铜和锡改性纳米TiO_2的制备及其光催化降解三氟羧草醚效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锐钛矿相的TiO_2由于具有光稳定性好、无毒、价格低廉及氧化能力强等特性而成为首选的光催化剂。但TiO_2光催化效率受到光生载流子复合率高和太阳光利用率低这两个关键因素限制。在本论文中采用了Cu、Sn两种金属元素对TiO_2进行了改性,试图解决光生载流子的复合率高和太阳光的利用率低这两个关键问题。
     Cu离子掺杂对TiO_2光催化活性的影响已经被广泛研究,但具有多价态的Cu离子在光催化反应过程中所起的作用仍不明确。在本研究中,首先采用溶胶-凝胶法制备了一系列Cu-TiO_2光催化剂。利用TG、XRD、DRS、SPS及XPS等分析技术对所制备的样品进行了表征。并以罗丹明B(RhB)为光催化目标降解物,研究了Cu-TiO_2纳米粒子的光催化性能。探讨了在纳米TiO_2的制备和改性过程中,焙烧温度、焙烧时间、不同金属Cu元素加入量等因素对光催化活性的影响。通过DRS、SPS及XPS表征探讨了Cu掺杂对TiO_2的改性机制:在铜掺杂量适宜条件时,由于Cu-TiO_2纳米粒子中的氧空位和铜组分能够捕获光生电子,抑制了光生载流子的复合,此外,适量的Cu掺杂使TiO_2表面-OH数量增加,这些因素改善了催化剂的活性;但在铜的掺杂量较高时,过量的氧空位及铜组分则成为光生电子-空穴的复合中心。同时,过量的铜组分会覆盖TiO_2表面从而阻碍其对光的吸收,并且,在铜掺杂浓度较大时TiO_2的导电类型由N型变成P型,导致TiO_2光催化剂中毒,从而降低了催化剂光催化活性。
     利用氢还原处理可以使光生电子-空穴的有效分离从而改善TiO_2的光催化性能。但氢还原法工艺较复杂,存在着易燃易爆等不安全因素及制备时间长、成本高等缺点,因而限制了其实际应用。为了克服上述缺点,本研究采用工艺简单的Sn~(2+)化学还原方法制备了Sn还原纳米TiO_2光催化剂(Sn-TiO_2-X)。利用UV-Vis-DRS,SPS,XPS,EIS等测试手段探讨了Sn对TiO_2的改性机制:Sn~(2+)还原后的TiO_2中生成了Ti3+离子,导致TiO_2的费米能级升高,活性氧组分的数量增多;Sn~(2+)还原增加了TiO_2表面氧空位密度,能更有效的捕获光生电子,抑制了光生电子-空穴的复合;Sn~(2+)还原TiO_2后,在TiO_2粒子表面生成SnO2,SnO2的费米能级低于TiO_2费米能级,导致光生电子从TiO_2导带向SnO2迁移,起光生电子捕获阱作用,抑制光生载流子的复合从而改善其光催化活性;Sn~(2+)还原后引入Ti3+、SnO2等掺杂能级,这些能级可以导致催化剂发生亚带隙跃迁,即掺杂能级也参与了光化学过程,光催化剂的吸光范围拓展到了可见光区。Sn~(2+)化学还原改性方法兼具氢还原法和Sn4+掺杂改性方法的优点,有效的改善了光催化剂的活性。
     三氟羧草醚是一种广泛应用于大豆及水稻出苗后期选择性去除阔叶杂草的含氯除草剂。三氟羧草醚足够长的半衰期使其能够被冲进地表水(江河和湖泊),对环境造成危害。本研究以Cu、Sn改性TiO_2为光催化剂,考查了光强、催化剂用量、pH值、农业生产中经常使用的一些阴、阳离子及降解目标物初始浓度等各种因素对三氟羧草醚光催化降解的影响。实验结果表明:由于三氟羧草醚的解离状态及TiO_2表面电性,相对于三氟羧草醚原液,调节pH值后的三氟羧草醚溶液的降解率均有所下降;阴离子的加入对以Cu-TiO_2为催化剂的反应体系影响显著,但对以Sn-TiO_2-X为催化剂的反应体系无明显影响;K+、Ca2+的加入对于光催化降解三氟羧草醚影响不大,但加入Cu2+的影响较为明显。此外,利用光生电子、空穴捕获剂,判断识别了二种改性机制不同的催化剂光催化反应中的活性组分作用的大小。实验结果表明,以Cu-TiO_2为催化剂的反应体系·OH为主要活性组分,而以Sn-TiO_2-X为催化剂的反应体系的活性氧组分的作用比Cu-TiO_2为催化剂的反应体系大。最后,研究了三氟羧草醚降解动力学、降解过程的中间产物及降解途径。光催化实验结果表明三氟羧草醚降解反应为0级反应。
The anatase crystalline form of TiO_2has been the best photocatalyst of choice.It has been found to have the best overall properties in terms of photo-stability,toxicity, cost, availability and redox efficiency. However, the efficiency ofphotocatalytic reactions is limited by the high recombination rate of photoinducedelectron-hole pairs formed in photocatalytic processes and by the absorptioncapability for visible light of photocatalysts. The aim of this research is to solvethese key problems using Cu or Sn elements to modifiy TiO_2photocatalyst.
     The effects of copper ions have been studied on the photodegradation oforganic pollutant, but many aspects with regard to the role of copper species withmultivalent states in the photocatalytic reaction remain unclear. In this research, aseries of Cu-TiO_2catalysts have been synthesized by sol-gel method. The obtainedsamples were characterized in detail via TG, XRD, DRS, SPS and XPS methods.The photocatalytic activity of Cu-TiO_2was studied by degrading the RhodamineBextra solution (RhB). Meanwhile, the effects of different metal content,calcination temperature,and calcination time on the photocatalytic activity ofsamples were investigated. The modified mechanism of the Cu doping TiO_2wasinvestigated via DRS, SPS and XPS technologies: when the Cu concentration isfeasible, oxygen vacancies and Cu species could trap the photoinduced electronsand effectively inhibit the recombination of the photoinduced charges consequentlyin the photocatalytic process, in addition, the content of surface hydroxyl on thesurface of the0.06mol%Cu-TiO_2was increased remarkably in contrast to that ofpure TiO_2, these factors were favor to the increase of the photocatalytic activity forsamples. When copper dopant content exceeds0.06mol%, however, excessiveoxygen vacancies and Cu species could be the recombination centers of thephotoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration,excessive P-type Cu2O can cover the surface of TiO_2, which leads to decrease in thephotocatalytic activity of photocatalyst.
