刺激响应性聚合物微观体系的构筑及在检测方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺激响应性聚合物是具有根据环境的变化而改变自身的物理或者化学性质的一类功能性聚合物。最近几年,响应性聚合物微观体系由于具有尺寸小,对外界环境刺激响应快速的特点而受到研究人员的广泛关注,在药物缓释、疾病诊断、组织工程、智能光学材料、生物传感与分离、微电子器件、涂料和纺织业等领域都有着广泛的应用。在目前所报道的关于响应性聚合物材料的研究工作中,基于温度响应性聚合物聚(N-异丙基丙烯酰胺)(PNIPAM)及其共聚物所构筑的响应性微观体系的研究备受关注,成为一个研究热点。
     荧光检测作为一种响应快速、高灵敏、简单方便的分析技术而被广泛地用于物质检测、分子识别、生物标记、细胞成像等领域,逐渐成为化学和生物学科领域重要的检测手段。而将具有聚集诱导荧光增强(AIE)性质的荧光分子和荧光碳量子点引入到响应性聚合物中,构筑响应性聚合物微观体系并应用于检测、识别、成像等方面的研究,无论从基础研究还是应用价值,都是非常有意义的探索。
     在论文的第二章中,我们设计构筑具有pH和温度双重智能响应的微观体系,通过乳液聚合两步法制备以聚苯乙烯为核,PNIPAM-PAA为壳的纳米微球,分别在微球的内核和壳层组装稀土配合物和正电荷的AIE型荧光分子四苯基乙烯衍生物(d-TPE),获得双荧光发射功能的响应性纳米微球。由于d-TPE分子与纳米微球作用,聚合物链段有效地限制了d-TPE分子的运动,导致d-TPE的荧光增强百倍以上,表现出优异的聚集诱导荧光增强(AIE)性质。在温度响应方面,随着环境温度的升高,纳米微球核层稀土配合物和壳层d-TPE分子的荧光强度同时逐渐下降,并在较宽的温度范围内(10-80℃)呈现线性可控变化。pH响应方面,由于壳层引入了pH响应性的聚合物聚丙烯酸(PAA),所以复合在壳层的d-TPE分子与聚合物的作用受到环境pH的调控,而组装在核内的稀土配合物的荧光性质不受pH的影响,保持荧光性质不变。由于微球核内和壳层的荧光性质对pH的不同响应性,聚合物纳米微球在酸性到碱性的不同pH值条件下呈现红色到紫色的不同荧光颜色,获得pH智能响应特性。由于纳米微球对温度和pH展现不同的荧光响应性质,使其在微观荧光纳米温度计、肿瘤细胞和组织检测、药物缓释等领域具有广阔的应用前景。
     论文的第三章,为了扩展对响应性聚合物微观体系的研究,提高材料的生物相容性和细胞靶向性,我们设计制备具有生物靶向性的纳米微粒。以生物分子叶酸(FA)和尿素(Urea)为原料,采用简单的微波辅助加热方法一步合成了对特异癌细胞具有选择性成像的荧光碳量子点,产物生物毒性低、荧光量子产率高、粒子尺寸小、尺寸均一,特定癌细胞靶向功能,可大量制备等优点,可以作为癌症的诊断和治疗的荧光显像材料来使用。进一步,我们将具有顺磁性的稀土钆离子[Gd(III)]通过与羧基的配位作用,实现与碳量子点的复合,所制备的碳点不仅具有荧光功能还具有顺磁性,可以应用于荧光和磁性双通道生物成像。
     在论文的第四章中,我们将响应性聚合物制成器件以扩展其在现实中的应用。首先,我们设计器件的温度响应特性,通过原子转移自由基聚合(ATRP)方法在石英基底上制备了温度响应性的p(NIPAM-co-AAc)聚合物分子刷薄膜,然后将d-TPE分子组装在分子刷上,得到荧光温度智能响应性的聚合物分子刷薄膜器件[d-TPE/p(NIPAM-co-AAc)],在2-70℃范围内,其荧光强度随环境温度升降具有线性可逆往复的变化规律。进一步,我们还研究了器件在检测方面的应用,实现了d-TPE/p(NIPAM-co-AAc)分子刷对铬酸根离子(CrO42-)的特异性响应,扩展了响应性聚合物器件在离子检测、环境监测等方面的应用。此外,我们采用ATRP方法,两步法合成了带负电荷的聚丙烯酸(PAAc)分子刷薄膜,接着,组装上d-TPE分子,制备荧光性d-TPE/PAAc分子刷薄膜器件,利用其与爆炸物TNT强相互作用,导致d-TPE/PAAc分子刷的荧光发生淬灭,可以实现该聚合物微观器件对TNT的超灵敏检测,检测限最高可达0.1ppb,远低于美国环保部门对饮用水的要求(1ppb)。这种响应性荧光分子刷薄膜器件结构为TNT检测提供了一种新型、方便、灵敏的检测方法,拓展其在爆炸物检测、环境监测、食品安全、实验分析等领域的应用。
Stimuli-responsive materials are capable of exhibiting reversible or irreversiblechanges in physical properties and/or chemical structures to small changes inexternal environment. They can adapt to surrounding environments, regulatetransport of ions and molecules, change wettability and adhesion of different specieson external stimuli, or convert chemical and biochemical signals into optical,electrical, thermal and mechanical signals, and vice versa. In the recent studies, theresponsive polymer micro-system attracts extensive interests and has become aresearch highlight. As water-soluble and temperature-responsive polymers, PNIPAMand its copolymers have been extensively studied.
     As a sensitive and convenient analytic technique, fluorescence detection hasbeen widely used in molecular recognition, bio-labeling, cell imaging and otherfields, and becomes an essential detection mean in chemical and biological fields. Byintroducing fluorescent molecules with aggregation-induced emission (AIE) propertyand fluorescent carbon quantum dots into responsive polymers, we can construct aresponsive polymer micro-system and try to exhibit their potential application indetections for ions, pH, explosive and so on.
     In Chapter2, we design a dual emission polymer nanoparticles responsing topH and temperature. The core-shell polymer nanoparticles (PS/PNIPAM-co-PAA)are synthesized. Two kinds of photoluminescent molecules with similar excitationwavelengths, a rare earth complex with red emission and a quaternary ammoniumtetraphenylethylene derivative (d-TPE) with blue emission, are inserted intopolymeric core and shell, respectively. The PL intensities of the nanoparticles exhibita linear temperature response in the range of10and80oC with a change by a step ofa factor of5. Furthermore, blue emission from the shell exhibits a linear pH response between pH6.5and7.6with a resolution of0.1unit, as well as the red emission fromthe core is constant from pH-independance. Accordingly, the hydrogel nanoparticlesshow different purple and red coloration in neutral and acidic environments,enabling the discrimination of healthy (pH7.4) and cancer cells (pH6.5),respectively. These stimuli-responsive PL nanoparticles have potential application inbiology and chemistry, including bio-and chemo-sensors, biological imaging, cancerdiagnosis, and externally activated release of anticancer drugs.
     In Chapter3, in order to extend the study on responsive polymer micro-system,we improve a kind of nanoparticles with biocompatibility and cell targeting. Folicacid (FA) is brought to synthesize fluorescent carbon quantum dots for selectiveimaging of specific cancer cells. A simple, low-cost and one-step microwaveapproach has been demonstrated for the synthesis of water-soluble carbon dots(C-dots). The average size of the resulting C-dots is about4nm. From thephotoluminescence (PL) measurements, the C-dots exhibit good stability and intensePL with the high quantum yield (QY) at Ca.25%. Significantly, the C-dots haveexcellent biocompatibility and selective imaging for folate receptor (FR)-positivecancerous cells from normal cells. These exciting results indicate the as-preparedC-dots are promising biocompatible probe for cancer diagnosis and treatment.Further, gadolinium ions [Gd (III)] are interacted with the carboxyl of carbon dots toprepare a modified nanodot (Gd/C dot). Due to the magnetic properties from Gd (III)and fluorescent properties from carbon dots, the modified carbon dots withdual-function are obtained, which can be applied on dual-channel of fluorescenceand magnetic imaging.
     In Chapter4, we design to transfer our responsive polymer system into films tofabricate multi-functional sensitive devices. First, we prepared thethermo-responsive photoluminescent (PL) polymer brushes device as a platform forselective and sensitive detection of Cr (VI). As positive charged fluorescentmolecules of quaternary ammonium, tetraphenylethylene derivatives (d-TPE)molecules are immobilized in the thermo-responsive polymer brushes of PNIPAM-co-PAA by coloumb force, which leads to the observation of immobilizedinduced emission (IIE) phenomenon. The emission intensity is improved hundreds oftimes comparing with d-TPE aqueous solution. As a result, we obtain a novelthermo-responsive PL polymer brushes film device. The PL intensity of the deviceexhibits linear and reversible response in a large temperature range (4-60°C) andshows a highly PL quenching for sensitive and selective detection of Cr (VI) ratherthan Cr (III), the limit of detection can reach as low as0.05ppm, which indicates apromising sensor device of thermometer for environmental monitoring, laboratoryanalysis and other various applications.
