: Complementary TEM, DSC, and Real-Time AFM Studies, Macromolecules[J],2004(12):4562-4572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700