     The thermal hydrogen (H2) treatment of TiO_2was also found to be capable toaccelerate the e-h separation and improved photocatalytic activity of the TiO_2catalyst. However, there were many insufficiencies in the process of the thermalhydrogen (H2) treatment of TiO_2, such as, there were the factors of inflammable and explosive, the technologies route was complicated, furthermore, this method wastoo time-consuming and expensive. These factors limited its practical application.
     To overcome these difficulties and disadvantages, in this thesis, a rapid andsimple method, the so-called stannous chemical reducing method was developed toprepare the nanocrystalline Sn-TiO_2-X. The mechanism of the Sn modified TiO_2wasinvestigated via DRS, SPS, XPS and EIS methods. Firstly, that is deu to theexistence of Ti3+ions, which can elevate the Femi energy level and increase thenumber of the the active oxygen species. Secondly, the amount of oxygen vacanciesis increased, which can effectively trap photoinduced carriers and inhibit therecombination of the photoinduced electrons and holes. Thirdly, Sn species areformed as SnO2on the surface of TiO_2, the Fermi levels of SnO2is lower than thatof TiO_2, which leads to the photoinduced electrons transfer from the conductiveband of TiO_2to that of SnO2on the surface of TiO_2, not to the bulk of TiO_2, whichcan also trap photoinduced electrons and inhibit the recombination of thephotoinduced electrons and holes. At last, Sn-modified TiO_2introduce the doppingenergy level of Ti3+and Sn species, which can result in the sub-band gap transitionof catalysts, the doped energy level participate in the photochemistry process, thelight whose energy is less than the Eg can be absorbed by catalysts, so, theabsorption range of photocatalyst could beexpanded to visible region. Thephotocatalyst prepared by the stannous chemical reducing method have efficacies ofboth the thermal hydrogen (H2) treatment and Sn4+doping modification.
     Acifluorfen is a diphenyl ether herbicide contained chlorine used inpostemergence for the selective control of most broadleaf weeds in soybeans andrice. The half-life of Acifluorfen is sufficiently long that it may be washed awaytoward surface waters (rivers and lakes) and had caused great damage to theenvironment.
     In present work, the experiments of the photocatalytic degradation ofAcifluorfen were carried out using Cu-TiO_2and Sn-TiO_2-Xas photocatalysts. Ourobjective was to explore the effects of the irradiation intensity, the catalyst dosage,pH values, the type and the amount of anions and cations often used in agriculture,and the initial concentration on the degradation of Acifluorfen. The experimentalresults indicate that:
     The smaller activities found at acidic and basic pH are explained byconsidering the ionisation state of Acifluorfen and the charge density of TiO_2; Effect of the anions addition on the degradation of Acifluorfen is remarkable for thereaction system using Cu-TiO_2as photocatalyst, but there is less effect forSn-TiO_2-X; The influence of metal ions like K+and Ca2+on the photocatalyticefficiency of TiO_2in the elimination of Acifluorfen is unnoticeable, but adetrimental effect of the presence of Cu2+is observed.
     In addition, the roles of the active species generated in TiO_2systems areidentified using i-PrOH and dissolved oxygen as·OH and photoinduced electronsscavenging reactant, and the role of the main active species in the photodegradationof Acifluorfen is determined. The experimental results indicate that·OH is the mainactive specie for Cu-TiO_2, and the amount of the active oxygen species in thereaction system using Sn-TiO_2-Xas photocatalyst are more than that of Cu-TiO_2.
     Finally, the removal kinetics of Acifluorfen, and established the primaryintermediate products and degradation pathways of Acifluorfen have been studied.The results of photocatalytic experiment reveal that the decline of Acifluorfenconcentration in the solution followed a zero-order kinetics.
引文
1李亚峰,佟玉衡,陈立杰.废水处理(第二版).北京:化学工业出版社.2009:11-25
    2Y. T Li, X. G. Sun, H. W Li. Preparation of Anatase TiO2Nanoparticles withHigh Thermal Stability and Specific Surface Area by Alcohothermal Method.Powder Tech.2009,194(1-2):149~152
    3X. W. Zhang, L. C. Lei. Effect of Preparation Methods on the Structure andCatalytic Performance of TiO2/AC Photocatalysts. J. Hazard. Mater.2008,153(1-2):827~833
    4H. J. Zhang, G. H. Chen, D. W. Bahnemann. Photoelectrocatalytic Materialsfor Environmental Applications. J. Mater. Chem.2009,19:5089~5121