     Moreover, we prepared the fluorescent polymer brushes film as a device forultrasensitive and selective detection of TNT. As positive charged fluorescentmolecules of quaternary ammonium tetraphenylethylene derivatives (d-TPE) wereself-assembled on the brushes of poly(acrylic acid)(PAAc) by coulomb force, weobtained a novel fluorescent polymer brushes film with excellent photoluminescenceproperties, and the emission intensity could be quantitatively and sensitivelyresponsive to2,4,6-trinitrotoluene (TNT) due to the electron transfer between d-TPEand TNT. The limit of detection of TNT was established to be0.1ppb in water. Thefluorescent device could also be used repeatedly for TNT detection, which indicateda promising application in trace explosive detection, environmental monitoring, andlaboratory analysis, etc.
引文
[1] Islam, M. R.,Lu, Z., Li, X., Sarker, A. K.,Hu, L. Choi, P., Li, X.,Hakobyan, N., Serpe, M. J., Responsive polymers for analyticalapplications: A review, Analytica Chimica Acta,2013,789,17-32.
    [2] Kim, H.C., Park, S.M., Hinsberg, W.D., Block Copolymer BasedNanostructures: Materials, Processes, and Applications to Electronics, Chem.Rev.2010,110,146-177.
    [3] Guarini, K.W., Black, C.T. Zhang, Y., Kim, H., Sikorski, E.M., Babich, I.V.Process integration of self-assembled polymer templates into siliconnanofabrication J. Vac. Sci.2004. Technol. B,2002,20,2788-2792.
    [4] Cohen Stuart, M.A., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm,M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F.,Zauscher, S., Luzinov I., and Minko, S., Emerging applications ofstimuli-responsive polymer materials, Nat. Mater.,2010,9,101–113.
    [5] Sun, T., Qing, G., Biomimetic smart interface materials for biologicalapplicationas, Adv. Mater.2011,23, H57-H77.
    [6] Andrew Lyon, L., Meng, Z., Singh, N., Sorrell, C. D., John, A. S.,Thermoresponsive microgel-based materials, Chem. Soc. Rev.,2009,38,865-874.
    [7]江雷,冯琳,仿生智能纳米界面材料,化学工业出版社,2007.
    [8] Jun, L., Xia, H., Yang, L., Di, L., Yong, W. W., Jing, H. L., Yu, B. B., Tie, J.L., Highly Photoluminescent CdTe/Poly (N-isoprolyacrylamide)Temperature-Sensitive Gels, Adv. Mater.2005,17,163-166.
    [9] Daisuke,S., Jonathan G. M., Haruma K., L. Andrew, L., Colloidal Crystalsof Thermosensitive, Core/Shell Hybrid Microgels, J. Phys. Chem. C.2007,111,5667-5672.
    [10] Matthias, K., Isabel, P. S., Jorge, P. J., Thomas, H., Luis, M. L. M.,Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties,Small2007,3,1222-1229.
    [11] Montagne, F., Polesel-Maris, J., Raphael Pugin and Harry Heinzelmann,Poly(N-isopropylacrylamide) Thin Films Densely Grafted onto Gold Surface:Preparation, Characterization, and Dynamic AFM Study ofTemperature-Induced Chain Conformational Changes, Langmuir,2009,25,983-991.
    [12] Yang, Y., Yan, X. H., Cui, Y., He, Q., Li, D.X., Wang, A.H., Fei, J.B., Li,J.B.,Preparation of polymer-coated mesoporous silica nanoparticles used forcellular imaging by a "graft-from'' method, Journal of Materials Chemistry2008,18,5731-5737.
    [13] Alvarez-Puebla, R. A., Contreras-Caceres, R., Pastoriza-Santos, I., et al.,Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced,Spectroscopic, Ultra-Sensitive Analysis, Angew. Chem.-InternationalEdition,2009,48,144-149.
    [14] Jonathan, G.M., Robert, D. B., J.Michael C., L. Andrew, L., Self-Assemblyof “Paint-On” Colloidal Crystals Using Poly(styrene-co-N-isopropyalcrylamide) Spheres, Chem. Mater.2007,19,1584-1591.
    [15] Cavalieri, F., Postma, A., Lee, L., Caruso, F., Assembly andFunctionalization of DNA Polymer Microcapsules,ACS Nano,2009,3,234-240.
    [16] Senaratne, W., Andruzzi, L. Ober, C. K. Self-assembled monolayers andpolymer brushes in biotechnology: Current applications and futureperspectives. Biomacromolecules,2005,6,2427–2448.
    [17] Jhaveri, S. J., Release of nerve growth factor from HEMA hydrogelcoatedsubstrates and its effect on the differentiation of neural cells.Biomacromolecules2009,10,174–183.
    [18] Hoffman, A. S. The origins and evolution of “controlled” drug deliverysystems. J. Control. Release,2008,132,153–163.
    [19] Bayer, C. L. Peppas, N. A. Advances in recognitive, conductive andresponsive delivery systems. J. Control. Release,2008,132,216–221.
    [20] Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc.Rev,2008,37,2512–2529.
    [21] Liu, Z. S.&Calvert, P. Multilayer hydrogels as muscle-like actuators. Adv.Mater.2000,12,288–291.
    [22] Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater.2008,7,442–453.
    [23] Jeong, B.; Gutowska, A., Lessons from nature: stimuli-responsive polymersand their biomedical applications. Trends in Biotechnology,2002,20,305-311.
    [24] Hoffman, A. S.; Stayton, P. S.; Bulmus, V.; Chen, G. H.; Chen, J. P.; Cheung,C.; Chilkoti, A.; Ding, Z. L.; Dong, L. C.; Fong, R.; Lackey, C. A.; Long, C.J.; Miura, M.; Morris, J. E.; Murthy, N.; Nabeshima, Y.; Park, T. G.; Press, O.W.; Shimoboji, T.; Shoemaker, S.; Yang, H. J.; Monji, N.; Nowinski, R. C.;Cole, C. A.; Priest, J. H.; Harris, J. M.; Nakamae, K.; Nishino, T.; Miyata, T.,Really smart bioconjugates of smart polymers and receptor proteins. Journalof Biomedical Materials Research2000,52,577-586.
    [25] Kikuchi, A.; Okano, T., Intelligent thermoresponsive polymeric stationaryphases for aqueous chromatography of biological compounds. Progress inPolymer Science2002,27,1165-1193.
    [26] Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A., Polymers forDrug Delivery Systems. In Annual Review of Chemical and BiomolecularEngineering, Vol1, Prausnitz, J. M.; Doherty, M. F.; Segalman, M. A., Eds.2010,1,149-173.
    [27] Delcea, M.; Moehwald, H.; Skirtach, A. G., Stimuli-responsive LbL capsulesand nanoshells for drug delivery. Advanced Drug Delivery Reviews,2011,63,730-747.
    [28] Gil, E. S.; Hudson, S. M., Stimuli-reponsive polymers and theirbioconjugates. Progress in Polymer Science,2004,29,1173-1222.
    [29] Zhang, L.; Xu, T.; Lin, Z., Controlled release of ionic drug through thepositively charged temperature-responsive membranes. Journal of MembraneScience,2006,281,491-499.
    [30] Liu, Y.; Meng, L.; Lu, X.; Zhang, L.; He, Y., Thermo and pH sensitivefluorescent polymer sensor for metal cations in aqueous solution. Polymersfor Advanced Technologies,2008,19,137-143.
    [31] Ohya, S.; Sonoda, H.; Nakayama, Y.; Matsuda, T., The potential ofpoly(N-isopropylacrylamide)(PNIPAM)-grafted hyaluronan andPNIPAM-grafted gelatin in the control of post-surgical tissue adhesions.Biomaterials2005,26,655-659.
    [32] Suwa K, Morishita K, Kishida A, Akashi M, Synthesis and functionalities ofpoly(N-vinylalkylamide). V. Control of a lower critical solution temperature ofpoly(N-vinylalkylamide) J Polym Sci Part A Polym Chem,1997,35,3087–3094
    [33] Na, K.; Lee, K. H.; Lee, D. H.; Bae, Y. H., Biodegradable thermo-sensitivenanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternatingmulti-block copolymer for potential anti-cancer drug carrier. EuropeanJournal of Pharmaceutical Sciences,2006,27,115-122.
    [34] Sosnik, A.; Cohn, D., Ethoxysilane-capped PEO-PPO-PEO triblocks: a newfamily of reverse thereto-responsive polymers. Biomaterials2004,25,2851-2858.
    [35] Mendes, P. M., Stimuli-responsive surfaces for bio-applications. ChemicalSociety Reviews2008,37,2512-2529.
    [36] Anal, AK.Recent Pat Endocr Metab Immune Drug Discov,2007,1,83-90.
    [37] Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J.H.; Lee, S. C., Disulfide-cross-linked PEG-poly(amino acid)s copolymermicelles for glutathione-mediated intracellular drug delivery. ChemicalCommunications2008,44,6570-6572.
    [38] Boyko, V., Richter, S., Grillo, I., Geissler, E. Structure of thermosensitivepoly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels,Macromolecules2005,38:5266-5270.
    [39] Gong JP, Nitta T, Osada Y, J Phys Chem,1994,98,9583–9587
    [40] Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S, Science,1982,18:467–469
    [41] Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery.Advanced Drug Delivery Reviews2001,53,321-339.
    [42] Roggan, A.; Friebel, M.; Dorschel, K.; Hahn, A.; Muller, G., Opticalproperties of circulating human blood in the wavelength range400-2500NM.Journal of Biomedical Optics1999,4,36-46.
    [43] Ichimura, K.; Oh, S. K.; Nakagawa, M., Light-driven motion of liquids on aphotoresponsive surface. Science2000,288,1624-1626.
    [44] Wang, S.; Song, Y.; Jiang, L., Photoresponsive surfaces with controllablewettability. Journal of Photochemistry and Photobiology C-PhotochemistryReviews2007,8,18-29.
    [45] Yoshida, M.; Lahann, J., Smart nanomaterials. Acs Nano,2008,2,1101-1107.
    [46] Czaun, M.; Hevesi, L.; Takafuji, M.; Ihara, H., A novel approach tomagneto-responsive polymeric gels assisted by iron nanoparticles as nanocross-linkers. Chemical Communications2008,44,2124-2126.
    [47] Korth, B. D.; Keng, P.; Shim, I.; Bowles, S. E.; Tang, C.; Kowalewski, T.;Nebesny, K. W.; Pyun, J., Polymer-coated ferromagnetic colloids fromwell-defined macromolecular surfactants and assembly into nanoparticlechains. Journal of the American Chemical Society2006,128,6562-6563
    [48] Marin, A.; Muniruzzaman, M.; Rapoport, N., Acoustic activation of drugdelivery from polymeric micelles: effect of pulsed ultrasound. Journal ofControlled Release2001,71,239-249.
    [49] Norris, P.; Noble, M.; Francolini, I.; Vinogradov, A. M.; Stewart, P. S.; Ratner,B. D.; Costerton, J. W.; Stoodley, P., Ultrasonically controlled release ofciprofloxacin from self-assembled coatings on poly(2-hydroxyethylmethacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention.Antimicrobial Agents and Chemotherapy2005,49,4272-4279.
    [50] Rapoport, N. Y.; Christensen, D. A.; Fain, H. D.; Barrows, L.; Gao, Z.,Ultrasound-triggered drug targeting of tumors in vitro and in vivo.Ultrasonics2004,42,943-950.
    [51] Rofstad, E. K.; Mathiesen, B.; Kindem, K.; Galappathi, K., Acidicextracellular pH promotes experimental metastasis of human melanoma cellsin athymic nude mice. Cancer Research2006,66,6699-6707.
    [52] Gupta, P.; Vermani, K.; Garg, S., Hydrogels: from controlled release topH-responsive drug delivery. Drug Discovery Today2002,7,569-579.
    [53] Park, S. Y.; Bae, Y. H., Novel pH-sensitive polymers containing sulfonamidegroups. Macromolecular Rapid Communications,1999,20,269-273.
    [54] Lee, Y. M., Shim, J. K., Preparation of pH/temperature responsive polymermembrane by plasma polymerization and its riboflavin permeation, Polymer,1997,38,1227-1232.
    [55] Soppimath, K. S.; Kulkarni, A. R.; Aminabhavi, T. M., Chemically modifiedpolyacrylamide-g-guar gum-based crosslinked anionic microgels aspH-sensitive drug delivery systems: preparation and characterization. Journalof Controlled Release,2001,75,331-345.
    [56] Abdelaal, M. Y.; Abdel-Razik, E. A.; Abdel-Bary, E. M.; El-Sherbiny, I. M.,Chitosan-based interpolymeric pH-responsive hydrogels for in vitro drugrelease. Journal of Applied Polymer Science,2007,103,2864-2874.
    [57] Lee, J. W.; Kim, S. Y.; Kim, S. S.; Lee, Y. M.; Lee, K. H.; Kim, S. J.,Synthesis and characteristics of interpenetrating polymer network hydrogelcomposed of chitosan and poly(acrylic acid). Journal of Applied PolymerScience1999,73,113-120
    [58] Nakamura, K.; Murray, R. J.; Joseph, J. I.; Peppas, N. A.; Morishita, M.;Lowman, A. M., Oral insulin delivery using P(MAA-g-EG) hydrogels:effects of network morphology on insulin delivery characteristics. Journal ofControlled Release2004,95,589-599.
    [59] Zhang, J.; Peppas, N. A., Synthesis and characterization of pH-andtemperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide)interpenetrating polymeric networks. Macromolecules2000,33,102-107.
    [60] Sideratou, Z.; Tsiourvas, D.; Paleos, C. M., Quaternized poly(propyleneimine) dendrimers as novel pH-sensitive controlled-release systems.Langmuir2000,16,1766-1769.
    [61] Burke, S. E.; Barrett, C. J., pH-responsive properties of multilayeredpoly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules2003,4,1773-1783.
    [62] Erich E. L. Kathmann, Leslie A. White, and Charles L. McCormick,Water-Soluble Polymers.73. Electrolyte-and pH-Responsive ZwitterionicCopolymers of4-[(2-Acrylamido-2-methylpropyl)-dimethylammonio]butanoate with3-[(2-Acrylamido-2-methyl-propyl) dimethylammonio]propanesulfonate, Macromolecules,1997,30,5297-5304.
    [63] Szczubialka, K.; Jankowska, M.; Nowakowska, M.,"Smart" polymericnanospheres as new materials for possible biomedical applications. Journalof Materials Science-Materials in Medicine,2003,14,699-703.
    [64] Shenoy, D.; Little, S.; Langer, R.; Amiji, M., Poly(ethylene oxide)-modifiedpoly(beta-amino ester) nanoparticles as a pH-sensitive system fortumor-targeted delivery of hydrophobic drugs: Part2. In vivo distributionand tumor localization studies. Pharmaceutical Research2005,22,2107-2114.
    [65] Shenoy, D.; Little, S.; Langer, R.; Amiji, M., Poly(ethylene oxide)-modifiedpoly(beta-amino ester) nanoparticles as a pH-sensitive system fortumor-targeted delivery of hydrophobic drugs: Part2. In vivo distributionand tumor localization studies. Pharmaceutical Research2005,22,2107-2114.
    [66] Oh, J. K.; Siegwart, D. J.; Lee, H.-i.; Sherwood, G.; Peteanu, L.; Hollinger, J.O.; Kataoka, K.; Matyjaszewski, K., Biodegradable nanogels prepared byatom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation. Journal of theAmerican Chemical Society2007,129,5939-5945.
    [67] Matsumoto, S., James Christie,R., Nishiyama,N., Miyata, K., Ishii, A., Oba,M., Koyama, H., Yamasaki Y. and Kataoka. K., Environment-ResponsiveBlock Copolymer Micelles with a Disulfide Cross-Linked Core for EnhancedsiRNA Delivery, Biomacromolecules,2009,10,119-127.
    [68] Yoshida, M.; Lahann, J., Smart nanomaterials. Acs Nano2008,2,1101-1107.
    [69] Chaterji, S.; Kwon, I. K.; Park, K., Smart polymeric gels: Redefining thelimits of biomedical devices. Progress in Polymer Science,2007,32,1083-1122.
    [70] Chambin, O.; Dupuis, G.; Champion, D.; Voilley, A.; Pourcelot, Y.,Colon-specific drug delivery: Influence of solution reticulation propertiesupon pectin beads performance. International Journal of Pharmaceutics,2006,321,86-93.
    [71] Sinha, V. R.; Kumria, R., Polysaccharides in colon-specific drug delivery.International Journal of Pharmaceutics,2001,224,19-38.
    [72] Vandamme, T. F.; Lenourry, A.; Charrueau, C.; Chaumeil, J., The use ofpolysaccharides to target drugs to the colon. Carbohydrate Polymers,2002,48,219-231.