    5A. Fujishima, K. Honda. Electrochemical Photolysis of Water at aSemiconductor Electrode. Nature.1972,238(5358):37~38
    6J. H. Cary, J. Lawrence, H. M. Tosine. Photodechlorination of PCB’s in thePresence of Titanium Dioxide in Aqueous Suspension. Bull. Environ. Contam.Toxicol.1976,16(6):697~701
    7S. N. Frank, A. J. Bard. Photoassisted Oxidations and Photoelectrosynthesis atPolycrystalline Titanium Dioxide Electrodes. J. Am. Chem. Soc.1977,99(14):4667~4675
    8张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001:112~141
    9王俊尉,谷晋川,黄健盛,南艳丽.纳米二氧化钛制备技术的发展.矿业快报.2006,25(11):9~13
    10贾进义,刘晶冰,张文熊等.掺钒二氧化钛中空微球的制备和光催化性能研究.无机材料学报.2009,24(4):671~674
    11胡林华,戴俊,刘伟等.锐钛矿相纳米TiO2晶体生长动力学及生长过程控制.物理学报.2009,58(2):1115~1119
    12倪星元.纳米材料制备技术.北京:化学化工出版社.2008:80
    13N. Sasirekha, B. Rajesh, Y. W. Chen. Synthesis of TiO2Sol in a NeutralSolution Using TiCl4as a Precursor and H2O2as an Oxidizing Agent. ThinSolid Films. Volume November2009,518(1-2):43~48
    14田从学,张昭.工业硫酸钛合成有序介孔TiO2及其机理研究.无机材料学报.2009,24(2):225~228
    15林玉龙,魏雨,贾振斌.纳米二氧化钛的液相合成.微纳电子技术,2003,40(3):14~18
    16王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社.2002:96~106
    17杨小林,黄一波.凝胶溶胶法制备纳米二氧化钛的工艺条件研究.常州工程职业技术学院学报.2008,56(2):63~64
    18刘锦平,赵洪,宋晓莉.煅烧温度对二氧化钛光催化剂结构的影响.无机盐工业.2009.41(9):37~39
    19N. Viriya-empikul, T. Charinpanitkul, N. Sano, et al. Effect of PreparationVariables on Morphology and Anatase–Brookite Phase Rransition in SonicationAssisted Hydrothermal Reaction for Synthesis of Titanate Nanostructures.Mater. Chem. Phys.,2009,118(1):254~258
    20刘平安,王慧,税安泽等.微波加热均匀沉淀法纳米的制备研究.材料导报.2007,21(11):130~132
    21王佳,彭兵,柴立元.稳定纳米二氧化钛水溶胶的制备研究.中国陶瓷工业.2007,14(2):14~17
    22G. L. Li, G. H. Mang. Synthesis of Nanometer-sized TiO2Particles byMicroemulsion Methods. Nano Struc. Mater.1999,11(5):663~668
    23李晓娥,陈秀娟.醇盐水解制备纳米级二氧化钛.稀有金属材料与工程.1995,24(5):65~70
    24I. S. Park, S. R. Jang, J. S. Hong, et al. Preparation of Composite Anatase TiO2Nanostructure by Precipitation from Hydrolyzed TiCl4Solution Using AnodicAlumina Membrane. Chem. Mater.,2003,15(24):4633~4636
    25P. Billik, G. Plesch. Mechanochemical Synthesis of Nanocrystalline TiO2fromLiquid TiCl4. Scripta Materialia,2007,56(11):979~982
    26E. Bae, T. Ohno. Exposed Crystal Surface-Controlled Rutile TiO2NanorodsPrepared by Hydrothermal Treatment in the Presence of Poly(Vinyl Pyrrolidone)Appl. Catal. B.2009,91(3-4):634-639
    27C. Jin, R.Y. Zheng, Y. Guo, et al. Hydrothermal Synthesis and Characterizationof Phosphorous-doped TiO2with High Photocatalytic Activity for MethyleneBlue Degradation. J. Mol. Catal. A.2009,313(1-2):44~48
    28杨柯,刘阳,尹虹.纳米二氧化钛的制备技术研究.中国陶瓷.2004,40(4):8~12
    29傅鹤鉴,汪庆华,马洪等.用激光化学反应制备非晶态TiO2及其性质初探.四川大学学报(自然科学版).1996,33(5):564~567
    30施利毅,李春忠. TiCl4高温气相氧化合成纳米二氧化钛颗粒的研究.功能材料.2000,31(6):622~624
    31杨华明,史蓉蓉,张科等.纳米二氧化钛光催化剂改性研究进展.化工新型材料.2005,33(6):57~59
    32K. F. Yu, J. Z. Zhao, Y. Tian, et al. Preparation of Nanosized Titanium Dioxidefrom Titanium n-Butoxide Modified with Tartaric Acid and Its Influence on thePhase Transformation. Mate. Lett.2005,59(28):3563~3566
    33W. Sun, S. Q. Zhang, Z. X. Liu, et al. Studies on the Enhanced PhotocatalyticHydrogen Evolution over Pt/PEG-Modified TiO2Photocatalysts Int. J.Hydrogen Energ.2008,33(4):1112~1117
    34V. Gombac, L. De Rogatis, A. Gasparotto, et al. TiO2Nanopowders Doped withBoron and Nitrogen for Photocatalytic Applications. Chem. Phys.2007,339(1~3) Pages111~123
    35V. Subramanian, E. E. Wolf, P. V. Kamat. Catalysis with TiO2/GoldNanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration.J. Am. Chem. Soc.2004,126(15):4943~4950
    36M. Bowker, D. James, P. Stone, et al. Catalysis at the Metal-Support Interface:Exemplified by the Photocatalytic Reforming of Methanol on Pd/TiO2. J. Catal.2003,217(2):427~433
    37T. Sano, S. Kutsuna, N. Negishi, et al. Effect of Pd-Photodeposition over TiO2on Product Selectivity in Photocatalytic Degradation of Vinyl ChlorideMonomer. J. Mol. Catal A.2002,189(2):263~270
    38谢宝平,熊亚,陈润铭等. Pd-TiO2/ITO膜的制备及催化活性研究.广州化工.2005,33(1):22-27
    39Y. X. Li, G.. Lu, S. Li. Photocatalytic Transformation of Rhodamine B and ItsEffect on Hydrogen Evolution over Pt/TiO2in the Presence of Electron Donors.J. Photochem. Photobiol. A.2002,152(1):219~228
    40J. W. Yoon, T. Sasaki, N. Koshizaki,et al. Preparation and Characterization ofM/TiO2(M=Ag, Au, Pt) Nanocomposite Thin Films. Scripta. Mater.2001,44(8~9):1865~1868