    [73] Rao NA, Trans Am Ophthalmol Soc,1990,88:787–850.
    [74] Nobuhiko Y, Jun N, Teruo O, Yasuhisa S, J Controlled Release,1993,25,133–143.
    [75] Miyata, K.; Christie, R. J.; Kataoka, K., Polymeric micelles for nano-scaledrug delivery. Reactive&Functional Polymers2011,71,227-234.
    [76] Cabane, E., Zhang, X., Langowska, K., Palivan, C. G., Meier, W.,Stimuli-Responsive Polymers and Their Applications in Nanomedicine,Biointerphases,2012, DOI10.1007/s13758-011-0009-3.
    [77] Jin, Q.; Liu, G.; Ji, J., Micelles and Reverse Micelles with a Photo andThermo Double-Responsive Block Copolymer. Journal of Polymer SciencePart a-Polymer Chemistry,2010,48,2855-2861.
    [78] Kotharangannagari, V. K.; Sanchez-Ferrer, A.; Ruokolainen, J.; Mezzenga, R.,Photoresponsive Reversible Aggregation and Dissolution of Rod-CoilPolypeptide Diblock Copolymers. Macromolecules2011,44,4569-4573.
    [79] Chan, Y.; Wong, T.; Byrne, F.; Kavallaris, M.; Bulmus, V., Acid-labile corecross-linked micelles for pH-triggered release of antitumor drugs.Biomacromolecules,2008,9,1826-1836.
    [80] Katayama, Y.; Sonoda, T.; Maeda, M., A polymer micelle responding to theprotein kinase A signal. Macromolecules2001,34,8569-8573.
    [81] Gonzalez, D. C.; Savariar, E. N.; Thayumanavan, S., Fluorescence Patternsfrom Supramolecular Polymer Assembly and Disassembly for SensingMetallo-and Nonmetalloproteins. Journal of the American Chemical Society2009,131,7708-7716.
    [82] Savariar, E. N.; Ghosh, S.; Gonzalez, D. C.; Thayumanavan, S., Disassemblyof noncovalent amphiphilic polymers with proteins and utility in patternsensing. Journal of the American Chemical Society2008,130,5416-5417.
    [83] Discher, D. E.; Ahmed, F., Polymersomes. In Annual Review of BiomedicalEngineering,2006;8,323-341.
    [84] Meng, F.; Zhong, Z., Polymersomes Spanning from Nano-to Microscales:Advanced Vehicles for Controlled Drug Delivery and Robust Vesicles forVirus and Cell Mimicking. Journal of Physical Chemistry Letters2011,2,1533-1539.
    [85] Meng, F.; Zhong, Z.; Feijen, J., Stimuli-Responsive Polymersomes forProgrammed Drug Delivery. Biomacromolecules2009,10,197-209.
    [86] Checot, F.; Lecommandoux, S.; Klok, H. A.; Gnanou, Y., Fromsupramolecular polymersomes to stimuli-responsive nano-capsules based onpoly(diene-b-peptide) diblock copolymers. European Physical Journal E,2003,10,25-35.
    [87] Checot, F.; Rodriguez-Hernandez, J.; Gnanou, Y.; Lecommandoux, S.,pH-responsive micelles and vesicles nanocapsules based on polypeptidediblock copolymers. Biomolecular Engineering2007,24,81-85.
    [88] Shi, J.; Alves, N. M.; Mano, J. F., Thermally responsive biomineralization onbiodegradable substrates. Advanced Functional Materials2007,17,3312-3318.
    [89] Giacomelli, C.; Schmidt, V.; Borsali, R., Nanocontainers formed byself-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-Drug conjugates. Macromolecules2007,40,2148-2157.
    [90] Holowka, E. P.; Sun, V. Z.; Kamei, D. T.; Deming, T. J., Polyargininesegments in block copolypeptides drive both vesicular assembly andintracellular delivery. Nature Materials,2007,6,52-57.
    [91] Blanazs, A.; Massignani, M.; Battaglia, G.; Armes, S. P.; Ryan, A. J.,Tailoring Macromolecular Expression at Polymersome Surfaces. AdvancedFunctional Materials2009,19,2906-2914.
    [92] Roy, I., and Gupta, M. N., Smart Polymeric Materials: EmergingBiochemical Applications, Chemistry&Biology,2003,10,1161–1171.
    [93] K. Park, Controlled Drug Delivery: Challenges and Strategies, ACSProfessional Reference Book, American Chemical Society, Washington, DC,1997.
    [94] R. Pelton, Temperature-sensitive aqueous microgels, Advances in Colloidand Interface Science,2000,85,1–33.
    [95] H. G. Schild, Poly(N-isopropylacrylamide): experiment, theory andapplication, Progress in Polymer Science,1992,17(2),163–249.
    [96] K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, S. G. Kumbar and W. E.Rudzinski, Stimulus-responsive smart hydrogels as novel drug deliverysystems, Drug Development and Industrial Pharmacy,2002,28,957–974.
    [97] D. Schmaljohann, Thermo-and pH-responsive polymers in drug delivery,Advanced Drug Delivery Reviews,2006,58,1655–1670.
    [98] J. Kost and R. Langer, Responsive polymeric delivery systems, AdvancedDrug Delivery Reviews,2001,46,125–148.
    [99] Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery,Advanced Drug Delivery Reviews,2001,53,321–339.
    [100] B. Jeong and A. Gutowska, Lessons from nature: stimuli-responsivepolymers and their biomedical Applications, Trends in Biotechnology,2002,20,305–311.
    [101] Jiang, Y., Yang, X., Ma, C., Wang, C., Li, H., Dong, F., Zhai, X., Yu, K.,Lin,Q., Yang, B., Photoluminescent Smart Hydrogels with Reversible andLinear Thermoresponses, small2010,6,2673–2677.
    [102] Dai, Y., Ma, P., Cheng, Z., Kang, X., Zhang, X., Hou, Z., Li, C., Yang, D.,Zhai, X., Lin, J., Up-Conversion Cell Imaging and pHInduced ThermallyControlled Drug Release from NaYF4:Yb3t/Er3t@Hydrogel Core-ShellHybrid Microspheres, ACS Nano,2012,6,3327-3338.
    [103] Sun, T., Qing, G., Biomimetic Smart Interface Materials for BiologicalApplication, Adv. Mater.2011,23, H57-H77.
    [104] Senaratne, W., Andruzzi, L.&Ober, C. K. Self-assembled monolayers andpolymer brushes in biotechnology: Current applications and futureperspectives. Biomacromolecules,2005,6,2427–2448.
    [105] Jhaveri, S. J. et al. Release of nerve growth factor from HEMAhydrogelcoated substrates and its effect on the differentiation of neural cells.Biomacromolecules,2009,10,174–183.
    [106] Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc.Rev.2008,37,2512–2529.
    [107] Liu, Z. S.&Calvert, P. Multilayer hydrogels as muscle-like actuators. Adv.Mater.2000,12,288–291.
    [108] Kurkuri, M. D.; Nussio, M. R.; Deslandes, A.; Voelcker, N. H.,Thermosensitive copolymer coatings with enhanced wettability switching.Langmuir2008,24,4238-4244.
    [109] Schmaljohann, D.; Oswald, J.; Jorgensen, B.; Nitschke, M.; Beyerlein, D.;Werner, C., Thermo-responsive PNiAAm-g-PEG films for controlled celldetachment. Biomacromolecules2003,4,1733-1739.
    [110] Hoffman, A. S.; Stayton, P. S.; Bulmus, V.; Chen, G. H.; Chen, J. P.; Cheung,C.; Chilkoti, A.; Ding, Z. L.; Dong, L. C.; Fong, R.; Lackey, C. A.; Long, C.J.; Miura, M.; Morris, J. E.; Murthy, N.; Nabeshima, Y.; Park, T. G.; Press, O.W.; Shimoboji, T.; Shoemaker, S.; Yang, H. J.; Monji, N.; Nowinski, R. C.;Cole, C. A.; Priest, J. H.; Harris, J. M.; Nakamae, K.; Nishino, T.; Miyata, T.,Really smart bioconjugates of smart polymers and receptor proteins. Journalof Biomedical Materials Research2000,52,577-586.
    [111] Ebara, M.; Yamato, M.; Hirose, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.;Okano, T., Copolymerization of2-carboxyisopropylacrylamide withN-isopropylacrylamide accelerates cell detachment from grafted surfaces byreducing temperature. Biomacromolecules2003,4,344-349.
    [112] Bromberg, L. E., Ron, E. S., Temperature-responsive gels and thermogellingpolymer matrices for protein and peptide delivery,1998,31,197-221.
    [113] Wang, X.; Qing, G.; Jiang, L.; Fuchs, H.; Sun, T., Smart surface ofwater-induced superhydrophobicity. Chemical Communications2009,2658-2660.
    [114] Ionov, L.; Minko, S.; Stamm, M.; Gohy, J. F.; Jerome, R.; Scholl, A.,Reversible chemical patterning on stimuli-responsive polymer film:Environment-responsive lithography. Journal of the American ChemicalSociety2003,125,8302-8306.
    [115] Tan, H.; Sun, T. L.; Li, J. H.; Guo, M.; Xie, X. Y.; Zhong, Y. P.; Fu, Q.; Jiang,L., Novel biomembrane-mimicking polymer surface with environmentalresponsiveness. Macromolecular Rapid Communications2005,26,1418-1422.
    [116] Xia, F.; Feng, L.; Wang, S. T.; Sun, T. L.; Song, W. L.; Jiang, W. H.; Jiang, L.,Dual-responsive surfaces that switch superhydrophilicity andsuperhydrophobicity. Advanced Materials2006,18,432-436.
    [117] Zhou, J.; Lu, X.; Hu, J.; Li, J., Reversible immobilization and direct electrontransfer of cytochrome c on a pH-sensitive polymer interface. Chemistry-aEuropean Journal,2007,13,2847-2853.
    [118] Koopmans, C.; Ritter, H., Color change of N-isopropylacrylamide copolymerbearing Reichardts dye as optical sensor for lower critical solutiontemperature and for host-guest interaction with beta-cyclodextrin. Journal ofthe American Chemical Society,2007,129,3502-3503.
    [119] James, T. D., Sandanayake, K. R. A. S., Shinkai, S., Saccharide Sensing withMolecular Receptors Based on Boronic Acid, Angew. Chem. Int. Ed.1996,35,1910-1922.
    [120] Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L.,Multiresponsive surfaces change between superhydrophilicity andsuperhydrophobicity. Advanced Materials,2007,19,2520-2524.
    [121] Qing, G.; Wang, X.; Jiang, L.; Fuchs, H.; Sun, T., Saccharide-sensitivewettability switching on a smart polymer surface. Soft Matter2009,5,2759-2765.
    [122] Qing, G.; Wang, X.; Fuchs, H.; Sun, T., Nucleotide-Responsive Wettabilityon a Smart Polymer Surface. Journal of the American Chemical Society2009,131,8370-8371.
    [123] Hong, Y., Lam, J. W. Y., Tang, B. Z., Aggregation-induced emission, Chem.Soc. Rev.,2011,40,5361-5388.
    [124] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.Zhan, Y. Liu, D. Zhu and B. Z. Tang, Aggregation-induced emission of1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,1740-1741.
    [125] M. Freemantle, Chem. Eng. News,2001,79,29-58.
    [126] B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blueemission from siloles, J. Mater. Chem.,2001,11,2974-2978.
    [127] Th. F rster and K. Kasper, Z. Phys. Chem.(Munich),1954,1,275.
    [128] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London,1970.
    [129] N. J. Turro, Modern Molecular Photochemistry, University Science Books,Mill Valley,1991.
    [130] J. Malkin, Photophysical and Photochemical Properties of AromaticCompounds, CRC, Boca Raton,1992.
    [131] Birks, J. B., Photophysics of Aromatic Molecules, Wiley, London,1970.
    [132] Photonic Research Systems: http://www.prsbio.com/index.html (last accessedon15February2011).
    [133] Zhelev, Z.; Ohba, H.; Bakalova, R., Single quantum dot-micelles coated withsilica shell as potentially non-cytotoxic fluorescent cell tracers. Journal of theAmerican Chemical Society,2006,128,6324-6325.
    [134] Bakalova, R.; Zhelev, Z.; Aoki, I.; Ohba, H.; Imai, Y.; Kanno, I.,Silica-shelled single quantum dot micelles as imaging probes with dual ormultimodality. Analytical Chemistry2006,78,5925-5932.
    [135] Tan, W. H., Wang, K. M., Drake, T. J., Molecular beacons Curr. Opin. Chem.Biol.,2004,8,547-553.
    [136] Thomas, S. W., III; Joly, G. D.; Swager, T. M., Chemical sensors based onamplifying fluorescent conjugated polymers. Chemical Reviews2007,107,1339-1386.
    [137] Borisov, S. M., Wolfbeis, O. S., Review: Optical Biosensors, Chem. Rev.,2008,108,423-461.
    [138] Sapsford, K. E., Berti, L., Medintz, I. L., Materials for fluorescenceresonance energy transfer analysis: beyond traditional donor-acceptorcombinations, Angew. Chem., Int. Ed.,2006,45,4562-4589.
    [139] Kulkarni, A.P., and Jenekhe, S. A., Blue Light-Emitting Diodes with GoodSpectral Stability Based on Blends of Poly(9,9-dioctylfluorene): Interplaybetween Morphology, Photophysics, and Device Performance,Macromolecules,2003,36,5285-5296.
    [140] Wang, J.; Zhao, Y.; Dou, C.; Sun, H.; Xu, P.; Ye, K.; Zhang, J.; Jiang, S.; Li,F.; Wang, Y., Alkyl and dendron substituted quinacridones: Synthesis,structures, and luminescent properties. Journal of Physical Chemistry B2007,111,5082-5089.
    [141] Hecht, S.; Frechet, J. M. J., Dendritic encapsulation of function: Applyingnature's site isolation principle from biomimetics to materials science.Angewandte Chemie-International Edition2001,40,74-91.
    [142] Nguyen, B. T.; Gautrot, J. E.; Ji, C. Y.; Brunner, P. L.; Nguyen, M. T.; Zhu, X.X., Enhancing the photoluminescence intensity of conjugated polycationicpolymers by using quantum dots as antiaggregation reagents. Langmuir2006,22,4799-4803.
    [143] Chen, L. H.; Xu, S.; McBranch, D.; Whitten, D., Tuning the properties ofconjugated polyelectrolytes through surfactant complexation. Journal of theAmerican Chemical Society2000,122,9302-9303.
    [144] Taylor, P. N.; O'Connell, M. J.; McNeill, L. A.; Hall, M. J.; Aplin, R. T.;Anderson, H. L., Insulated molecular wires: Synthesis of conjugatedpolyrotaxanes by Suzuki coupling in water. AngewandteChemie-International Edition2000,39,3456-3460.
    [145] Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission:phenomenon, mechanism and applications. Chemical Communications2009,4332-4353.
    [146] Wu, Y.-T.; Kuo, M.-Y.; Chang, Y.-T.; Shin, C.-C.; Wu, T.-C.; Tai, C.-C.;Cheng, T.-H.; Liu, W.-S., Synthesis, Structure, and Photophysical Propertiesof Highly Substituted8,8a-Dihydrocyclopenta a indenes. AngewandteChemie-International Edition2008,47,9891-9894.
    [147] Tang, B. Z.; Zhan, X. W.; Yu, G.; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B.,Efficient blue emission from siloles. Journal of Materials Chemistry2001,11,2974-2978.
    [148] Tong, H.; Dong, Y.; Hong, Y.; Haussler, M.; Lam, J. W. Y.; Sung, H. H. Y.;Yu, X.; Sun, J.; Williams, I. D.; Kwok, H. S.; Tang, B. Z.,Aggregation-induced emission: Effects of molecular structure, solid-stateconformation, and morphological packing arrangement on light-emittingbehaviors of diphenyldibenzofulvene derivatives. Journal of PhysicalChemistry C,2007,111,2287-2294.
    [149] Vyas, V. S.; Rathore, R., Preparation of a tetraphenylethylene-based emitter:Synthesis, structure and optoelectronic properties oftetrakis(pentaphenylphenyl)ethylene. Chemical Communications2010,46,1065-1067.
    [150] Ning, Z.; Tian, H., Triarylamine: a promising core unit for efficientphotovoltaic materials. Chemical Communications2009,5483-5495.
    [151] Zhao, Z.; Lam, J. W. Y.; Tang, B. Z., Aggregation-Induced Emission ofTetraarylethene Luminogens. Current Organic Chemistry2010,14,2109-2132.
    [152] Zhao, Z.; Chen, S.; Lam, J. W. Y.; Lu, P.; Zhong, Y.; Wong, K. S.; Kwok, H.S.; Tang, B. Z., Creation of highly efficient solid emitter by decoratingpyrene core with AIE-active tetraphenylethene peripheries. ChemicalCommunications2010,46,2221-2223.
    [153] Liu, Y.; Tao, X.; Wang, F.; Dang, X.; Zou, D.; Ren, Y.; Jiang, M.,Aggregation-induced emissions of fluorenonearylamine derivatives: A newkind of materials for nondoped red organic light-emitting diodes. Journal ofPhysical Chemistry C2008,112,3975-3981.