    41S. Kim, W. Choi. Dual Photocatalytic Pathways of TrichloroacetateDegradation on TiO2: Effects of Nanosized Platinum Deposits on Kinetics andMechanism. J. Phys. Chem. B.2002,106(51):13311~13317
    42A. Sclafani, J. M. Herrmann. Influence of Metallic Silver and ofPlatinum-Silver Bimetallic Deposits on the Photocatalytic Activity ofTitania(Anatase and Rutile) in Organic and Aqueous Media. J. Photochem.Photobiol. A.1998,113(2):181~188
    43V. Vamathevan, R. Amal, D. Beydoun, et al. Photocatalytic Oxidation ofOrganics in Water Using Pure and Silver-Modified Titanium Dioxide Particles.J. Photochem. Photobiol. A.2002,148(1~3):233~245
    44J. M. Herrmann, J. Disdier, P. Pichat. Photocatalytic Deposition of Silver onPowder Titania-Consequences for the Recovery of Silver. J. Catal.1988,113(1):72~81
    45X. W. Zhang, M. H. Zhou, L. Lei. Preparation of an Ag–TiO2PhotocatalystCoated on Activated Carbon by MOCVD. Mater. Chem. Phys.2005,91(1):73~79
    46T. Hirakawa, P. V.Kamat. Electron Storage and Surface Plasmon Modulation inAg@TiO2Clusters. Langmuir.2004,20(14):5645~5647
    47Y. Kohno, H. Hayashi, S. Takenaka, et al. Photo-Enhanced Reduction ofCarbon Dioxide with Hydrogen over Rh/TiO2. J. Photochem. Photobiol. A.1999,126(1~3):117~123
    48H. Einaga, T. Ibusuki, S. Futamura. Improvement of Catalyst Durability byDeposition of Rh on TiO2in Photooxidation of Aromatic Compounds. Environ.Sci. Technol.2004,38(1):285~289
    49R. Dholam, N. Patel, M. Adami, et al. Hydrogen Production by PhotocatalyticWater-Splitting Using Cr-or-Fe-Doped TiO2Composite Thin FilmsPhotocatalyst. J. Hydro. Energ.2009,34(13):5337~5346
    50X. Li, R. Xiong, G. Wei. Preparation and Photocatalytic Activity of NanogluedSn-Doped TiO2. J. Hazard. Mater.2009,164(2-3):587~591
    51L. G. Devi, B. N. Murthy, S. G. Kumar. Heterogeneous PhotocatalyticDegradation of Anionic and Cationic dyes over TiO2and TiO2Doped withMo6+Ions under Solar Light: Correlation of Dye Structure and Its AdsorptiveTendency on the Degradation Rate. Chemosphere.2009,76(8):1163~1166
    52F. Say lkan, M. Asiltürk, N. Kiraz, et al. Photocatalytic AntibacterialPerformance of Sn4+-Doped TiO2Thin Films on Glass Substrate. J. Hazard.Materi.2009,162(2-3):1309~1316
    53S. S. Lin, D. K. Wu. Enhanced Optical Properties of Al-Doped TiO2Thin Filmsin Oxygen or Nitrogen Atmosphere. Appl. Surf. Sci.2009,255(20):8654~8659
    54W. Choi, A. Temit, M. R. Hoffmann. The Role of Metal Ion Dopants inQuantum-sized TiO2: Correlation between Photoreactivity and Charge CarrierRecombination Dynamics. J. Phys. Chem.1994,98(51):13669~13679
    55唐剑文.镧掺杂纳米二氧化钛的可见光光催化性能研究.应用化工.2009,38(7):1013~1016
    56张颖,姚明明,陶珍东等.金属离子共掺杂TiO2薄膜的光催化性能研究.电镀与精饰.2007,29(6):8~11
    57A. D. Paola, E. Garcia-Lopez, S. Ikeda, et al. Photocatalytic Degradation ofOrganic Compounds in Aqueous Systems by Transition Metal DopedPolycrystalline TiO2. Catal. Today.2002,75(1):87~93
    58陈晓青,杨娟玉,蒋新宇.掺铁TiO2纳米微粒的制备及光催化性能.应用化学.2003,20(1):73~76
    59管盘铭,夏亚穆,李德宏.掺杂TiO2纳米粉的合成、表征及催化性能研究.催化学报.2001,22(2):161~164
    60J. A. Navio, G. Colon, M. Trillas. Heterogeneous Photocatalytic Reactions ofNitrite Ocidation and Cr(VI) Reduction on Iron-Dopoed Titania Prepared bythe Wet Impregnateion Method. Appl. Catal. B.1998,16(2):187~196
    61Y. Q. Wang, Y. Z. Hao, H. M. Cheng. The Photoeletrochemistry of TransitionMetal-Ion-Doped TiO2Nanocrystalline Electrodes and Higher Solar CellConversion Efficiency Based on Zn2+-Doped TiO2Electrode. J. Mater. Sci.1999,34(12):2773~2779
    62R. Asahi, T. Ohwaki, K. Aoki. Visible-Light Photocatalysis in Nitrogen-DopedTitanium Oxides. Science.2001,293(13):269~271
    63T. Ohno, T. Tsubota, M. Toyofuku, et al. Photocatalytic Activity of a TiO2Photocatalyst Doped With C4+and S4+Ions Having a Ruble Phase UnderVisible Light. Catal. Lett.2004,98(4):255~258
    64T. Ohno, M. Akiyoshi, T. Umebayashi, et al. Preparation of S-doped TiO2Photocatalysts and their Photocatalytic Activities under Visible Light. Appl.Catal. A.2004,265(1):115~121
    65唐玉朝,黄显怀,俞汉青等. N掺杂TiO2光催化剂的制备及其可见光活性研究.无机化学学报.2005,21(11):1747~1751
    66Y. Cho, W. Choi, C. H. Lee, et al. Visible Light-Induced Degradation of CarbonTetrachloride on Dye-Sensitized TiO2. Environ. Sci. Technol.2001,35(5):966~970
    67J. N. Clifford, E. Palomares, Md. K. Nazeeruddin, et al. Multistep ElectronTransfer Processes on Dye Co-Sensitized Nanocrystalline TiO2Films. J. Am.Chem. Soc.2004,126(18):5670~5671
    68V. Iliev. Phthalocyanine-Modified Titania-Catalyst for Photooxidation ofPhenols by Irradiation with Visible Light. J. Photochem. PhotobioL. A.2002,151(1~3):195~199