    [154] Qian, G.; Dai, B.; Luo, M.; Yu, D.; Zhan, J.; Zhang, Z.; Ma, D.; Wang, Z. Y.,Band Gap Tunable, Donor-Acceptor-Donor Charge-TransferHeteroquinoid-Based Chromophores: Near Infrared Photoluminescence andElectroluminescence. Chemistry of Materials,2008,20,6208-6216.
    [155] Yeh, H. C.; Yeh, S. J.; Chen, C. T., Readily synthesised arylaminofumaronitrile for non-doped red organic light-emitting diodes. ChemicalCommunications2003,2632-2633.
    [156] Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C., Luminescent silolenanoparticles as chemoselective sensors for Cr(VI). Journal of the AmericanChemical Society2005,127,11661-11665.
    [157] Hong, Y.; Haeussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.;Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z., Label-free fluorescent probing ofG-quadruplex formation and real-time monitoring of DNA folding by aquaternized tetraphenylethene salt with aggregation-induced emissioncharacteristics. Chemistry-a European Journal,2008,14,6428-6437.
    [158] Hong, Y.; Xiong, H.; Lam, J. W. Y.; Haeussler, M.; Liu, J.; Yu, Y.; Zhong, Y.;Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z., FluorescentBioprobes: Structural Matching in the Docking Processes ofAggregation-Induced Emission Fluorogens on DNA Surfaces. Chemistry-aEuropean Journal,2010,16,1232-1245.
    [159] Liu, Y.; Tang, Y.; Barashkov, N. N.; Irgibaeva, I. S.; Lam, J. W. Y.; Hu, R.;Birimzhanova, D.; Yu, Y.; Tang, B. Z., Fluorescent Chemosensor forDetection and Quantitation of Carbon Dioxide Gas. Journal of the AmericanChemical Society2010,132,13951-13953.
    [160] Andrew, T. L.; Swager, T. M., A fluorescence turn-on mechanism to detecthigh explosives RDX and PETN. Journal of the American Chemical Society2007,129,7254-7255.
    [161] Toal, S. J., Magde, D., Trogler, W. C., Luminescent oligo(tetraphenyl)silolenanoparticles as chemical sensors for aqueous TNT,2005,5465-5467.
    [162] Shiraishi, K.; Sanji, T.; Tanaka, M., Trace Detection of Explosive Particulateswith a Phosphole Oxide. Acs Applied Materials&Interfaces2009,1,1379-1382.
    [163] Liu, J.; Zhong, Y.; Lu, P.; Hong, Y.; Lam, J. W. Y.; Faisal, M.; Yu, Y.; Wong,K. S.; Tang, B. Z., A superamplification effect in the detection of explosivesby a fluorescent hyperbranched poly(silylenephenylene) withaggregation-enhanced emission characteristics. Polymer Chemistry2010,1,426-429.
    [164] Lu, P.; Lam, J. W. Y.; Liu, J.; Jim, C. K. W.; Yuan, W.; Xie, N.; Zhong, Y.; Hu,Q.; Wong, K. S.; Cheuk, K. K. L.; Tang, B. Z., Aggregation-InducedEmission in a Hyperbranched Poly(silylenevinylene) and Superamplificationin Its Emission Quenching by Explosives. Macromolecular RapidCommunications2010,31,834-839.
    [165] Wu, W.-C.; Chen, C.-Y.; Tian, Y.; Jang, S.-H.; Hong, Y.; Liu, Y.; Hu, R.; Tang,B. Z.; Lee, Y.-T.; Chen, C.-T.; Chen, W.-C.; Jen, A. K. Y., Enhancement ofAggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles forBioimaging. Advanced Functional Materials2010,20,1413-1423.
    [166] Faisal, M.; Hong, Y.; Liu, J.; Yu, Y.; Lam, J. W. Y.; Qin, A.; Lu, P.; Tang, B.Z., Fabrication of Fluorescent Silica Nanoparticles Hybridized with AIELuminogens and Exploration of Their Applications as Nanobiosensors inIntracellular Imaging. Chemistry-a European Journal2010,16,4266-4272.
    [167] Mahtab, F.; Yu, Y.; Lam, J. W. Y.; Liu, J.; Zhang, B.; Lu, P.; Zhang, X.; Tang,B. Z., Fabrication of Silica Nanoparticles with Both Efficient Fluorescenceand Strong Magnetization, and Exploration of Their Biological Applications.Advanced Functional Materials2011,21,1733-1740.
    [168] Baker, S. N., Baker, G. A. Luminescent Carbon Nanodots: EmergentNanolights, Angew. Chem. Int. Ed.2010,49,6726-6744.
    [169] Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.;Scrivens, W. A., Electrophoretic analysis and purification of fluorescentsingle-walled carbon nanotube fragments. Journal of the American ChemicalSociety,2004,126,12736-12737.
    [170] Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Bakandritsos, A.;Stassinopoulos, A.; Anglos, D.; Giannelis, E. P., Pyrolytic formation andphotoluminescence properties of a new layered carbonaceous material withgraphite oxide-mimicking characteristics. Carbon2009,47,519-526.
    [171] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides,M.; Giannelis, E. P., Surface functionalized carbogenic quantum dots. Small2008,4,455-458.
    [172] Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.;Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P., Carbon dotsfor multiphoton bioimaging. Journal of the American Chemical Society2007,129,11318-11319.
    [173] Hu, S.-L.; Bai, P.-K.; Cao, S.-R.; Sun, J., Preparation of Fluorescent CarbonNanoparticles by Pulsed Laser. Chemical Journal of ChineseUniversities-Chinese2009,30,1497-1500.
    [174] Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W., One-stepsynthesis of fluorescent carbon nanoparticles by laser irradiation. Journal ofMaterials Chemistry2009,19,484-488.
    [175] Liu, H.; Ye, T.; Mao, C., Fluorescent carbon nanoparticles derived fromcandle soot. Angewandte Chemie-International Edition2007,46,6473-6475.
    [176] Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-PotSynthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Grapheneby the Exfoliation of Graphite in Ionic Liquids. Acs Nano2009,3,2367-2375.
    [177] Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R., Fluorescent CarbonNanoparticles: Synthesis, Characterization, and Bioimaging Application.Journal of Physical Chemistry C,2009,113,18546-18551.
    [178] Sun, Y.-P.; Wang, X.; Lu, F.; Cao, L.; Meziani, M. J.; Luo, P. G.; Gu, L.; Veca,L. M., Doped Carbon Nanoparticles as a New Platform for HighlyPhotoluminescent Dots. Journal of Physical Chemistry C2008,112,18295-18298.
    [179] Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.;Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. J. G.; Yang, H.;Kose, M. E.; Chen, B. L.; Veca, L. M.; Xie, S. Y., Quantum-sized carbon dotsfor bright and colorful photoluminescence. Journal of the AmericanChemical Society,2006,128,7756-7757.
    [180] Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S., NanosizedCarbon Particles From Natural Gas Soot. Chemistry of Materials,2009,21,2803-2809.
    [181] Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B.A.; Kermarrec, F.; Sun, Y.-P., Photoinduced electron transfers with carbondots. Chemical Communications2009,3774-3776.
    [182] Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.;Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P., Carbon Dots as Nontoxicand High-Performance Fluorescence Imaging Agents. Journal of PhysicalChemistry C,2009,113,18110-18114.
    [183] Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.;Liu, Y.; Qi, G.; Sun, Y.-P., Carbon Dots for Optical Imaging in Vivo. Journalof the American Chemical Society2009,131,11308-11309.
    [184] Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D. W.,Facile preparation of low cytotoxicity fluorescent carbon nanocrystals byelectrooxidation of graphite. Chemical Communications2008,5116-5118.
    [185] Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X., Microwave synthesisof fluorescent carbon nanoparticles with electrochemiluminescenceproperties. Chemical Communications2009,5118-5120.
    [186] Bottini, M.; Mustelin, T., Carbon materials-Nanosynthesis by candlelight.Nature Nanotechnology2007,2,599-600.
    [187] Evans, J., Polysaccharides point to Permian killer. Chemistry World2006,3,18-18.
    [188] Peng, H.; Travas-Sejdic, J., Simple Aqueous Solution Route to LuminescentCarbogenic Dots from Carbohydrates. Chemistry of Materials,2009,21,5563-5565.
    [189] Yu, S. J.; Kang, M. W.; Chang, H. C.; Chen, K. M.; Yu, Y. C., Brightfluorescent nanodiamonds: No photobleaching and low cytotoxicity. Journalof the American Chemical Society,2005,127,17604-17605.
    [190] Krueger, A., Diamond nanoparticles: Jewels for chemistry and physics.Advanced Materials2008,20,2445-2449.
    [191] Krueger, A., The structure and reactivity of nanoscale diamond. Journal ofMaterials Chemistry2008,18,1485-1492.
    [192] Krueger, A., New carbon materials: Biological applications of functionalizednanodiamond materials. Chemistry-a European Journal2008,14,1382-1390.
    [193] Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S.M., In vivo molecular and cellular imaging with quantum dots. CurrentOpinion in Biotechnology2005,16,63-72.
    [194] Hardman, R., A toxicologic review of quantum dots: Toxicity depends onphysicochemical and environmental factors. Environmental HealthPerspectives,2006,114,165-172.
    [195] Jaiswal, J. K.; Simon, S. M., Potentials and pitfalls of fluorescent quantumdots for biological imaging. Trends in Cell Biology,2004,14,497-504.
    [1] Cohen Stuart, M.A., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm,M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F.,Zauscher, S., Luzinov I., and Minko, S., Emerging applications ofstimuli-responsive polymer materials, Nat. Mater.,2010,9,101–113.
    [2] Sun, T., Qing, G., Biomimetic smart interface materials for biologicalapplicationas, Adv. Mater.2011,23, H57-H77.
    [3] Andrew Lyon, L., Meng, Z., Singh, N., Sorrell, C. D., John, A. S.,Thermoresponsive microgel-based materials, Chem. Soc. Rev.,2009,38,865-874.
    [4] Jun, L., Xia, H., Yang, L., Di, L., Yong, W. W., Jing, H. L., Yu, B. B., Tie, J.L., Highly Photoluminescent CdTe/Poly (N-isoprolyacrylamide)Temperature-Sensitive Gels, Adv. Mater.2005,17,163-166.
    [5] Daisuke,S., Jonathan G. M., Haruma K., L. Andrew, L., Colloidal Crystalsof Thermosensitive, Core/Shell Hybrid Microgels, J. Phys. Chem. C.2007,111,5667-5672.
    [6] Matthias, K., Isabel, P. S., Jorge, P. J., Thomas, H., Luis, M. L. M.,Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties,Small2007,3,1222-1229.
    [7] Franck Montagne, Jrome Polesel-Maris, Raphael Pugin and HarryHeinzelmann, Poly(N-isopropylacrylamide) Thin Films Densely Graftedonto Gold Surface: Preparation, Characterization, and Dynamic AFM Studyof Temperature-Induced Chain Conformational Changes, Langmuir,2009,25,983-991.
    [8] Yang, Y., Yan, X. H., Cui, Y., He, Q., Li, D. X., Wang, A. H., Fei, J. B., Li,J.B.,Preparation of polymer-coated mesoporous silica nanoparticles used forcellular imaging by a "graft-from'' method, Journal of Materials Chemistry2008,18,5731-5737.
    [9] Alvarez-Puebla, R. A., Contreras-Caceres, R., Pastoriza-Santos, I., et al.,Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced,Spectroscopic, Ultra-Sensitive Analysis, Angew. Chem.-InternationalEdition,2009,48,144-149.
    [10] Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T. and Uchiyama, S.,Intracellular temperature mapping with a fluorescent polymeric thermometerand fluorescence lifetime imaging microscopy. Nat. Comm.2012,3,705-713.
    [11] Zhang, H., Zeng, X., Li, Q., Gaillard-Kelly, M., Wahber, C. and Yee, D.,Fluorescent tumour imaging of type I IGF receptor in vivo: comparison ofantibody-conjugated quantum dots and small-molecule fluorophore. BritishJournal of Cancer.2009,101,71–79.
    [12] Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M.,Nagano, T., Watanabe, T., Hasegawa, A., Choyke, P. L. and Kobayashi, H.,Selective molecules imaging of viable cancer cells with pH-activatablefluorescence probes. Nat. Med.2009,15,104-109.
    [13] Yamauchi, K., Yang, M., Hayashi, K., Jiang, P., Yamamoto, N., Tsuchiya, H.,Tomita, K., Moossa, A., Bouvet, M. and Hoffman, R. M., Induction of cancermetastasis by cyclophosphamide pretreatment of host mice: an opposite effectof chemotherapy. Cancer Res.2008,68,516–520.
    [14] Dan, van. G. M., Themelis, G., Crane, L. M. A., Harlaar, N. J., Pleijhuis, R. G.,Kelder, W., Sarantopoulos, A., Jong, J. S., Arts, H. J. G., Zee, A. G. J., Bart, J.,Low, P. S. and Ntziachristos, V., Intraoperative tumor-specific fluorescenceimaging in ovarian cancer by folate receptor-α targeting: first in-humanresults. Nat. Med.2011,17,1315-1319.
    [15] Weissleder, R., and Pittet, M. J., Imaging in the era of molecular oncology.Nature,2008,452,580-589.
    [16] Yang, K., Zhang, S., Zhang, G. X., Sun, X. M., Lee, S. T., Liu, Z., Graphenein mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy.Nano Lett.,2010,10,3318-3323.
    [17] Shu, X. K., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V., Steinbach, P.A., Tsien, R. Y., Mammalian expression of infrared fluorescent proteinsengineered from a bacterial phytochrome. Science,2009,324,804-807.
    [18] Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J.,Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S., Quantum dots for livecells, in vivo imaging, and diagnostics, Science,2005,307,538-544.
    [19] Wu, A. M., and Senter, P. D., Arming antibodies: prospects and challengesfor immunoconjugates. Nat. Biotechnol.,2005,23,1137-1146.
    [20] Masters, B. R., Gonnord, G., Corcuff, P., Three-dimensional mocroscopicbiopsy of in vivo human skin: a new technique based on a flexible confocalmicroscope. J Microsc.,1997a,185(Part3):329-338.
    [21] Masters, B. R., So, P. T., Gratton, E., Multiphoton excitation fluorescencemicroscopy and spectroscopy of in vivo human skin. Biophys J.,1997b,72,2405-2412.
    [22] Masters, B. R., So, P. T., Kim, K. H., Buehler, C., Gratton, E., Multiphotonexcitation microscopy, confocal microscopy, and spectroscopy of living cellsand tissues; functional metabolic imaging of human skin in vivo. MethodsEnzymol,1999,307,513-536.
    [23] Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L., Stem cells,cancer, and cancer stem cells. Nature,2001,414,105-111.
    [24] O'Brien, C. A., Kreso, A. and Jamieson, C. H. M., Cancer Stem Cells andSelf-renewal. Clin Cancer Res,2010,16,3113-3120.
    [25] Dai, Y., Ma, P., Cheng, Z., Kang, X., Zhang, X., Hou, Z., Li, C., Yang, D.,Zhai, X. and Lin, J., Up-conversion cell imaging and pH-induced thermallycontrolled drug release from NaYF4:Yb3+/Er3+@Hydrogel Core/Shell HybridMicrospheres. ACS Nano,2012,6,3327-3338.
    [26] Ko, J. Y., Park, S., Lee, H., Koo, H., Kim, M. S., Choi, K., Kwon, I. C., Jeong,S. Y., Kim, K. and Lee, D. S., pH-sensitive nanoflash for tumoral acidic pHimaging in live animals. Small,2010,6,2539-2544.
    [27]姜英男,“荧光智能温度响应聚合物水凝胶微球的制备与性质研究”吉林大学博士学位论文,2011.
    [28] Jiang, Y., Yang, X., Ma, C., Wang, C., Li, H., Dong, F., Zhai, X., Yu, K., Lin,Q. and Yang, B., Photoluminescent Smart Hydrogels with Reversible andLinear Thermoresponses. Small,2010,6,2673-2677.
    [29] Yang, X., Jiang, Y., Shen, B., Chen, Y., Dong, F., Yu, K., Yang, B. and Lin, Q.,Thermo-responsive photoluminescent polymer brushes device as a platformfor selective detection of Cr (VI). Polymer Chem.,2013,4,5591-5596.
    [1] Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi H., Quantum dotbioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435-446.
    [2] Pinaud, X. F. F., Bentolia, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan,G., Wu, A. M., Gambhir, S. S., Weiss, S., Quantum Dots for Live Cells, inVivo Imaging, and Diagnostics, Science,2005,307,538-544.
    [3] Sanderson, K., Quantum dots go large, Nature,2009,459,760-761.
    [4] Jung, J., Solanki, A., Memoli, K. A., Kim, K. H., Drahl, M. A., Williams, L. J.,Tseng, H. R., Lee, K. B., Selective Inhibition of Human Brain Tumor Cellsthrough Multifunctional Quantum-Dot-Based siRNA Delivery, Angew. Chem.,Int. Ed.,2010,49,103-107.