    69F. L. Lu, M. Bao, C. Q. Ma, et al. Double-Decker Yttrium(III) Complexes withPhthalocyaninato and Porphyrinato Ligands. Spectrochim. Acta A.2003,59(14):3273~3286
    70H. H. Deng, H. F. Mao, Z. H. Lu, et al. Cosensitization of a NanostructuredTiO2Electrode with Tetrasulfonated Gallium Phthalocyanine andTetrasulfonated Zinc Porphyrin. J. Photochem. PhotobioL. A.1997,110(1):47~52
    71J. J. He, G. Benko, F. Korodi, et al. Modified Phthalocyanines for EfficientNear-IR Sensitization of Nanostructured TiO2Electrode. J. Am. Chem. Soc.2002,124(17):4922~4932
    72K. T. Ranjit, I. Willner, S. Bossmann, et al. Iron(III) Phthalocyanine-ModifiedTitanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradationof Organic Pollutants. J. Phys. Chem. B.1998,102(47):9397~9403
    73G. Mele, R. D. Sole, G. Vasapollo, et al. Photocatalytic Degradation of4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2Impregnated with Functionalized Cu(II)-Porphyrin or Cu(II)-Phthalocyanine. J.Catal.2003,217(2):334~342
    74V. Iliev, D. Tomova. Photocatalytic Oxidation of Sulfide Ion Catalyzed byPhthalocyanine Modified Titania. Catal. Comm.2002,3(7):287~292
    75彭少洪,黄运凤,钟理等. TiO2光催化剂的改性与修饰.净水技术.2005,24(2):59~61
    76Y. T. Kim, E. D. Park. Deactivation Phenomena of MoO3/SiO2and TiO2/SiO2during Transesterification between Dimethyl Carbonate and Phenol. Appl.Catal. A.2009,356(2):211~215
    77M. H. Zhang, L. Y. Shi, S. Yuan, et al. Synthesis and photocatalytic propertiesof highly stable and neutral TiO2/SiO2hydrosol. J. Colloid Interface Sci.2009,330(1):113~118
    78A. Franco, M. C. Neves, M. M. L. Carrott, et al. Photocatalytic Decolorizationof Methylene Blue in the Presence of TiO2/ZnS Nanocomposites. J. Hazard.Mater.2009,161(1):545~550
    79X. D. Yu, Q. Y. Wu, S. C. Jiang, et al. Nanoscale ZnS/TiO2Composites:Preparation, Characterization, and Visible-Light Photocatalytic Activity. Mater.Charact.2006,57(4~5):333~341
    80J. S. Jang, H. G. Kim, U. A. Joshi, et al. Fabrication of CdS NanowiresDecorated with TiO2Nanoparticles for Photocatalytic Hydrogen Productionunder Visible Light Irradiation. Int. J. Hydrogen Energy,2008,33(21):5975~5980
    81R. Brahimi, Y. Bessekhouad, A. Bouguelia, et al. Improvement of Eosin VisibleLight Degradation Using PbS-Sensititized TiO2J. Photochem. Photobiol. A.2008,194(2~3):173~180
    82V. N. H. Nguyen, R. Amal, D. Beydoun. Photodeposition of CdSe UsingSe-TiO2Suspensions as Photocatalysts. J. Photochem. Photobiol. A.2006,179(1~2):57~65
    83W. K. Ho, J. C. Yu. Sonochemical Synthesis and Visible Light PhotocatalyticBehavior of CdSe and CdSe/TiO2Nanoparticles. J. Mol. Catal. A.2006,247(1~2):268~274
    84B. T. Jiang, S. Y. Zhang, X. Z. Guo,et al. Preparation and PhotocatalyticActivity of CeO2/TiO2Interface Composite film. Appl. Surf. Sci.2009,255(11):5975~5978
    85X. W. Zhang, L. C. Lei. Preparation of Photocatalytic Fe2O3–TiO2Coatings inOne Step by Metal Organic Chemical Vapor Deposition. Appl. Surf. Sci.2008,254(8):2406~2412
    86E. S. Mora, E. G. Barojas, E. R. Rojas, et al. Morphological, Optical andPhotocatalytic Properties of TiO2–Fe2O3Multilayers. Sol. Energy Mater. Sol.Cells.2007,91(15~16):1412~1415
    87Y. Liu, D. Z. Sun, L. Cheng, et al. Preparation and Characterization ofFe2O3-CeO2-TiO2/γ-Al2O3Catalyst for Degradation Dye Wastewater. J.Environ. Sci.2006,18(6):1189~1192
    88C. F. Lin, C. H. Wu, Z. N. Onn. Degradation of4-Chlorophenol in TiO2, WO3,SnO2, TiO2/WO3and TiO2/SnO2Systems. J. Hazard. Mater.2008,154(1~3):1033~1039
    89D. N. Ke, H. J. Liu, T. Y. Peng, et al. Preparation and Photocatalytic Activity ofWO3/TiO2Nanocomposite Particles. Mater. Lett.2008,62(3):447~450
    90Y. R. Do, W. Lee, K. Dwight, et al. The Effect of WO3on the PhotocatalyticActivity of TiO2. J. Solid State Chem.1994,108(1):198~201
    91J. Lin, J. C. Yu, J. Lo, et al. Photocatalytic Activity of Rutile Ti1-xSnxO2SolidSolutions. J. Catal.1999,183(2):368~372
    92S. K. Zheng, T. M. Wang, W. C. Hao, et al. Improvement of PhotocatalyticActivity of TiO2Thin Film by Sn Ion Implantation. Vacuum.2002,65(2):155~159
    93Y. Cao, W. Yang, W. Zhang, et al. Improved Photocatalytic Activity of Sn4+Doped TiO2Nanoparticulate Films Prepared by Plasma-Enhanced ChemicalVapor Deposition. New J. Chem.2004,28(2):218~222
    94A. Heller, Y. Degani, Jr. Johnson, et al. Controlled Suppression andEnhancement of the Photoactivity of Titanium-Dioxide (Rutile) Pigment. J.Phys. Chem.1987,91(23):5987~5991