    [5] Wang, C., Zhang, D., Xu, L., Jiang, Y., Dong, F., Yang, B., Yu, K., Lin, Q., ASimple Reducing Approach Using Amine To Give Dual Functional EuSeNanocrystals and Morphological Tuning, Angew. Chem., Int. Ed.,2011,50,7587-7591.
    [6] Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang Z., Liu, Z., In Vivo NIRFluorescence Imaging, Biodistribution, and Toxicology of PhotoluminescentCarbon Dots Produced from Carbon Nanotubes and Graphite, Small,2012,8,281-290.
    [7] Derfus, A. M., Chan, W. C. W., Bhatia, S. N., Probing the Cytotoxicity ofSemiconductor Quantum Dots, Nano Lett.,2004,4,11-18.
    [8] Zhang, Y., Ma, D., Zhuang, Y., Zhang, X., Chen, W., Hong, L., Yan, Q., YuK., Huang, S., One-pot synthesis of N-doped carbon dots with tunableluminescence properties, J. Mater. Chem.,2012,22,16714-16718.
    [9] Zhu, A., Qu, Q., Shao, X., Kong, B., Yang, Y., Carbon-Dot-BasedDual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for InVivo Imaging of Cellular Copper Ions, Angew. Chem. Int. Ed.2012,124,7297-7301.
    [10] Yang, S., Cao, L., Luo, P. G. J., Lu, F., Wang, X., Wang, H., Meziani, M. J.,Liu, Y., Qi G., Sun, Y., A microwave-hydrothermal synthesis of graphenequantum dots (GQDs) with strongly blue-photoluminescence, J. Am. Chem.Soc.,2009,131,11308-11310.
    [11] Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H.,Wang, H., Yang, B., Highly Photoluminescent Carbon Dots for MulticolorPatterning, Sensors, and Bioimaging, Angew. Chem. Int. Ed.2013,125,4045-4049.
    [12] Zhao, H., Liu, L., Liu, Z., Wang, Y., Zhao X., Huang, C., Highly selectivedetection of phosphate in very complicated matrixes with an off–onfluorescent probe of europium-adjusted carbon dots, Chem. Commun.,2011,47,2604-2606.
    [13] Li, Y., Hu, Y., Zhao, Y., Shi, G. O., Deng, L. E., Hou, Y. B., Qu, L. T., AnElectrochemical Avenue to Green-Luminescent Graphene Quantum Dots asPotential Electron-Acceptors for Photovoltaics, Adv. Mater.,2011,23,776-780.
    [14] Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T. and Uchiyama, S.,Intracellular temperature mapping with a fluorescent polymeric thermometerand fluorescence lifetime imaging microscopy. Nat. Comm.2012,3,705-713.
    [15] Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M.,Nagano, T., Watanabe, T., Hasegawa, A., Choyke, P. L. and Kobayashi, H.,Selective molecules imaging of viable cancer cells with pH-activatablefluorescence probes. Nat. Med.2009,15,104-109.
    [16] Song, Y., Shi, W., Chen, W., Li X., Ma, H., Fluorescent carbon nanodotsconjugated with folic acid for distinguishing folate-receptor-positive cancercells from normal cells, J. Mater, Chem.,2012,22,12568-12573.
    [17] Lu, Y., Low, P. S., Targeted pharmaceutical nanocarriers for cancer therapyand imaging, Adv. Drug Delivery Rev.,2002,54,675-693.
    [18] Leamon, C. P., Low, P. S., Folate-mediated targeting:from diagonostics todrug and gene delivery, Drug Discovery Today,2001,6,44-51.
    [19] Geng, J., Li, K., Ding, D., Zhang, X., Qin, W., Liu, J., Tang, B., Liu, B.,Lipid-PEG-Folate Encapsulated Nanoparticles with Aggregation InducedEmission Characteristics: Cellular Uptake Mechanism and Two-PhotonFluorescence Imaging, Small,8,3655-3663.
    [20]李卉,“用于生物成像的多功能纳米材料的制备与性质研究”吉林大学博士学位论文,2013.
    [1] Milner, S. T., Polymer brushes, Science,1991,251,905-914.
    [2] Halperin, A., Tirrell, M., Lodge, T. P., Tethered chains in polymermicrostructures Adv. Polym. Sci.,1992,100,31-37.
    [3] Ayres, N., Cyrus, C. D., Brittain, W. J., Stimuli-responsive surfaces usingpolyampholyte polymer brushes prepared via atom transfer radicalpolymerization, Langmuir,2007,23,3744-3749.
    [4] Cohen stuart, M. A., Huck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm,M., Sukhorakow, G. B., Tsukrak, L. S. V. V., Urban, M., Winnk, F., Zauscher,S., Luzinov, L., Minko, S., Emerging applications of stimuli-responsivepolymer materials Nat. Mater.,2010,9,101-113.
    [5] Wang, J. S., and Matyjaszewski, K., Transition-metal-catalyzed atom transferradical polymerization in the presence of a conventional radical initiator, J.Am. Chem. Soc.,1995,117,5614-5615.
    [6] Matyjaszewski, K., and Xia, J., Atom Transfer Radical Polymerization, Chem.Rev.,2001,101,2921-2990.
    [7] Matyjaszewski, K., Electrochemically mediated atom transfer radicalpolymerization, Science,2011,332,81-84.
    [8] Matyjaszewski, K., Architecturally Complex Polymers with ControlledHeterogeneity, Science,2011,333,1104-1105.
    [9] Qiu Y., and Park, K., Environment-sensitive hydrogels for drug delivery, Adv.Drug Delivery Rev.,2001,53,321-339.
    [10] Roy, I., Rao, M. V. S., and Gupta, M. N., Purification of lysozyme from otherhen's-egg-white proteins using metal-affinity precipitation, Biotechnol. Appl.Biochem.,2003,37,9-14.
    [11] Xia, F., Ge, H., Hou, Y., Sun, T. L., Chen, L., Zhang, G. Z., and Jiang, L.,Multiresponsive Surfaces Change Between Superhydrophilicity andSuperhydrophobicity, Adv. Mater.,2007,19,2520-2524.
    [12] Zhou, F., Zheng, Z. J., Yu, B., Liu, W. M., and Huck, W. T. S.,Multicomponent Polymer Brushes, J. Am. Chem. Soc.,2006,128,16253-16258.
    [13] Chen, T., Chang, D. P., and Zauscher, S., Fabrication of Patterned PolymerBrushes on Chemically Active Surfaces by in situ Hydrogen-Bond-MediatedAttachment of an Initiator, Small,2010,6,1504-1508.
    [14] Chang, C., Chao, C., Huang, J. H., Li, A., Hsu, Lin, C., Hsieh, M. B. and Su,A., Fluorescent conjugated polymer films as TNT chemosensors, Synth. Met.,2004,144,297-301.
    [15] Chen, L., McBranch, D., Wang, R., and Whitten, D., Surfactant-inducedmodification of quenching of conjugated polymer fluorescence by electronacceptors: applications for chemical sensing, Chem. Phys. Lett.,2000,330,27-33.
    [16] Chen, T., Chang, D. P., Zhang, J., Jordan, R., and Zauscher, S., Manipulatingthe Motion of Gold Aggregates Using Stimulus-Responsive PatternedPolymer Brushes as a Motor, Adv. Funct. Mater.,2012,22,429-434.
    [17] Gehan, H., Fillaud, L., Chehimi, M. M., Aubard, J., Hohenau, A., Felidj, N.,and Mangeney, C., Thermo-induced Electromagnetic Coupling inGold/Polymer Hybrid Plasmonic Structures Probed by Surface-EnhancedRaman Scattering, ACS Nano,2010,4,6491-6500.
    [18] Yang, X., Jiang, Y., Shen, B., Chen, Y., Dong, F., Yu, K., Yang, B., Lin, Q.,Thermo-responsive photoluminescent polymer brushes device as a platformfor selective dection of Cr(VI), Polym. Chem.,2013,4,5591-5596.
    [19] Toal, S. J., Jones, K. A., Magde, D., and Trogler, W. C., Luminescent SiloleNanoparticles as Chemoselective Sensors for Cr(VI), J. Am. Chem. Soc.,2005,127,11661–11665.
    [20] EPA list of drinking water contaminants and MCLs, http://www.epa.gov/safewater/mcl.html#mcls.
    [21] U.S. Environmental Protection Agency, Innovative Treatment Technologies:Annual Status Report,8th edn,1996.
    [22] Nie, H. R., Zhao, Y., Zhang, M., Ma, Y. G., Baumgarten, M., and K. Mullen,Detection of TNT explosives with a new fluorescent conjugated polycarbazolepolymer, Chem. Commun.,2011,47,1234-1236.
    [23] Toal, S. J., and Trogler, W. C., Polymer sensors for nitroaromatic explosivesdetection, J. Mater. Chem.,2006,16,2871-2883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700