    95A. Heller, B. Miller. Some Recent Progress in Semicon-Ductor–Liquid JunctionSolar-Cells. Electrochim. Acta.1980,25(1):29~41
    96J. E. Rekoske, M. A. Barteau. Isothermal Reduction Kinetics of TitaniumDioxide-Based Materials. J. Phys. Chem. B.1997,101(7):1113~1124
    97H. Liu, H. T. Ma, X. Z. Li, et al. The Enhancement of TiO2PhotocatalyticActivity by Hydrogen Thermal Treatment. Chemosphere.2003,50(1):39~46
    98刘鸿,吴合进,孙福侠等.氢还原二氧化钛光催化降解磺基水杨酸的研究.分子催化.2001,15(1):47~50
    99R. A. Palmer, T. M. Doan, P. G. Lloyd, et al. Reduction of TiO2with HydrogenPlasma. Plasma Chem. Plasma Process.2002,22(3):335~350
    100Y. Chiba, K. Kashiwagi, H. Kokai. Plasma Surface Treatment Effect of TiO2Thin Film. Vacuum.2004,74(3):643~646
    101S. C. Lee. Combination Effect of Activated Carbon with TiO2for thePhotodegradation of Binary Pollutants at Typical Indoor Air Level. J.Photochem. Photobiol. A.2004,161(2~3):131~140
    102祝静艳,曾玉燕.弱紫外光下NOx气相光催化氧化研究.中山大学学报(自然科学版).2001,40(6):31~34
    103S. Matsuda, H. Hatano, A. Tsutsumi. Ultrafine Particle Fluidization and ItsApplication to Photocatalytic NOx Treatment. Chem. Eng. J.2001,82(l~3):183~188
    104黄浪欢,曾令可. TiO2光催化脱除NOx的研究进展.环境污染治理技术与设备.2001,2(4):60~64
    105袭著革,李官贤.复合纳米TiO2净化典型室内空气污染物的初步研究.中国环境卫生.2003,6(1~3):121~124
    106古政荣,陈爱平.空气净化网上光催化剂和活性炭相互增强净化能力的作用机理.林产化学与工业.2000,20(l):6~10
    107G. J. Ma, H. J. Yan, J. Y. Shi, et al. Direct splitting of H2S into H2and S onCdS-Based Photocatalyst under Visible Light Irradiation. J. Catal.2008,260(1):134~140
    108G. J. Ma, H. J. Yan, X. Zong, B. J. Ma, et al. Photocatalytic Splitting of H2S toProduce Hydrogen by Gas-Solid Phase Reaction. Chin. J. Catal.2008,29,(4):313~315
    109左国民,徐敏,程振兴.挥发性有机物的气相光解及光催化降解研究.分子催化.2001,15(6):463~466
    110李太友.有机污染物的半导体光催化氧化研究进展综述.汉江大学学报.1999,16(3):12~16
    111W. Choi, J. Y. Ko, H. Park. Investigation on TiO2-Coated Optical Fibers forGas-Phase Photocatalytic Oxidation of Acetone. Appl. Catal.2001,31(3):209~220
    112W. K. Jo, J. H. Park, H. D. Chun. Photocatalytic Destruction of VOCs forin-Vehicle Air Cleaning. J. Photochem. Photobiol. A.2002,148(l~3):109~119
    113C. S. Wu, H. M. Lin, C. L. Lai. Photo Reduction of CO2to Methanol UsingOptical-Fiber Photoreactor. Appl. Catal. A.2005(2):194~200
    114周文敏,傅德黔,孙宗光.中国水中优先控制污染物黑名单的确定.环境监测管理与技术.1991,13(4):18~20
    115沈平.《斯德哥尔摩公约》与持久性有机污染物(POPs).化学教育,2005,26(6):6~9
    116王铁宇,吕永龙,张红等.我国持久性有机污染物状况及宏观对策.环境污染治理技术与设备.2004,5(11):21~26
    117刘相梅,彭平安,黄伟林等.六六六在自然界中的环境行为及研究动向.农业环境与发展.2001,(2):38~40
    118W. A. Ockenden, K. Breivik, S. N. Meijer, et al. The Global Re-Cycling ofPersistent Organic Pollutants Is Strongly Retarded by Soils. Environ. Pollut.2003,121(1):75~80
    119A. Beyer, D. Mackay, M. Matthies, et al. Assessing Long-Range TransportPotential of Persistent Organic Pollutants. Environ. Sci. Technol.2000,34(4):699~703
    120F. Wong, M. Robson, M.L. Diamond, et al. Concentrations and ChiralSignatures of POPs in Soils and Sediments: a Comparative Urban Versus RuralStudy in Canada and UK. Chemosphere.2009,74(3):404~411
    121L. B. Helgason, R. Barrett, E. Lie, et al. Gabrielsen Levels and TemporalTrends (1983–2003) of Persistent Organic Pollutants (POPs) and Mercury (Hg)in Seabird Eggs from Northern Norway. Environ. Pollut.2008,155(1):190~198
    122H. Kim, K. Masaki, T. Matsumura, et al. Removal Efficiency and HomologuePatterns of Dioxins in Drinking Water Treatment. Water Res.2002,36(19):4861~4869
    123C. Grittini, M. Malcomson, Q. Fernando, et al. Rapid Dechlorination ofPolychlorinated Biphenyls on the Surface of Pd/Fe Bimetallic System. Environ.Sci. Technol.1995,29(11):2898~2900
    124P. Robert, M. Ediwina. Chemical Treatment of Dioxin Residues fromWastewater Processing. Chemosphere.1992,25(7~10):1565~1568
    125M. Bunge, L. Adrian, A. Kraus, et al. Reductive Dehalogenation of ChlorinatedDioxins by an Anaerobic Bacterium. Nature.2003,421(23):357~360
    126I. D. Albrecht, A. L. Barkovskii, P. Adriaens. Production and Dechlorination of2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Historically-Contaminated EstuarineSediments. Environ. Sci. Technol.1999,33(5):737~744
    127夏传海,徐杰,吴文忠等.二噁英降解方法的研究.化学进展.2004,16(1):123~130
    128J. F. Niu, J. W. Chen, D. Martens, et al. The Role of UV-B on the Degradationof PCDD/Fs and PAHs Sorbed on Surfaces of Spruce Needles. Sci. TotalEnviron.2004,322(1~3):231~241
    129S. Sinkkonen, J. Paasivirta. Degradation Half-Life Times of PCDDs, PCDFsand PCBs for Environmental Fate Modeling. Chemosphere.2000,40(9~11):943~949
    130H. D. Burrows, L. M. Canle, J. A. Santaballa, et al. Reaction Pathways andMechanisms of Photodegradation of Pesticides. J. Photochem. Photobiol. B.2002,67(2):71~108
    131W. Y. Choi, S. J. Hong, Y. S. Chang, et al. Photocatalytic Degradation ofPolychlorinated Dibenzo/Dioxins on TiO2Film under UV or Solar LightIrradiation. Environ. Sci. Technol.2000,34(22):4810~4815
    132E. Papa, P. Gramatica. Screening of Persistent Organic Pollutants by QSPRClassification Models: a Comparative Study. J. Mol. Graphics Modell.2008,27(1):59~65
    133L. L. Sun, L. P. Zhou, Y. Yu, et al. QSPR Study of Polychlorinated DiphenylEthers by Molecular Electronegativity Distance Vector (MEDV-4).Chemosphere.2007,66(6):1039~1051
    134S. D. Chen, X. L. Zeng, Z. Y. Wang, et al. QSPR Modeling of n-Octanol/WaterPartition Coefficients and Water Solubility of PCDEs by the Method of ClSubstitution Position. Sci. Total Environ.2007,382(1):59~69
    135E. R. Bandala, S. Gelover, M. T. Leal, et al. Solar Photocatalytic Degradationof Aldrin. Catal. Today.2002,76(2~4):189~199
    136A. Zaleska, J. Hupka, M. Wiergowski, et al. Photocatalytic Degradation ofLindane, p, p′-DDT and Methoxychlor in an Aqueous Environment. J.Photochem. Photobiol. A.2000,135(2~3):213~220
    137Y. B. Wang, C. S. Hong. Effect of Hydrogen Peroxide, Periodate and Persulfateon Photocatalysis of2-Chlorobiphenyl in Aqueous TiO2Suspensions. WaterRes.1999,33(9):2031~2036
    138C. S. Hong, Y. B. Wang, B. Bush. Kinetics and Products of the TiO2,Photocatalytic Degradation of2-Chlorobiphenyl in Water. Chemosphere.1998,36(7):1653~1667
    139K. Shimizu, H. Murayama, A. Nagai, et al. Degradation of HydrophobicOrganic Pollutants by Titania Pillared Fluorine Mica as a Substrate SpecificPhotocatalyst. Appl. Catal. B.2005,55(2):141~148
    140李希平.江苏省除草醚取代情况.农药科学与管理.1996,2:16~17
    141钟决龙.二苯醚类除草剂生产及大田应用现状.农药.2005,44(5):237~238
    142马光明.美国加利福尼亚州对除草醚的管制.农药科学与管理.1996,4:39~39
    143农药·欧盟禁用的63种农药.农药.2004,2:63
    144刘维屏,方卓.新农药环境化学行为研究(V)-三氟羧草醚在土壤和水环境中的滞留、转化.环境科学学报.1995,15(3):295~301
    145E. Vulliet, C. Emmelin, L. Scrano, et al. Photochemical Degradation ofAcifluorfen in Aqueous Solution. J. Agric. Food Chem.2001,49(10),4795~4800
    146L. Kronik, Y. Sapira. Surface Photovoltage Phenomena: Theory, Experiment,and Applications. Surf. Sci.e Rep.1999,37:1~206
    147Q. Z. Zhai, S. L. Qiu, F. S. Xiao, et al. Preparation, Characterization, andOptical Properties of the Host-Guest Nanocomposite Material Zeolite-SilverIodide. Mater. Res. Bull.2000,35(1):59~73
    148L. Szaro, J. Rebisz, J. Misiewicz. Surface Photovoltage in Semiconductorsunder Sub-Band-Gap Illumination: Continuous Distribution of Surface States.Appl. Phys. A.1999,69(4):409~413
    149K. Nauka, T. I. Kamins. Surface Photovoltage Measurement of Hydrogen--Treated Si Surfaces. J. Electrochem. Soc.1999,146(1):292~295
    150L. Q. Jing, X. J. Sun, J. Shang, et al. Review of Surface Photovoltage Spectraof Nano-Sized Semiconductor and Its Applications in HeterogeneousPhotocatalysis. Sol. Energy Mater. Sol. Cells.2003,79(2):133~151
    151曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社.2002:1~36
    152郭婷.交流阻抗法TiO2半导体光电催化特性表征.太原理工大学硕士学位论文.2002:34~35
    153S. R. Morrison. Electrochemistry at Semiconductor and Oxidized MetalElectrodes.吴辉煌译.北京:科学出版社.1988:126~161
    154X. Bokhimi, A. Morales, O. Novaro, et al. Effect of Copper Precursor on theStabilization of Titania Phases, and the Optical Properties of Cu/TiO2Preparedwith the Sol-Gel Technique. Chem. Mater.1997,9(11):2616~2620
    155K. Varazo, F. W. Parsons, S. Ma, et al. Methanol Chemistry on Cu andOxygen-Covered Cu Nanoclusters Supported on TiO2(110). J. Phys. Chem. B.2004,108(47):18274~18283
    156S. Ma, J. Zhou, Y. C. Kang, et al. Dimethyl Methylphosphonate Decompositionon Cu Surfaces: Supported Cu Nanoclusters and Films on TiO2(110). Langmuir.2004,20(22):9686~9694
    157W. Siripala, A. Ivanovskaya, T. F. Jaramillo, et al. A Cu2O/TiO2Heterojunction Thin Film Cathode for Photoelectrocatalysis. Sol. Energy Mater.Sol. Cells.2003,77(3):229~237
    158J. M. Amores, V. S. Escribano, G. Busca. Anatase Crystal-Growth andPhase-transformation to Rutile in High-area TiO2, MoO3-TiO2and OtherTiO2-Supported Oxide Catalytic-systems. J. Mater. Chem.1996,5(8):1245~1249
    159K. Mizuno, M. Izaki, K. Murase, et al. Structural and ElectricalCharacterizations of Electrodeposited p-Type Semiconductor Cu2O Films. J.Electrochem. Soc.2005,152(4): C179~C182
    160A. Mishima. Optical Absorption in the Double-Layer Two-DimensionalTwo-Band Model. Chin. J. Phys.1996,34(4):347~351.
    161C. D. Wagner, J. F. Moulder, et al. Handbook of X-ray photoelectronspectroscopy. USA: Perking-Elmer Corporation.1979:138
    162S. K. Poznysk, V. I. Pergushov, A. I. Kokorin, et al. Structure andElectrochemical Properties of Species Formed as a Result of Cu(II) IonAdsorption onto TiO2Nanoparticles. J. Phys. Chem. B.1999,103(8):1308~1315
    163M.V. Zeller, P. A. Grutsch, T. P. Fehlner. Photoelectron Spectroscopy of Tincompounds. Inorg. Chem.1973,12(6):1431~1433
    164M. V Kuznetsov, J. F. Zhuravlev, V. A. Gubanov. XPS Analysis of Adsorptionof Oxygen Molecules on the Surface of Ti and TiNxFilms in Vacuum. J.Electron. Spectrosc. Relat. Phenom.1992,58(3):169~176
    165M. Radecka, P. Pasierb, K. Zakrzewska, et al. Transport Properties of (Sn,Ti)O2Polycrystalline Ceramics and Thin Films. Solid State Ionic.1999,119(1):43~48
    166P. Rajaa, A. Bozzia, H. Mansillab, et al. Evidence for superoxide-radical anion,singlet oxygen and OH-radical intervention during the degradation of the ligninmodel compound (3-methoxy-4-hydroxyphenylmethylcarbinol). J. Photochem.Photobiol. A.2005,169(3):271~278
    167K. H. Wang, H. H. Tsai, Y. H. Hsieh. The kinetics of photocatalytic degradationof trichloroethylene in gas phase over TiO2supported on glass bead. Appl.Catal. B.1998,17(4):313~320
    168V. Brezova, A. Blazkova, E. Borosova, et al. The influence of dissolved metalions on the photocatalytic degradation of phenol in aqueous TiO2suspensions. J.Mol. Catal. A.1995,98(2)109~116
    169S. W. Lam, K. Chiang, T. M. Lim, et al. Effect of charge trapping species ofcupric ions on the photocatalytic oxidation of resorcinol. Appl. Catal. B.2005,55(2):123~132
    170G. Ghiselli, W. F. Jardim, M. I. Litter, et al. Destruction of EDTA using Fentonand photo-Fenton-like reactions under UV-A irradiation J. Photochem.Photobiol. A.2004,167(1):59~67
    171G Mills, M. R. Hoffmann. Photocatalytic degradation of pentachlorophenol ontitanium dioxide particles: identification of intermediates and mechanism ofreaction Environ Sci. Technol.1993,27(8):1681~1689
    172G. M. Liu, J. C. Zhao, H. Hidaka. ESR spin-trapping detection of radicalintermediates in the TiO2-assisted photo-oxidation of sulforhodamine B undervisible irradiation, J. Photochem. Photobiol. A.2000,133(1-2):83~88
    173K. W. Kim, E. H. Lee, Y. J. Kim, et al. A relation between thenon-stoichiometry and hydroxyl radical generated at photocatalytic TiO2on4CP decomposition, J. Photochem. Photobiol. A.2003,159(3):301~310
    174R. Nakamura, Y. Nakato. Primary intermediates of oxygen photoevolutionreaction on TiO2(rutile) particles, revealed by in situ FTIR absorption andphotoluminescence measurements, J. Am. Chem. Soc.2004,126(4):1290~1298
    175D. D. Zhang, R. L. Qiu, L. Song, et al. Role of oxygen active species in thephotocatalytic degradation of phenol using polymer sensitized TiO2undervisible light irradiation. J. Hazard. Mater.2009,163(2-3):843~47
    176P. Raja, A. Bozzi, H. Mansill, et al. Evidence for superoxide-radical anion,singlet oxygen and OH-radical intervention during the degradation of the ligninmodel compound (3-methoxy-4-hydroxyphenylmethylcarbinol). J. Photochem.Photobiol. A.2005,169(3):271~278
    177T. Daimon, T. Hirakawa, M. Kitazawa, et al. Formation of singlet molecularoxygen associated with the formation of superoxide radicals in aqueoussuspensions of TiO2photocatalysts. Appl. Catal. A.2008,340(2):169~175
    178D. Gryglik, J.S. Miller, S. Ledakowicz. Singlet molecular oxygen applicationfor2-chlorophenol removal. J. Hazard. Mater.2007,146(3):502~507
    179H. Park, W. Choi. Effect of TiO2surface fluorination on photocatalyticreactions and photoelectrochemical behaviors. J. Phys. Chem. B.2004,108(13):4086~4093
    180T. M. Elmorsi, W. R. Budakowski, A. S. Abdelaziz, et al. Photocatalyticdegradation of1,10-dichlorodecane in aqueous suspensions of TiO2: a reactionof adsorbed chlorinated alkane with surface hydroxyl radicals. Environ. Sci.Technol.2000,34(6):1018~1022
    181P. Calza, E. Pelizzetti. Photocatalytic transformation of organic compounds inthe presence of inorganic ions. Pure Appl. Chem.2001,73(12):1839~1848
    182Y. X. Chen, S. Y. Yang, K. Wang, et al. Role of primary active species andTiO2surface characteristic in UV-illuminated photodegradation of Acid Orange7. J. Photochem. Photobiol. A.2005,172(1):47~54
    183魏宏斌,徐迪民,严煦世.二氧化钛膜光催化氧化苯酚的动力学规律.中国给水排水.1999,15(2):14~18
    184叶苗苗,陈忠林,沈吉敏等. TiO2/UV/O2和TiO2/UV/N2体系降解水中对氯硝基苯.感光科学与光化学.2007,35(4):296~305
    185X. Zhang, F. Wu, X. W. Wu, et al. Photodegradation of acetaminophen in TiO2suspended solution. J. Hazard. Mater.2008,157(2-3):300~307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700